28 research outputs found

    Implementation of wearable sensing technology for movement: Pushing forward into the routine physical rehabilitation care field

    Get PDF
    While the promise of wearable sensor technology to transform physical rehabilitation has been around for a number of years, the reality is that wearable sensor technology for the measurement of human movement has remained largely confined to rehabilitation research labs with limited ventures into clinical practice. The purposes of this paper are to: (1) discuss the major barriers in clinical practice and available wearable sensing technology; (2) propose benchmarks for wearable device systems that would make it feasible to implement them in clinical practice across the world and (3) evaluate a current wearable device system against the benchmarks as an example. If we can overcome the barriers and achieve the benchmarks collectively, the field of rehabilitation will move forward towards better movement interventions that produce improved function not just in the clinic or lab, but out in peoples\u27 homes and communities

    The brain recovery core: Building a system of organized stroke rehabilitation and outcomes assessment across the continuum of care

    Get PDF
    none10siThis Special Interest article describes a multidisciplinary, interinstitutional effort to build an organized system of stroke rehabilitation and outcomes measurement across the continuum of care. This system is focused on a cohort of patients who are admitted with the diagnosis of stroke to our acute facility, are discharged to inpatient and/or outpatient rehabilitation at our free-standing facility, and are then discharged to the community. This article first briefly explains the justification, goals, and purpose of the Brain Recovery Core system. The next sections describe its development and implementation, with details on the aspects related to physical therapy. The article concludes with an assessment of how the Brain Recovery Core system has changed and improved delivery of rehabilitation services. It is hoped that the contents of this article will be useful in initiating discussions and potentially facilitating similar efforts among other centers.mixedLang, Catherine E.; Bland, Marghuretta D.; Connor, Lisa Tabor; Fucetola, Robert; Whitson, Michelle; Edmiaston, Jeff; Karr, Clayton; Sturmoski, Audra; Baty, Jack; Corbetta, MaurizioLang, Catherine E.; Bland, Marghuretta D.; Connor, Lisa Tabor; Fucetola, Robert; Whitson, Michelle; Edmiaston, Jeff; Karr, Clayton; Sturmoski, Audra; Baty, Jack; Corbetta, Maurizi

    Integrated Testing Approaches for the NASA Ares I Crew Launch Vehicle

    Get PDF
    The Ares I crew launch vehicle is being developed by the U.S. National Aeronautics and Space Administration (NASA) to provide crew and cargo access to the International Space Station (ISS) and, together with the Ares V cargo launch vehicle, serves as a critical component of NASA's future human exploration of the Moon. During the preliminary design phase, NASA defined and began implementing plans for integrated ground and flight testing necessary to achieve the first human launch of Ares I. The individual Ares I flight hardware elements - including the first stage five segment booster (FSB), upper stage, and J-2X upper stage engine - will undergo extensive development, qualification, and certification testing prior to flight. Key integrated system tests include the upper stage Main Propulsion Test Article (MPTA), acceptance tests of the integrated upper stage and upper stage engine assembly, a full-scale integrated vehicle ground vibration test (IVGVT), aerodynamic testing to characterize vehicle performance, and integrated testing of the avionics and software components. The Ares I-X development flight test will provide flight data to validate engineering models for aerodynamic performance, stage separation, structural dynamic performance, and control system functionality. The Ares I-Y flight test will validate ascent performance of the first stage, stage separation functionality, validate the ability of the upper stage to manage cryogenic propellants to achieve upper stage engine start conditions, and a high-altitude demonstration of the launch abort system (LAS) following stage separation. The Orion 1 flight test will be conducted as a full, un-crewed, operational flight test through the entire ascent flight profile prior to the first crewed launch

    Clinician adherence to a standardized assessment battery across settings and disciplines in a poststroke rehabilitation population

    Get PDF
    none12siObjectives: (1) To examine clinician adherence to a standardized assessment battery across settings (acute hospital, inpatient rehabilitation facilities [IRFs], outpatient facility), professional disciplines (physical therapy [PT], occupational therapy, speech-language pathology), and time of assessment (admission, discharge/monthly), and (2) to evaluate how specific implementation events affected adherence. Design: Retrospective cohort study. Setting: Acute hospital, IRF, and outpatient facility with approximately 118 clinicians (physical therapists, occupational therapists, speech-language pathologists). Participants: Participants (N=2194) with stroke who were admitted to at least 1 of the above settings. All persons with stroke underwent standardized clinical assessments. Interventions: Not applicable. Main Outcome Measures: Adherence to Brain Recovery Core assessment battery across settings, professional disciplines, and time. Visual inspections of 17 months of time-series data were conducted to see if the events (eg, staff meetings) increased adherence >= 5% and if so, how long the increase lasted. Results: Median adherence ranged from .52 to .88 across all settings and professional disciplines. Both the acute hospital and the IRF had higher adherence than the outpatient setting (P = 5% increase in adherence the following month, with 6 services (60%) maintaining their increased level of adherence for at least 1 additional month. Conclusions: Actual adherence to a standardized assessment battery in clinical practice varied across settings, disciplines, and time. Specific events increased adherence 40% of the time with those gains maintained for >1 month 60% of the time. (C) 2013 by the American Congress of Rehabilitation MedicinemixedBland, Marghuretta D.; Sturmoski, Audra; Whitson, Michelle; Harris, Hilary; Connor, Lisa Tabor; Fucetola, Robert; Edmiaston, Jeff; Huskey, Thy; Carter, Alexandre; Kramper, Marian; Corbetta, Maurizio; Lang, Catherine E.Bland, Marghuretta D.; Sturmoski, Audra; Whitson, Michelle; Harris, Hilary; Connor, Lisa Tabor; Fucetola, Robert; Edmiaston, Jeff; Huskey, Thy; Carter, Alexandre; Kramper, Marian; Corbetta, Maurizio; Lang, Catherine E

