631 research outputs found
Massive Complex Scalar Field in a Kerr-Sen Black Hole Background: Exact Solution of Wave Equation and Hawking Radiation
The separated radial part of a massive complex scalar wave equation in the
Kerr-Sen geometry is shown to satisfy the generalized spheroidal wave equation
which is, in fact, a confluent Heun equation up to a multiplier. The Hawking
evaporation of scalar particles in the Kerr-Sen black hole background is
investigated by the Damour-Ruffini-Sannan's method. It is shown that quantum
thermal effect of the Kerr-Sen black hole has the same characteras that of the
Kerr-Newman black hole.Comment: Revtex, 5 pages, no figure, submitted to Phys. Rev.
Evaluating Executive Performance in the Public Sector
The ability of a government organization to evaluate and reward executive performance is of critical importance if performance management systems are realistically expected to promote successful execution of the organization’s strategic goals and objectives. Government organizations must move away from evaluating performance based on equity, time in grade, personal attributes and effort (all inputs) and toward systems based on output, results, and outcome achievement. We provide a model that can be used to evaluate executive performance in government. The model allows executives to focus on what is important to their organization and customers, and ties their performance evaluations not only to the organization’s objectives, but to the importance of each objective; thus it gives leaders an open and explicit linkage between performance of the individual and organizational objectives. We measure individual achievement by defining results or measures of performance and then aggregating them into higher-level objectives. We discuss how to use the model to rank performance among executives, how the model results might be used to reward performance and limitations of using the model for performance evaluation
Mass-Transport Models with Multiple-Chipping Processes
We study mass-transport models with multiple-chipping processes. The rates of
these processes are dependent on the chip size and mass of the fragmenting
site. In this context, we consider k-chip moves (where k = 1, 2, 3, ....); and
combinations of 1-chip, 2-chip and 3-chip moves. The corresponding mean-field
(MF) equations are solved to obtain the steady-state probability distributions,
P (m) vs. m. We also undertake Monte Carlo (MC) simulations of these models.
The MC results are in excellent agreement with the corresponding MF results,
demonstrating that MF theory is exact for these models.Comment: 18 pages, 4 figures, To appear in European Physical Journal
A simplified protocol for the detection of blood, saliva, and semen from a single biological trace using immunochromatographic tests.
The detection of body fluids (e.g., blood, saliva or semen) provides information that is important both for the investigation and for the choice of the analytical protocols. Because of their sensitivity, specificity, as well as their simplicity of use, immunochromatographic tests are widely applied. These tests target different body fluids and generally require specific buffer solutions. If one needs to investigate whether the material is of a specific nature (e.g., blood), this is fine. However, if the material can also contain other material (e.g., saliva or semen) then the use of different tests can be problematic. Indeed, if the different tests require different buffers, it will not be possible to perform all tests on the exact same specimen.In this study, we assess the use of the RSID™-universal buffer to perform three immunochromatographic tests (HEXAGON OBTI, RSID-saliva, and PSA Semiquant) as well as spermatozoa detection. We use the same eluate for the detection of all three body fluids. The proposed protocol provides similar results to those obtained when each test is conducted independently. Furthermore, it does not affect the quality of the DNA profiles. The main advantage of this protocol is that the results of the presumptive test(s) and of the DNA analyses are representative of the exact same specimen
Practical considerations for operability of an 8″ spiral wound forward osmosis module: Hydrodynamics, fouling behaviour and cleaning strategy
© 2016 Elsevier B.V. A better understanding of large spiral wound forward osmosis (SW FO) module operation is needed to provide practical insight for a full-scale FO practical implementation desalination plant. Therefore, this study investigated two different 8″ SW FO modules (i.e. cellulose tri acetate, CTA and thin film composite, TFC) in terms of hydrodynamics, operating pressure, water and solute fluxes, fouling behaviour and cleaning strategy. For both modules, a significantly lower flow rate was required in the draw channel than in the feed channel due to important pressure-drop in the draw channel and was a particularly critical operating challenge in the CTA module when permeate spacers are used. Under FO and pressure assisted osmosis (PAO, up to 2.5 bar) operations, the TFC module featured higher water flux and lower reverse salt flux than the CTA module. For both modules, fouling tests demonstrated that feed inlet pressure was more sensitive to foulant deposition than the flux, thus confirming that FO fouling deposition occurs in the feed channel rather than on the membrane surface. Osmotic backwash combined with physical cleaning used in this study confirmed to be effective and adapted to large-scale FO module operation
Technical advances in near real time seafloor monitoring implemented for the momar-d project
Peer Reviewe
Revealing the true partitioning character of zirconium in additively manufactured polycrystalline superalloys
International audienc
A general method to determine replica symmetry breaking transitions
We introduce a new parameter to investigate replica symmetry breaking
transitions using finite-size scaling methods. Based on exact equalities
initially derived by F. Guerra this parameter is a direct check of the
self-averaging character of the spin-glass order parameter. This new parameter
can be used to study models with time reversal symmetry but its greatest
interest concerns models where this symmetry is absent. We apply the method to
long-range and short-range Ising spin glasses with and without magnetic field
as well as short-range multispin interaction spin glasses.Comment: 5 pages, 4 figures, Revtex fil
Visible supercontinuum generation controlled by intermodal four-wave mixing in micro-structured fibre
International audienceWe present an experimental and numerical study of supercontinuum generation extended in the visible part of the spectrum by using a selective optical coupling of the pump wave in the largely anomalous dispersion regime. The broadband frequency generation is induced by an initial four-wave mixing process that converts the pump wave at 1064 nm into 831 nm anti-Stokes and 1478 nm Stokes wavelengths. Phase matching is ensured on such a large frequency shift thanks to a microstructured multimodal fiber with a specific design. Continuum generation is therefore enhanced around the two generated sideband
Apparent Fractality Emerging from Models of Random Distributions
The fractal properties of models of randomly placed -dimensional spheres
(=1,2,3) are studied using standard techniques for calculating fractal
dimensions in empirical data (the box counting and Minkowski-sausage
techniques). Using analytical and numerical calculations it is shown that in
the regime of low volume fraction occupied by the spheres, apparent fractal
behavior is observed for a range of scales between physically relevant
cut-offs. The width of this range, typically spanning between one and two
orders of magnitude, is in very good agreement with the typical range observed
in experimental measurements of fractals. The dimensions are not universal and
depend on density. These observations are applicable to spatial, temporal and
spectral random structures. Polydispersivity in sphere radii and
impenetrability of the spheres (resulting in short range correlations) are also
introduced and are found to have little effect on the scaling properties. We
thus propose that apparent fractal behavior observed experimentally over a
limited range may often have its origin in underlying randomness.Comment: 19 pages, 12 figures. More info available at
http://www.fh.huji.ac.il/~dani
- …