8,835 research outputs found

    Computer program for solving laminar, transitional, or turbulent compressible boundary-layer equations for two-dimensional and axisymmetric flow

    Get PDF
    A numerical algorithm and computer program are presented for solving the laminar, transitional, or turbulent two dimensional or axisymmetric compressible boundary-layer equations for perfect-gas flows. The governing equations are solved by an iterative three-point implicit finite-difference procedure. The software, program VGBLP, is a modification of the approach presented in NASA TR R-368 and NASA TM X-2458, respectively. The major modifications are: (1) replacement of the fourth-order Runge-Kutta integration technique with a finite-difference procedure for numerically solving the equations required to initiate the parabolic marching procedure; (2) introduction of the Blottner variable-grid scheme; (3) implementation of an iteration scheme allowing the coupled system of equations to be converged to a specified accuracy level; and (4) inclusion of an iteration scheme for variable-entropy calculations. These modifications to the approach presented in NASA TR R-368 and NASA TM X-2458 yield a software package with high computational efficiency and flexibility. Turbulence-closure options include either two-layer eddy-viscosity or mixing-length models. Eddy conductivity is modeled as a function of eddy viscosity through a static turbulent Prandtl number formulation. Several options are provided for specifying the static turbulent Prandtl number. The transitional boundary layer is treated through a streamwise intermittency function which modifies the turbulence-closure model. This model is based on the probability distribution of turbulent spots and ranges from zero to unity for laminar and turbulent flow, respectively. Several test cases are presented as guides for potential users of the software

    Finite element computation of a viscous compressible free shear flow governed by the time dependent Navier-Stokes equations

    Get PDF
    A finite element algorithm for solution of fluid flow problems characterized by the two-dimensional compressible Navier-Stokes equations was developed. The program is intended for viscous compressible high speed flow; hence, primitive variables are utilized. The physical solution was approximated by trial functions which at a fixed time are piecewise cubic on triangular elements. The Galerkin technique was employed to determine the finite-element model equations. A leapfrog time integration is used for marching asymptotically from initial to steady state, with iterated integrals evaluated by numerical quadratures. The nonsymmetric linear systems of equations governing time transition from step-to-step are solved using a rather economical block iterative triangular decomposition scheme. The concept was applied to the numerical computation of a free shear flow. Numerical results of the finite-element method are in excellent agreement with those obtained from a finite difference solution of the same problem

    On the existence of effective potentials in time-dependent density functional theory

    Full text link
    We investigate the existence and properties of effective potentials in time-dependent density functional theory. We outline conditions for a general solution of the corresponding Sturm-Liouville boundary value problems. We define the set of potentials and v-representable densities, give a proof of existence of the effective potentials under certain restrictions, and show the set of v-representable densities to be independent of the interaction.Comment: 13 page

    An ultraviolet excess in the superluminous supernova Gaia16apd reveals a powerful central engine

    Full text link
    Since the discovery of superluminous supernovae (SLSNe) in the last decade, it has been known that these events exhibit bluer spectral energy distributions than other supernova subtypes, with significant output in the ultraviolet. However, the event Gaia16apd seems to outshine even the other SLSNe at rest-frame wavelengths below 3000\sim 3000 \AA. Yan et al (2016) have recently presented HST UV spectra and attributed the UV flux to low metallicity and hence reduced line blanketing. Here we present UV and optical light curves over a longer baseline in time, revealing a rapid decline at UV wavelengths despite a typical optical evolution. Combining the published UV spectra with our own optical data, we demonstrate that Gaia16apd has a much hotter continuum than virtually any SLSN at maximum light, but it cools rapidly thereafter and is indistinguishable from the others by 10\sim 10-15 days after peak. Comparing the equivalent widths of UV absorption lines with those of other events, we show that the excess UV continuum is a result of a more powerful central power source, rather than a lack of UV absorption relative to other SLSNe or an additional component from interaction with the surrounding medium. These findings strongly support the central-engine hypothesis for hydrogen-poor SLSNe. An explosion ejecting Mej=4(0.2/κ)M_{\rm ej} = 4 (0.2/\kappa) M_\odot, where κ\kappa is the opacity in cm2^2g1^{-1}, and forming a magnetar with spin period P=2P=2 ms, and B=2×1014B=2\times10^{14} G (lower than other SLSNe with comparable rise-times) can consistently explain the light curve evolution and high temperature at peak. The host metallicity, Z=0.18Z=0.18 Z_\odot, is comparable to other SLSNe.Comment: Updated to match accepted version (ApJL