    Wide-field dynamic astronomy in the near-infrared with Palomar Gattini-IR and DREAMS

    Get PDF
    There have been a dramatic increase in the number of optical and radio transient surveys due to astronomical transients such as gravitational waves and gamma ray bursts, however, there have been a limited number of wide-field infrared surveys due to narrow field-of-view and high cost of infrared cameras, we present two new wide-field near-infrared fully automated surveyors; Palomar Gattini-IR and the Dynamic REd All-sky Monitoring Survey (DREAMS). Palomar Gattini-IR, a 25 square degree J-band imager that begun science operations at Palomar Observatory, USA in October 2018; we report on survey strategy as well as telescope and observatory operations and will also providing initial science results. DREAMS is a 3.75 square degree wide-field imager that is planned for Siding Spring Observatory, Australia; we report on the current optical and mechanical design and plans to achieve on-sky results in 2020. DREAMS is on-track to be one of the first astronomical telescopes to use an Indium Galium Arsenide (InGaAs) detector and we report initial on-sky testing results for the selected detector package. DREAMS is also well placed to take advantage and provide near-infrared follow-up of the LSST

    Identifying the science and technology dimensions of emerging public policy issues through horizon scanning

    Get PDF
    Public policy requires public support, which in turn implies a need to enable the public not just to understand policy but also to be engaged in its development. Where complex science and technology issues are involved in policy making, this takes time, so it is important to identify emerging issues of this type and prepare engagement plans. In our horizon scanning exercise, we used a modified Delphi technique [1]. A wide group of people with interests in the science and policy interface (drawn from policy makers, policy adviser, practitioners, the private sector and academics) elicited a long list of emergent policy issues in which science and technology would feature strongly and which would also necessitate public engagement as policies are developed. This was then refined to a short list of top priorities for policy makers. Thirty issues were identified within broad areas of business and technology; energy and environment; government, politics and education; health, healthcare, population and aging; information, communication, infrastructure and transport; and public safety and national security.Public policy requires public support, which in turn implies a need to enable the public not just to understand policy but also to be engaged in its development. Where complex science and technology issues are involved in policy making, this takes time, so it is important to identify emerging issues of this type and prepare engagement plans. In our horizon scanning exercise, we used a modified Delphi technique [1]. A wide group of people with interests in the science and policy interface (drawn from policy makers, policy adviser, practitioners, the private sector and academics) elicited a long list of emergent policy issues in which science and technology would feature strongly and which would also necessitate public engagement as policies are developed. This was then refined to a short list of top priorities for policy makers. Thirty issues were identified within broad areas of business and technology; energy and environment; government, politics and education; health, healthcare, population and aging; information, communication, infrastructure and transport; and public safety and national security

    The NASA Roadmap to Ocean Worlds

    Get PDF
    In this article, we summarize the work of the NASA Outer Planets Assessment Group (OPAG) Roadmaps to Ocean Worlds (ROW) group. The aim of this group is to assemble the scientific framework that will guide the exploration of ocean worlds, and to identify and prioritize science objectives for ocean worlds over the next several decades. The overarching goal of an Ocean Worlds exploration program as defined by ROW is to identify ocean worlds, characterize their oceans, evaluate their habitability, search for life, and ultimately understand any life we find. The ROW team supports the creation of an exploration program that studies the full spectrum of ocean worlds, that is, not just the exploration of known ocean worlds such as Europa but candidate ocean worlds such as Triton as well. The ROW team finds that the confirmed ocean worlds Enceladus, Titan, and Europa are the highest priority bodies to target in the near term to address ROW goals. Triton is the highest priority candidate ocean world to target in the near term. A major finding of this study is that, to map out a coherent Ocean Worlds Program, significant input is required from studies here on Earth; rigorous Research and Analysis studies are called for to enable some future ocean worlds missions to be thoughtfully planned and undertaken. A second finding is that progress needs to be made in the area of collaborations between Earth ocean scientists and extraterrestrial ocean scientists

    Wide-field dynamic astronomy in the near-infrared with Palomar Gattini-IR and DREAMS

    Get PDF
    There have been a dramatic increase in the number of optical and radio transient surveys due to astronomical transients such as gravitational waves and gamma ray bursts, however, there have been a limited number of wide-field infrared surveys due to narrow field-of-view and high cost of infrared cameras, we present two new wide-field near-infrared fully automated surveyors; Palomar Gattini-IR and the Dynamic REd All-sky Monitoring Survey (DREAMS). Palomar Gattini-IR, a 25 square degree J-band imager that begun science operations at Palomar Observatory, USA in October 2018; we report on survey strategy as well as telescope and observatory operations and will also providing initial science results. DREAMS is a 3.75 square degree wide-field imager that is planned for Siding Spring Observatory, Australia; we report on the current optical and mechanical design and plans to achieve on-sky results in 2020. DREAMS is on-track to be one of the first astronomical telescopes to use an Indium Galium Arsenide (InGaAs) detector and we report initial on-sky testing results for the selected detector package. DREAMS is also well placed to take advantage and provide near-infrared follow-up of the LSST
    corecore