105 research outputs found

    Appearance and Precipitation Characteristics of High-Latitude Pulsating Aurora

    Get PDF
    Characteristics of pulsating aurora (PsA) at the equatorward part of the auroral oval have been well described in the literature by previous studies. We extend our knowledge on high-latitude PsA observations by analysing 68 PsA events from the optical observatory on Svalbard, at 75 degrees magnetic latitude. We found that the pulsating emission structures are particularly large and transient, they do not experience drift motion, or their drift motion cannot be traced. Our results show that the high-latitude PsA events relate to lower geomagnetic activity and weaker solar wind driving than the lower latitude PsA. The high-latitude PsA events also occur less frequently, which is in agreement with their association to lower-than-average geomagnetic activity. We further show that the ionospheric electron density values during high-latitude PsA events are low compared to the lower latitude PsA. This, together with the non-traceable nature of the pulsating emission structures, suggests that these events are strongly dominated by a sub-type called Amorphous Pulsating Aurora (APA). We therefore conclude that, unlike the lower latitude PsA events, the high-latitude PsA events are not likely to cause direct changes in the chemical composition of the mesosphere.Peer reviewe

    Electron precipitation characteristics during isolated, compound, and multi-night substorm events

    Get PDF
    A set of 24 isolated, 46 compound, and 36 multi-night substorm events from the years 2008–2013 have been analysed in this study. Isolated substorm events are defined as single expansion–recovery phase pairs, compound substorms consist of multiple phase pairs, and multi-night substorm events refer to recurring substorm activity on consecutive nights. Approximately 200 nights of substorm activity observed over Fennoscandian Lapland have been analysed for their magnetic disturbance magnitude and the level of cosmic radio noise absorption. Substorm events were automatically detected from the local electrojet index data and visually categorized. We show that isolated substorms have limited lifetimes and spatial extents as compared to the other substorm types. The average intensity (both in absorption and ground-magnetic deflection) of compound and multi-night substorm events is similar. For multi-night substorm events, the first night is rarely associated with the strongest absorption. Instead, the high-energy electron population needed to cause the strongest absorption builds up over 1–2 additional nights of substorm activity. The non-linear relationship between the absorption and the magnetic deflection at high- and low-activity conditions is also discussed. We further collect in situ particle spectra for expansion and recovery phases to construct median precipitation fluxes at energies from 30 eV up to about 800 keV. In the expansion phases the bulk of the spectra show a local maximum flux in the range of a few keV to 10 keV, while in the recovery phases higher fluxes are seen in the range of tens of keV to hundreds of keV. These findings are discussed in the light of earlier observations of substorm precipitation and their atmospheric effects.publishedVersio

    Appearance and Precipitation Characteristics of High-Latitude Pulsating Aurora

    Get PDF
    Characteristics of pulsating aurora (PsA) at the equatorward part of the auroral oval have been well described in the literature by previous studies. We extend our knowledge on high-latitude PsA observations by analysing 68 PsA events from the optical observatory on Svalbard, at 75° magnetic latitude. We found that the pulsating emission structures are particularly large and transient, they do not experience drift motion, or their drift motion cannot be traced. Our results show that the high-latitude PsA events relate to lower geomagnetic activity and weaker solar wind driving than the lower latitude PsA. The high-latitude PsA events also occur less frequently, which is in agreement with their association to lower-than-average geomagnetic activity. We further show that the ionospheric electron density values during high-latitude PsA events are low compared to the lower latitude PsA. This, together with the non-traceable nature of the pulsating emission structures, suggests that these events are strongly dominated by a sub-type called Amorphous Pulsating Aurora (APA). We therefore conclude that, unlike the lower latitude PsA events, the high-latitude PsA events are not likely to cause direct changes in the chemical composition of the mesosphere

    Consistency of metabolic responses and appetite sensations under postabsorptive and postprandial conditions

    Get PDF
    The present study aimed to investigate the reliability of metabolic and subjective appetite responses under fasted conditions and following consumption of a cereal-based breakfast. Twelve healthy, physically active males completed two postabsorption (PA) and two postprandial (PP) trials in a randomised order. In PP trials a cereal based breakfast providing 1859 kJ of energy was consumed. Expired gas samples were used to estimate energy expenditure and fat oxidation and 100 mm visual analogue scales were used to determine appetite sensations at baseline and every 30 min for 120 min. Reliability was assessed using limits of agreement, coefficient of variation (CV), intraclass coefficient of correlation and 95% confidence limits of typical error. The limits of agreement and typical error were 292.0 and 105.5 kJ for total energy expenditure, 9.3 and 3.4 g for total fat oxidation and 22.9 and 8.3 mm for time-averaged AUC for hunger sensations, respectively over the 120 min period in the PP trial. The reliability of energy expenditure and appetite in the 2 h response to a cereal-based breakfast would suggest that an intervention requires a 211 kJ and 16.6 mm difference in total postprandial energy expenditure and time-averaged hunger AUC to be meaningful, fat oxidation would require a 6.7 g difference which may not be sensitive to most meal manipulations

    On the Creation, Depletion, and End of Life of Polar Cap Patches

    Get PDF
    Ionospheric convection patterns from the Super Dual Auroral Radar Network are used to determine the trajectories, transit times, and decay rates of three polar cap patches from their creation in the dayside polar cap ionosphere to their end of life on the nightside. The first two polar cap patches were created within 12 min of each other and traveled through the dayside convection throat, before entering the nightside auroral oval after 104 and 92 min, respectively. When the patches approached the nightside auroral oval, an intensification in the poleward auroral boundary occurred close to their exit point, followed by a decrease in the transit velocity. The last patch (patch 3) decayed completely within the polar cap and had a lifetime of only 78 min. After a change in drift direction, patch 3 had a radar backscatter power half‐life of 4.23 min, which reduced to 1.80 min after a stagnation, indicating a variable decay rate. 28 minutes after the change in direction, and 16 min after coming to a halt within the Clyde River radar field‐of‐view, patch 3 appeared to reach its end of life. We relate this rapid decay to increased frictional heating, which speeds up the recombination rate. Therefore, we suggest that the slowed patch motion within the polar cap convection pattern is a major factor in determining whether the patch survives as a recognizable density enhancement by the time the flux tubes comprising the initial patch cross into the nightside auroral oval
    corecore