NASA Technical Memorandum 83207

Computer Program for Solving Laminar, Transitional, or Turbulent Compressible Boundary-Layer Equations for Two-Dimensional and Axisymmetric Flow

Julius E. Harris and Doris K. Blanchard Langley Research Center Hampton, Virginia

Scientific and Technical Information Branch

....

•

PRECEDING PAGE BLANK NOT FILMED

CONTENTS

SUMMARY	1
INTRODUCTION	1
SYMBOLS	2
PROBLEM DESCRIPTION	8
Basic Partial Differential Equations	8
Dimensional governing equations	8
Nondimensional governing equations	11
Turbulence closure	12
Transformed plane	14
Transition	14
	1/
	17
Transition extent	17
Transition flow structure	18
SOLUTION TECHNIQUE	18
Finite-Difference Mesh	18
Difference Equations	20
Solution of Difference Equations	20
Initial Profiles	26
Evaluation of Wall Derivatives	26
PROGRAM DESCRIPTION	77
Array Dimensions	27 77
Input Description	27
	28
	28
Input data for SNAM2	31
Input data for \$NAM3	32
Intermediate Data Storage	33
Output Description	33
SAMPLE CASES	39
Test Case No. 1	39
Test Case No. 2	10
Test Case No. 3	11
Test Case No. 4	12
Test Case No. 5	12
CONCLUDING REMARKS	15
APPENDIX A - DIFFERENCE RELATIONS	16
APPENDIX B - COEFFICIENTS FOR DIFFERENCE EQUATIONS)2
APPENDIX C - FLOW CHARTS AND PROGRAM LISTING	5
APPENDIX D - RESULTS FROM TEST CASES - INPUT/OUTPUT)1
REFERENCES	13

.

PRECEDING PAGE

~

SUMMARY

A numerical algorithm and computer program are presented for solving the laminar, transitional, or turbulent two-dimensional or axisymmetric compressible boundary-layer equations for perfect-gas flows. The governing equations are solved by an iterative three-point implicit finite-difference procedure. The software, program VGBLP, is a modification of the approach presented in NASA TR R-368 and NASA TM X-2458, respectively. The major modifications are: (1) replacement of the fourth-order Runge-Kutta integration technique with a finite-difference procedure for numerically solving the equations required to initiate the parabolic marching procedure; (2) introduction of the Blottner variable-grid scheme; (3) implementation of an iteration scheme allowing the coupled system of equations to be converged to a specified accuracy level; and (4) inclusion of an iteration scheme for variable-entropy calculations. These modifications to the approach presented in NASA TR R-368 and NASA TM X-2458 yield a software package with high computational efficiency and flexibility. Turbulence-closure options include either two-layer eddy-viscosity or mixing-length models. Eddy conductivity is modeled as a function of eddy viscosity through a static turbulent Prandtl number formulation. Several options are provided for specifying the static turbulent Prandtl number. The transitional boundary layer is treated through a streamwise intermittency function which modifies the turbulenceclosure model. This model is based on the probability distribution of turbulent spots and ranges from zero to unity for laminar and turbulent flow, respectively. Several test cases are presented as guides for potential users of the software.

INTRODUCTION

A number of finite-difference and integral methods are currently available for numerically solving the two-dimensional, or axisymmetric, compressible boundary-layer equations. No attempt is made in the present paper to present a literature review of either solution techniques (ref. 1) or turbulence closure (ref. 2). Reference 2 includes a tabular summary of 34 additional two-dimensional programs available as of 1975. The purpose of the present paper is to present modifications of the algorithm and software presented in references 3 and 4 that render the approach more accurate, more efficient, and easier to implement.

