2,826 research outputs found

    Superconducting thin films of MgB2 on (001)-Si by pulsed laser deposition

    Full text link
    Superconducting thin films have been prepared on Si-substrates, using pulsed laser deposition from a target composed of a mixture of Mg and MgB2 powders. The films were deposited at room temperature and post-annealed at 600 degrees C. The zero resistance transition temperatures were 12 K, with an onset transition temperature of 27 K. Special care has been taken to avoid oxidation of Mg in the laser plasma and deposited film, by optimizing the background pressure of Ar gas in the deposition chamber. For this the optical emission in the visible range from the plasma has been used as indicator. Preventing Mg from oxidation was found to be essential to obtain superconducting films

    Beta-decay branching ratios of 62Ga

    Get PDF
    Beta-decay branching ratios of 62Ga have been measured at the IGISOL facility of the Accelerator Laboratory of the University of Jyvaskyla. 62Ga is one of the heavier Tz = 0, 0+ -> 0+ beta-emitting nuclides used to determine the vector coupling constant of the weak interaction and the Vud quark-mixing matrix element. For part of the experimental studies presented here, the JYFLTRAP facility has been employed to prepare isotopically pure beams of 62Ga. The branching ratio obtained, BR= 99.893(24)%, for the super-allowed branch is in agreement with previous measurements and allows to determine the ft value and the universal Ft value for the super-allowed beta decay of 62Ga

    Ruelle-Perron-Frobenius spectrum for Anosov maps

    Full text link
    We extend a number of results from one dimensional dynamics based on spectral properties of the Ruelle-Perron-Frobenius transfer operator to Anosov diffeomorphisms on compact manifolds. This allows to develop a direct operator approach to study ergodic properties of these maps. In particular, we show that it is possible to define Banach spaces on which the transfer operator is quasicompact. (Information on the existence of an SRB measure, its smoothness properties and statistical properties readily follow from such a result.) In dimension d=2d=2 we show that the transfer operator associated to smooth random perturbations of the map is close, in a proper sense, to the unperturbed transfer operator. This allows to obtain easily very strong spectral stability results, which in turn imply spectral stability results for smooth deterministic perturbations as well. Finally, we are able to implement an Ulam type finite rank approximation scheme thus reducing the study of the spectral properties of the transfer operator to a finite dimensional problem.Comment: 58 pages, LaTe

    Chaotic Cascades with Kolmogorov 1941 Scaling

    Full text link
    We define a (chaotic) deterministic variant of random multiplicative cascade models of turbulence. It preserves the hierarchical tree structure, thanks to the addition of infinitesimal noise. The zero-noise limit can be handled by Perron-Frobenius theory, just as the zero-diffusivity limit for the fast dynamo problem. Random multiplicative models do not possess Kolmogorov 1941 (K41) scaling because of a large-deviations effect. Our numerical studies indicate that deterministic multiplicative models can be chaotic and still have exact K41 scaling. A mechanism is suggested for avoiding large deviations, which is present in maps with a neutrally unstable fixed point.Comment: 14 pages, plain LaTex, 6 figures available upon request as hard copy (no local report #

    A rigorous real time Feynman Path Integral and Propagator

    Full text link
    We will derive a rigorous real time propagator for the Non-relativistic Quantum Mechanic L2L^2 transition probability amplitude and for the Non-relativistic wave function. The propagator will be explicitly given in terms of the time evolution operator. The derivation will be for all self-adjoint nonvector potential Hamiltonians. For systems with potential that carries at most a finite number of singularity and discontinuities, we will show that our propagator can be written in the form of a rigorous real time, time sliced Feynman path integral via improper Riemann integrals. We will also derive the Feynman path integral in Nonstandard Analysis Formulation. Finally, we will compute the propagator for the harmonic oscillator using the Nonstandard Analysis Feynman path integral formuluation; we will compute the propagator without using any knowledge of classical properties of the harmonic oscillator

    Variation in Emission and Absorption Lines and Continuum Flux by Orbital Phase in Vela X-1