    A Hydrogen-Poor Superluminous Supernova with Enhanced Iron-Group Absorption: A New Link Between SLSNe and Broad-Lined Type Ic SNe

    Full text link
    We present optical observations of the Type I superluminous supernova (SLSN-I) SN2017dwh at z ⁣ ⁣0.13z\!\approx\!0.13, which reached Mi ⁣ ⁣21M_{i}\!\approx\!-21 mag at peak. Spectra taken a few days after peak show an unusual and strong absorption line centered near 3200\AA\ that we identify with Co II, suggesting a high fraction of synthesized 56^{56}Ni in the ejecta. By  ⁣1\sim\!1 month after peak, SN2017dwh became much redder than other SLSNe-I, instead strongly resembling broad-lined Type Ic supernovae (Ic-BL SNe) with clear suppression of the flux redward of  ⁣5000\sim\!5000 \AA, providing further evidence for a large mass of Fe-group elements. Late-time upper limits indicate a 56^{56}Ni mass of 0.6\lesssim 0.6 M_\odot, leaving open the possibility that SN2017dwh produced a 56^{56}Ni mass comparable to SN1998bw ( ⁣0.4\approx\!0.4 M_\odot). Fitting the light curve with a combined magnetar and 56^{56}Ni model using MOSFiT{\tt MOSFiT}, we find that the light curve can easily accommodate such masses without affecting the inferred magnetar parameters. We also find that SN2017dwh occurred in the least-luminous detected host galaxy to date for a SLSN-I, with MB=13.5M_{B} = -13.5 mag and an implied metallicity of Z ⁣ ⁣0.08Z\!\sim\!0.08 ZZ_\odot. The spectral properties of SN2017dwh provide new evidence linking SLSNe-I with Type Ic-BL SNe, and in particular the high Fe-group abundance may be due to enhanced 56^{56}Ni production or mixing due to asphericity. Finally, we find that SN2017dwh represents the most extreme end of a correlation between continuum shape and Co II absorption strength in the near-peak spectra of SLSNe-I, indicating that Fe-group abundance likely accounts for some of the variation in their spectral shapes.Comment: 16 pages, 7 figures, Submitted to Ap

    Searching for Cooling Signatures in Strong Lensing Galaxy Clusters: Evidence Against Baryons Shaping the Matter Distribution in Cluster Cores

    Full text link
    The process by which the mass density profile of certain galaxy clusters becomes centrally concentrated enough to produce high strong lensing (SL) cross-sections is not well understood. It has been suggested that the baryonic condensation of the intra-cluster medium (ICM) due to cooling may drag dark matter to the cores and thus steepen the profile. In this work, we search for evidence of ongoing ICM cooling in the first large, well-defined sample of strong lensing selected galaxy clusters in the range 0.1 < z < 0.6. Based on known correlations between the ICM cooling rate and both optical emission line luminosity and star formation, we measure, for a sample of 89 strong lensing clusters, the fraction of clusters that have [OII]3727 emission in their brightest cluster galaxy (BCG). We find that the fraction of line-emitting BCGs is constant as a function of redshift for z > 0.2 and shows no statistically significant deviation from the total cluster population. Specific star formation rates, as traced by the strength of the 4000 angstrom break, D_4000, are also consistent with the general cluster population. Finally, we use optical imaging of the SL clusters to measure the angular separation, R_arc, between the arc and the center of mass of each lensing cluster in our sample and test for evidence of changing [OII] emission and D_4000 as a function of R_arc, a proxy observable for SL cross-sections. D_4000 is constant with all values of R_arc, and the [OII] emission fractions show no dependence on R_arc for R_arc > 10" and only very marginal evidence of increased weak [OII] emission for systems with R_arc < 10". These results argue against the ability of baryonic cooling associated with cool core activity in the cores of galaxy clusters to strongly modify the underlying dark matter potential, leading to an increase in strong lensing cross-sections.Comment: 9 Pages, 5 Figures, 1 Tabl