In the present approach, a coupled, iterative implicit finite-difference procedure, similar in many respects to that presented in references 5 and 6 for laminar flows, is used to solve the system of equations for laminar, transitional, or turbulent boundary-layer flows. The major modifications presented in the present approach as compared with references 3 and 4 are as follows: (1) replacement of the fourthorder Runge-Kutta integration technique used in reference 4 with a finite-difference procedure for numerically solving the equations required to initiate the parabolic marching procedure; (2) introduction of the variable-grid scheme proposed by Blottner in reference 7; (3) implementation of an iteration scheme allowing the coupled system of equations to be converged to a specified accuracy level; and (4) implementation of an iteration scheme for variable-entropy calculations. For most applications, because of the quasilinearization technique, the iteration cycle for constant-entropy calculations can be omitted if a sufficiently fine grid distribution is chosen for the coordinate normal to the wall boundary. (See ref. 8.) The present program can be easily applied to any attached, compressible, perfect-gas (two-dimensional or axisymmetric),

boundary-layer flow. Transverse-curvature terms are retained in the system of equations with the option of being neglected if the user so desires. The program is also structured to allow the user the option of obtaining locally similar solutions.

Options are provided for either two-layer eddy-viscosity or mixing-length turbulence-closure models. No attempt has been made to generalize the closure models to empirically include the effects of streamwise pressure gradient, wall curvature, wall roughness, wall mass transfer, and low Reynolds number. (See ref. 2.) The models are structured in subroutine TURBLNT such that the user can easily modify the formulation to best represent the specific type of flow under investigation. The static turbulent Prandtl number can be specified in one of three ways: (1) as a constant; (2) as an analytic function of the coordinate normal to the wall boundary; or (3) as tabular input from experimental data.

The transitional region of the boundary layer is modeled through the streamwise intermittency function (ref. 9), which modifies the turbulence-closure model. Boundary-layer transition location and the extent of the transition (length of transition region) can either be specified from experimental data or computed from empirical correlation equations. The laminar boundary-layer equations are recovered by equating the streamwise intermittency function to zero.

Five test cases are presented in the present paper. These cases cover external and internal flows, including flows with wall mass transfer, transverse-curvature, and variable-entropy effects. The cases are designed to serve as guides for assisting potential users as they become familiar with program VGBLP prior to applying the program to their specific problems.

SYMBOLS

A

 A^+ damping constant, Au_T/V

damping function, $26\nu/u_T$

 $\begin{array}{c} Al_{n}, Bl_{n}, Cl_{n}, Dl_{n} \\ El_{n}, Fl_{n}, Gl_{n} \end{array} \right\} \quad \begin{array}{c} coefficients in difference equation (45a) and defined by equations (B3) \end{array}$

 $A2_n, B2_n, C2_n, D2_n$ $E2_n, F2_n, G2_n$ coefficients in difference equation (45b) and defined by equations (B4)

a speed of sound

 a_1, a_2, a_3, a_4 coefficients in molecular viscosity relations (see eqs. (7))

. . .: · · · · - - -

C_f skin-friction coefficient

cp specific heat at constant pressure

velocity ratio, u/u_e

D damping term (eq. (17a))

2

F

h	ORIGINAL PAGE IS OF POOR QUALITY
i	index used in grid-point notation (see eq. (41))
k	geometric progression constant, $\Delta \eta_{;+1} / \Delta \eta_{;}$
k,	thermal conductivity
د لاس	eddy conductivity (see eq. (2c))
k,	constant in eddy-viscosity model (see eq. (16a))
L Ka	constant in eddy-viscosity model (see eq. (16b))
ka ka	constant in intermittency function (see eq. $(17c)$)
k _A	constant in intermittency function (see eq. (17c))
k ₅	constant in mixing-length model (see eq. (20b))
^L r	reference length
Z	defined in equation (30)
ē	mixing length (see eq. (20a))
М	Mach number
m	grid-point index in S-direction
N	number of grid points normal to wall boundary
N _O	reference number of grid points normal to wall boundary (see eq. (42))
N _{Pr}	Prandtl number, c _p µ/kl
^N Pr,t	static turbulent Prandtl number (see eqs. (3))
N _{Re}	unit Reynolds number, u_e / v_e
N _{Re} ,r	reference Reynolds number, $\rho_r u_r L_r / \mu_r$
N _{Re,s}	Reynolds number based on s, $u_e s / v_e$
^N Re,st,i	Reynolds number at transition, $u_e s_{t,i} / v_e$
N _{Re} ,δ*	Reynolds number based on displacement thickness, $u_e \delta^* / v_e$
N Re, θ	Reynolds number based on momentum thickness, u_e^{θ/v_e}
N _{Re,∞}	free-stream unit Reynolds number, $u_{\infty}^{}/v_{\infty}^{}$
N _{St}	Stanton number, h/(c _p pu)