    Full text link
    High resolution spectral studies were undertaken at orbital phases 0, 0.25 and 0.5 on the high-mass X-ray binary (HMXB) Vela X-1 using archival Chandra data. We present (a) the first detailed analysis of the multiple strong narrow emission lines present in phase 0.5 (b) an analysis of the absorption of the continuum in phase 0.5, and (c) the first detection of narrow emission and absorption lines in phase 0.25. Multiple fluorescent and H-and He-like emission lines in the band 1.6 - 20 Angstrom in eclipse are partially obscured at phase 0.25 by the X-ray continuum. The phase 0.25 spectrum displays 3 triplets, 2 with a blue-shifted resonance (r) line in absorption and the intercombination (i) and forbidden (f) lines in emission, and shows in absorption other blue-shifted lines seen in emission in eclipse. At phase 0.5 the soft X-ray continuum diminishes revealing an "eclipse-like" spectrum, however line flux values are around 13-fold those in eclipse. We conclude the narrow emission lines in Vela X-1 become apparent when the continuum is blocked from line of sight, either by eclipse or by scattering and/or absorption from a wake or cloud. The H-and He-like lines arise in warm photoionised regions in the stellar wind, while the fluorescent lines (including a Ni K alpha line) are produced in cooler clumps of gas outside these regions. Absorption of the 5-13 Angstrom continuum at phase 0.5 may be caused by an accretion wake comprised of dense stagnant photoionized plasma inside a Stromgren zone. Multiple fluorescent emission lines may be a common feature of the supergiant category of HMXBs.Comment: 29 pages, 7 figures, accepted for publication in the Astronomical Journa

    Q-value of the superallowed beta decay of Ga-62

    Full text link
    Masses of the radioactive isotopes 62Ga, 62Zn and 62Cu have been measured at the JYFLTRAP facility with a relative precision of better than 18 ppb. A Q_EC value of (9181.07 +- 0.54) keV for the superallowed decay of 62Ga is obtained from the measured cyclotron frequency ratios of 62Ga-62Zn, 62Ga-62Ni and 62Zn-62Ni ions. The resulting Ft-value supports the validity of the conserved vector current hypothesis (CVC). The mass excess values measured were (-51986.5 +-1.0) keV for 62Ga, (-61167.9 +- 0.9) keV for 62Zn and (-62787.2 +- 0.9) keV for 62Cu.Comment: 12 pages, 3 figures, 2 tables, submitted to Phys. Lett. B. v2: added acknowledgement

    Calculations of three-body observables in ^8B breakup

    Get PDF
    We discuss calculations of three-body observables for the breakup of ^8B on a ^{58}Ni target at low energy using the coupled discretised continuum channels approach. Calculations of both the angular distribution of the ^7Be fragments and their energy distributions are compared with those measured at several laboratory angles. In these observables there is interference between the breakup amplitudes from different spin-parity excitations of the projectile. The resulting angle and the energy distributions reveal the importance of the higher-order continuum state couplings for an understanding of the measurements.Comment: 22 pages (postscript), accepted in Phys. Rev.

    Mass Dependent αS\alpha_S Evolution and the Light Gluino Existence

    Full text link
    There is an intriguing discrepancy between \alpha_s(M_Z) values measured directly at the CERN Z0Z_0-factory and low-energy (at few GeV) measurements transformed to Q=MZ0Q=M_{Z_0} by a massless QCD \alpha_s(Q) evolution relation. There exists an attempt to reconcile this discrepancy by introducing a light gluino \gl in the MSSM. We study in detail the influence of heavy thresholds on \alpha_s(Q) evolution. First, we consruct the "exact" explicit solution to the mass-dependent two-loop RG equation for the running \alpha_s(Q). This solution describes heavy thresholds smoothly. Second, we use this solution to recalculate anew \alpha_s(M_Z) values corresponding to "low-energy" input data. Our analysis demonstrates that using {\it mass-dependent RG procedure} generally produces corrections of two types: Asymptotic correction due to effective shift of threshold position; Local threshold correction only for the case when input experiment lies in the close vicinity of heavy particle threshold: QexptMhQ_{expt} \simeq M_h . Both effects result in the effective shift of the \asmz values of the order of 10310^{-3}. However, the second one could be enhanced when the gluino mass is close to a heavy quark mass. For such a case the sum effect could be important for the discussion of the light gluino existence as it further changes the \gl mass.Comment: 13, Late
    corecore