    PS16dtm: A Tidal Disruption Event in a Narrow-line Seyfert 1 Galaxy

    Full text link
    [Abridged] We present observations of PS16dtm, a luminous transient that occurred at the nucleus of a known Narrow-line Seyfert 1 galaxy hosting a 106^6 M_\odot black hole. The transient was previously claimed to be a Type IIn SLSN due to its luminosity and hydrogen emission lines. The light curve shows that PS16dtm brightened by about two magnitudes in ~50 days relative to the archival host brightness and then exhibited a plateau phase for about 100 days followed by the onset of fading in the UV. During the plateau PS16dtm showed no color evolution, maintained a blackbody temperature of 1.7 x 104^4 K, and radiated at approximately LEddL_{Edd} of the SMBH. The spectra exhibit multi-component hydrogen emission lines and strong FeII emission, show little evolution with time, and closely resemble the spectra of NLS1s while being distinct from those of Type IIn SNe. Moreover, PS16dtm is undetected in the X-rays to a limit an order of magnitude below an archival X-ray detection of its host galaxy. These observations strongly link PS16dtm to activity associated with the SMBH and are difficult to reconcile with a SN origin or any known form of AGN variability, and therefore we argue that it is a TDE in which the accretion of the stellar debris powers the rise in the continuum and excitation of the pre-existing broad line region, while providing material that obscures the X-ray emitting region of the pre-existing AGN accretion disk. A detailed TDE model fit to the light curve indicates that PS16dtm will remain bright for several years; we further predict that the X-ray emission will reappear on a similar timescale as the accretion rate declines. Finally, we place PS16dtm in the context of other TDEs and find that TDEs in AGN galaxies are an order of magnitude more efficient and reach Eddington luminosities, likely due to interaction of the stellar debris with the pre-existing accretion disk.Comment: 19 pages, 17 figures, Submitted to Ap

    Negative Differential Resistance, Memory and Reconfigurable Logic Functions based on Monolayer Devices derived from Gold Nanoparticles Functionalized with Electro-polymerizable Thiophene-EDOT Units

    Get PDF
    We report on hybrid memristive devices made of a network of gold nanoparticles (10 nm diameter) functionalized by tailored 3,4(ethylenedioxy)thiophene (TEDOT) molecules, deposited between two planar electrodes with nanometer and micrometer gaps (100 nm to 10 um apart), and electropolymerized in situ to form a monolayer film of conjugated polymer with embedded gold nanoparticles (AuNPs). Electrical properties of these films exhibit two interesting behaviors: (i) a NDR (negative differential resistance) behavior with a peak/valley ratio up to 17, and (ii) a memory behavior with an ON/OFF current ratio of about 1E3 to 1E4. A careful study of the switching dynamics and programming voltage window is conducted demonstrating a non-volatile memory. The data retention of the ON and OFF states is stable (tested up to 24h), well controlled by the voltage and preserved when repeating the switching cycles (800 in this study). We demonstrate reconfigurable Boolean functions in multiterminal connected NP molecule devices.Comment: Full manuscript, figures and supporting information, J. Phys. Chem. C, on line, asap (2017

    Implications of using 2 m versus 30 m spatial resolution data for suburban residential land change modeling

    Get PDF
    This study assesses the advantages and disadvantages of using 2 m spatial resolution data versus 30 m resolution data for a simulation model of land-use and land-cover change (LUCC). The model projects LUCC from 2005 to 2055 in the town of Lynnfield, Massachusetts, USA. This article describes four scenario storylines and then projects land-use and land-cover under each of the four scenarios with 2 m data and again with 30 m data. The disagreement between the 2 m output and its corresponding 30 m output ranges between 5.7% and 11.0% of the town. The disagreement due to allocation over small distances is greater than the disagreement due to the quantity of new residential growth. The projected quantities of new residential land-use in 2055 differ between the two resolutions by 1% of the town, whereas the visual differences in the spatial allocations are distinct and substantial. The results for this case study show that 30 m resolution data provides several practical and theoretical advantages over 2 m resolution data, due mainly to the fact that the 30 m resolution data match more closely the size of the patches of change

    Quantum measurement in a family of hidden-variable theories

    Get PDF
    The measurement process for hidden-configuration formulations of quantum mechanics is analysed. It is shown how a satisfactory description of quantum measurement can be given in this framework. The unified treatment of hidden-configuration theories, including Bohmian mechanics and Nelson's stochastic mechanics, helps in understanding the true reasons why the problem of quantum measurement can succesfully be solved within such theories.Comment: 16 pages, LaTeX; all special macros are included in the file; a figure is there, but it is processed by LaTe
    corecore