i

-

-

HUIDERSEARCH IN 1

n	grid-point index in Y-direction (see fig. 1)		
P ⁽¹⁾ ,P ⁽²⁾	, P ⁽³⁾ defined in equations (50)		
р	pressure		
Q ⁽¹⁾ ,Q ⁽²⁾	$,Q^{(3)}$ defined in equations (50)		
q	heat-transfer rate		
R,Z	body axis system with origin at stagnation point, where Z is positive downstream and R is positive radially outward (see fig. 2)		
Rg	gas constant (see eq. (6))		
r	radial body coordinate measured normal to Z-axis (see fig. 2)		
ro	body radius (see fig. 2)		
rs	radial coordinate of shock wave (see fig. 2)		
S,Y	orthogonal boundary-layer coordinate system with origin at stagnation point, where S lies along the body surface and is positive downstream and Y is normal to the body surface and positive outward (see fig. 2)		
S	boundary-layer coordinate along S-axis (see fig. 2)		
^s t,f	end of transition (see fig. 2)		
^s t,i	beginning of transition (see fig. 2)		
Т	static temperature		
t	transverse-curvature term (see eqs. (23))		
u	velocity component in S-direction (fig. 2)		
u _τ	friction velocity, $\sqrt{\tau_w/\rho}$		
V	transformed normal-velocity component (see eq. (26))		
v	velocity component in Y-direction		
v	velocity component, $v + \frac{\overline{\rho' v'}}{\rho}$		
v ⁺	velocity component, $\tilde{v}\sqrt{N_{Re,r}}$		
x ₁ , x ₂ ,,	X_5 functions of grid-point distribution (see eqs. (A4) to (A8))		
^Y 1, ^Y 2,,	Y_6 functions of grid-point distributions (see eqs. (Al2) to (Al7))		
У	boundary-layer coordinate along Y-axis (see fig. 2)		
у́у	stretched y-coordinate (see eq. (15))		

4

ł

Уm	match point for two-layer eddy-viscosity model
z	axial body coordinate (see fig. 2)
α	defined in equation (30)
β	defined in equation (30)
Г	streamwise intermittency distribution (see eq. (38))
γ	ratio of specific heats
γ	transverse intermittency distribution (see eq. (17c))
∆s,∆y	grid-point spacing, physical plane
∆s _t	transition extent, s _{t,f} - s _{t,i}
Δξ,Δη	grid-point spacing, transformed plane (see fig. 1)
∆*	defined in equation (50g)
δ	boundary-layer thickness
δ *	displacement thickness
δ [*] inc	incompressible displacement thickness, \int_{0}^{∞} (1 - F) dy
ε	eddy viscosity, $-\rho \frac{u'v'}{\partial u/\partial y}$
Ē	defined in equation (5a)
ĩ	defined in equation (5b)
Θ	static-temperature ratio, T/T _e
θ	momentum thickness
θ _s	shock-wave angle (see fig. 2)
λ	defined in equation (40)
μ	molecular viscosity
ν	kinematic viscosity, μ/ρ
ξ,η	transformed boundary-layer coordinates (see fig. 1 and eqs. (22))
- ξ	defined in equation (39)
ρ	density
τ	shear stress

-

	ORIGRUAL PAGE IS OF POOR QUALITY
φ .	local surface angle (see fig. 2)
х	vorticity Reynolds number, $\frac{y^2}{v} \left(\frac{\partial u}{\partial y} \right)$
χ_{max}	maximum value of $(\chi)_{m+1}$
ψ	stream function (see fig. 2)
Subscripts	5:
aw	adiabatic wall
е	based on boundary-layer edge conditions
i	inner region of turbulent layer
m	mesh point in ξ -direction (see fig. 1)
max	maximum value
n	mesh point in n-direction (see fig. 1)
0	outer region of turbulent layer
r	reference quantity
S	shock
t	total condition
w	wall value
8	free stream
Superscrip	pt:

MAL DAAP

T C T

1000 1 1011

THE STREET

j

flow index; j = 0 for planar flow, j = 1 for axisymmetric flow

An asterisk ()* on a symbol denotes a dimensional quantity.

A prime on a symbol denotes a fluctuating component.

A bar over a symbol denotes the time average value.

A coordinate used as a subscript denotes the partial differential with respect to the coordinate. (See eqs. (Al).)

Figure 1.- Finite-difference grid model.

Figure 2.- Coordinate system and notation.

PROBLEM DESCRIPTION

This section presents the governing equations for compressible laminar, transitional, or turbulent boundary-layer flows together with the required boundary conditions. It should be noted that the system of equations can be found in numerous references (e.g., see refs. 2 and 3); however, for completeness, the equation set is presented in order to allow the user to modify the software if required. The algebraic turbulence closure, transition location and extent, and transitional-flowstructure models are presented and briefly discussed; however, the reader interested in a detailed discussion of these models is referred to references 2, 3, and 8.

Basic Partial Differential Equations

<u>Dimensional governing equations</u>.- The mean turbulent boundary-layer equations can be written as follows:

Continuity

$$\frac{\partial}{\partial s^{\star}} \left(r^{\star j} \rho^{\star} u^{\star} \right) + \frac{\partial}{\partial y^{\star}} \left[r^{\star j} \rho^{\star} \left(v^{\star} + \frac{\rho^{\star} v^{\star}}{\rho^{\star}} \right) \right] = 0$$
(1a)

Momentum

$$\rho \star \left[u \star \frac{\partial u \star}{\partial s \star} + \left(v \star + \frac{\rho \star v \star}{\rho \star} \right) \frac{\partial u \star}{\partial y \star} \right] = - \frac{dp \star}{ds \star} + \frac{1}{r \star^{j}} \frac{\partial}{\partial y \star} \left[r \star^{j} \left(\mu \star \frac{\partial u \star}{\partial y \star} - \rho \star u \star v \star \right) \right]$$
(1b)

Energy

$$\rho \star \left[u \star \frac{\partial}{\partial s \star} (c_{p}^{\star} T^{\star}) + \left(v \star + \frac{\overline{\rho^{\star} v^{\star}}}{\rho^{\star}} \right) \frac{\partial}{\partial y^{\star}} (c_{p}^{\star} T^{\star}) \right] = u \star \frac{dp \star}{ds \star} + \frac{1}{r \star^{j}} \frac{\partial}{\partial y^{\star}} \left[r \star^{j} \frac{k_{\ell}^{\star}}{c_{p}^{\star}} \frac{\partial}{\partial y^{\star}} (c_{p}^{\star} T^{\star}) \right]$$
$$+ \mu \star \left(\frac{\partial u^{\star}}{\partial y^{\star}} \right)^{2} + \frac{1}{r \star^{j}} \frac{\partial}{\partial y^{\star}} \left[r \star^{j} \left(-c_{p}^{\star} \rho \star^{\star} v^{\star} T^{\star} \right) \right]$$
$$- \rho \star^{v} u^{\star} v^{\star} \frac{\partial u^{\star}}{\partial y^{\star}}$$
(1c)

The mean turbulent equations are identical to those for laminar flow with the exception of the correlations of turbulent fluctuating quantities. These correlations must be related to the mean flow in order to obtain a closed system of equations. In the present analysis, the apparent mass-flux term $\rho^* v^*$, the apparent stress term $\rho^* u^* v^*$ (Reynolds stress), and the apparent heat-flux term $c_p^* \rho^* v^* T^*$ are modeled or represented by a new velocity component \tilde{v}^* , an eddy viscosity ε^* , and an eddy conductivity k_m^* , respectively, as follows:

$$\widetilde{\mathbf{v}}^{\star} = \mathbf{v}^{\star} + \frac{\rho^{\star} \mathbf{v}^{\star}}{\rho^{\star}}$$

$$\varepsilon^{\star} = -\rho^{\star} \frac{\mathbf{u}^{\star} \mathbf{v}^{\star}}{\partial \mathbf{u}^{\star} / \partial \mathbf{y}^{\star}}$$
(2a)
(2b)

$$k_{\rm T}^{\star} = -c_{\rm p}^{\star} \rho^{\star} \frac{\nabla^{\star} T^{\star}}{\partial T^{\star} / \partial y^{\star}}$$
(2c)

The static turbulent Prandtl number is defined as follows:

$$N_{\text{Pr,t}} = \frac{\overline{u^* v^*}}{v^* T^*} \left(\frac{\partial T^* / \partial y^*}{\partial u^* / \partial y^*} \right)$$
(3a)

Equation (3a) can then be rewritten in terms of equations (2b) and (2c) as

$$N_{\rm Pr,t} = \frac{\frac{c^{\star} \varepsilon^{\star}}{p}}{k_{\rm T}^{\star}}$$
(3b)

In terms of equations (2) and (3), the governing differential equations can be written as follows:

Continuity

$$\frac{\partial}{\partial s^{\star}} (r^{\star j} \rho^{\star} u^{\star}) + \frac{\partial}{\partial y^{\star}} (r^{\star j} \rho^{\star} \tilde{v}^{\star}) = 0$$
(4a)

Momentum

$$p \star \left(u \star \frac{\partial u \star}{\partial s \star} + \tilde{v} \star \frac{\partial u \star}{\partial y \star} \right) = - \frac{dp \star}{ds \star} + \frac{1}{r \star^{j}} \frac{\partial}{\partial y \star} \left(r \star^{j} \overline{\varepsilon \star} \frac{\partial u \star}{\partial y \star} \right)$$
(4b)

Energy

$$\rho \star \left[u \star \frac{\partial}{\partial s \star} (c_{p}^{\star} T^{\star}) + \tilde{v} \star \frac{\partial}{\partial y \star} (c_{p}^{\star} T^{\star}) \right] = u \star \frac{dp \star}{ds \star} + \tilde{\epsilon} \star \left(\frac{\partial u^{\star}}{\partial y \star} \right)^{2} + \frac{1}{r \star^{j}} \frac{\partial}{\partial y \star} \left[r \star^{j} \tilde{\epsilon} \star \frac{\partial}{\partial y \star} (c_{p}^{\star} T^{\star}) \right]$$

$$(4c)$$

The terms $\overline{\epsilon^*}$ and $\tilde{\epsilon}^*$ appearing in equations (4) are defined as follows:

$$\overline{\varepsilon^{\star}} = \mu^{\star} \left(1 + \frac{\varepsilon^{\star}}{\mu^{\star}} \Gamma \right)$$
(5a)

$$\widetilde{\epsilon}^{\star} = \frac{\mu^{\star}}{N_{\rm Pr}} \left(1 + \frac{\epsilon^{\star}}{\mu^{\star}} \frac{N_{\rm Pr}}{N_{\rm Pr,t}} \Gamma \right)$$
(5b)

.....

Ē

i

111

The function Γ appearing in equations (5) represents the streamwise intermittency distribution for the transitional-flow region. The Γ distribution assumes a value of zero for laminar flows, a value of unity for fully turbulent flows, and a range of 0 to 1 for the transitional region of flow. The variation of Γ in the transitional region depends upon the statistical growth and distribution of turbulent spots. The model used to represent Γ is discussed in a subsequent section of the present paper.

The system of equations is closed by the addition of the perfect-gas law and a viscosity-temperature relation. The perfect-gas law is written as

$$p^* = \rho^* R^* T^*$$
(6)

Two viscosity-temperature relations are provided: (1) the Sutherland law

$$\mu^{\star} = \frac{a_{1}^{\star} (T^{\star})^{3/2}}{T^{\star} + a_{2}^{\star}}$$
(7a)

and (2) the power law

$$\mu^* = a_3^* (T^*)^{a_4}$$
(7b)

The pressure-gradient term in equations (4) is replaced by the Bernoulli relation

$$\frac{\mathrm{d}p^{\star}}{\mathrm{d}s^{\star}} = -\rho_{\mathrm{e}}^{\star} u_{\mathrm{e}}^{\star} \frac{\mathrm{d}u_{\mathrm{e}}^{\star}}{\mathrm{d}s^{\star}} \tag{8}$$

for constant entropy flows; however, for variable entropy flows the value of dp*/ds* is explicitly retained in the equation system.

The equations are rewritten in nondimensional form where the nondimensional variables are as follows:

$$u = u^{*}/u_{r}^{*}$$

$$v = v^{*}/u_{r}^{*}$$

$$p = p^{*}/(\rho_{r}^{*}u_{r}^{2*})$$

$$\rho = \rho^{*}/\rho_{r}^{*}$$

$$T = T^{*}/T_{r}^{*}$$

$$\mu = \mu^{*}/\mu_{r}^{*}$$

(9)

where all dimensional lengths are nondimensionalized by a reference length L_r^* . The reference values of density and velocity are taken to be those of the free stream, the reference temperature is taken to be u_r^{2*}/c_p^* , and the reference viscosity is the viscosity obtained from either equation (7a) or (7b) evaluated at the reference temperature.

Nondimensional governing equations. - The nondimensional equations are as follows:

Continuity

$$\frac{\partial}{\partial s}(r^{j}\rho u) + \frac{\partial}{\partial \tilde{y}}(r^{j}\rho v^{+}) = 0$$
⁽¹⁰⁾

Momentum

$$\rho\left(u \frac{\partial u}{\partial s} + v^{+} \frac{\partial u}{\partial \tilde{y}}\right) = -\frac{dp^{*}}{ds} + \frac{1}{r^{j}} \frac{\partial}{\partial \tilde{y}} \left(r^{j} \overline{\epsilon} \frac{\partial u}{\partial \tilde{y}}\right)$$
(11)

Energy

$$\rho\left(u \frac{\partial T}{\partial s} + v^{+} \frac{\partial T}{\partial \tilde{y}}\right) = u \frac{dp}{ds} + \frac{1}{r^{\dagger}} \frac{\partial}{\partial \tilde{y}} \left(r^{\dagger} \tilde{\varepsilon} \frac{\partial T}{\partial \tilde{y}}\right) + \tilde{\varepsilon} \left(\frac{\partial u}{\partial \tilde{y}}\right)^{2}$$
(12)

Equation of State

$$p = \left(\frac{\gamma - 1}{\gamma}\right)\rho T$$
(13)

Viscosity-Temperature

$$\mu = T^{3/2} \left(\frac{1 + a_2}{T + a_2} \right)$$
$$\mu = T^{a_4}$$

J

or

where

$$y = y \sqrt{N_{\text{Re},r}}$$

$$y^{+} = \tilde{v} \sqrt{N_{\text{Re},r}}$$

$$a_{2} = a_{2}^{*}/T_{r}^{*}$$
(15)

<u>Turbulence closure</u>.- Algebraic models are used to close the system of equations. Two options are provided: (1) a two-layer eddy-viscosity model (KODVIS = 2), and (2) a mixing-length model (KODVIS = 1).

Two-layer model

The equations describing the two-layer model are as follows (see ref. 8):

$$\left(\frac{\varepsilon}{\mu}\right)_{i} = \frac{\rho^{\star}}{\mu^{\star}} (k_{1} y^{\star} D)^{2} \left| \frac{\partial u^{\star}}{\partial y^{\star}} \right| \qquad (0 \le y^{\star} \le y_{m}^{\star}) \qquad (16a)$$

$$\left(\frac{\varepsilon}{\mu}\right)_{O} = \frac{\rho^{\star}}{\mu^{\star}} k_{2} u_{e}^{\star} (\delta_{inc}^{\star})^{\star} \overline{\gamma} \qquad (16b)$$

where

1

$$D = 1 - \exp(-y^*/A^*)$$
 (17a)

$$(\delta_{\text{inc}}^{\star})^{\star} = \int_{0}^{\infty} \left(1 - \frac{u}{u_{e}}\right) dy^{\star}$$
(17b)

÷

and

$$\overline{\gamma} = \frac{1 - \operatorname{erf}\left[k_3\left(\frac{y}{\delta} - k_4\right)\right]}{2}$$
(17c)

The boundary-layer thickness δ in equation (17c) is defined as the distance normal to the wall boundary where $u/u_e = 0.995$. The empirical constants k_1 to k_4 are assigned values of 0.4, 0.0168, 5.0, and 0.78, respectively.

The location of the boundary separating the two layers y_m^\star is defined from the continuity of eddy viscosity; that is, where

$$\left(\frac{\varepsilon}{\mu}\right)_{i} = \left(\frac{\varepsilon}{\mu}\right)_{O} \tag{18}$$

Mixing-length model

A mixing-length option (KODVIS = 1) is provided for those interested in utilizing experimental mixing-length data. The eddy-viscosity distribution across the boundary layer can be written as follows:

$$\frac{\varepsilon}{\mu} = \frac{\rho^{\star}}{\mu^{\star}} \left[\frac{\partial u^{\star}}{\partial y^{\star}} \right]$$
(19)

where the mixing length $\overline{\mathfrak{l}}^{\star}$ can be expressed as

$$\frac{\overline{\lambda}}{\delta} = D\overline{\gamma}f\left(\frac{y}{\delta}\right)$$
(20a)

An analytic formulation is provided in subroutine TURBLNT for $f\left(\frac{y}{\delta}\right)$ as follows (see ref. 10):

$$f\left(\frac{y}{\delta}\right) = k_5 \tan h\left(\frac{k_1}{k_5} \frac{y}{\delta}\right)$$
(20b)

where k_5 is assigned the value of 0.108. It should be noted that the assigned values of k_1, k_2, \ldots, k_5 and the definition of δ can be modified through input to program VGBLP.

Eddy conductivity

The eddy conductivity (eq. (2c)) is modeled as a static turbulent Prandtl number (eq. (3a)). Three options are provided in subroutines TURBLNT for $N_{Pr,t}$: (1) a constant, for example $N_{Pr,t} = 0.95$ (KODPRT = 1); (2) the Rotta (ref. 11) distribution (KODPRT = 2)

$$N_{\text{Pr,t}} = \frac{(N_{\text{Pr,t}})_{w}}{2} \left[2 - \left(\frac{y}{\delta}\right)^{2} \right]$$
(21)

and (3) a distribution $N_{\text{Pr,t}} = g\left(\frac{y}{\delta}\right)$ specified in tabular form from experimental data (KODPRT = 3).

<u>Transformed plane</u>.- The system of governing equations is singular at s = 0. The Probstein-Elliott (ref. 12) and Levy-Lees (ref. 13) transformation is used to remove this singularity as well as to reduce the growth of the boundary layer as the solution proceeds downstream. This transformation can be written as follows:

$$\xi(s) = \int_0^s \rho_e u_e \mu_e r_o^{2j} ds$$
(22a)

$$\eta(s,\tilde{y}) = \frac{\rho_{e} u_{e} r_{o}^{J}}{\sqrt{2\xi}} \int_{0}^{\tilde{y}} t^{j} \left(\frac{\rho}{\rho_{e}}\right) d\tilde{y}$$
(22b)

where the parameter t appearing in equation (22b) is the transverse-curvature term, defined as

$$t = \frac{r}{r_0}$$
(23a)

or, in terms of the y-coordinate, as

.

$$t = 1 + \frac{y}{r_0} \cos \phi$$
 (23b)

The relation between derivatives in the stretched physical (s, \tilde{y}) and transformed (ξ , η) coordinate system is as follows:

$$\left(\frac{\partial}{\partial s}\right)_{\widetilde{Y}} = \rho_{e} u_{e} \mu_{e} r_{o}^{2j} \left(\frac{\partial}{\partial \xi}\right)_{\eta} + \left(\frac{\partial \eta}{\partial s}\right) \left(\frac{\partial}{\partial \eta}\right)_{\xi}$$
(24a)

$$\left(\frac{\partial}{\partial \tilde{y}}\right)_{s} = \frac{\rho_{e} u_{e} r_{o}^{j} t^{j}}{\sqrt{2\xi}} \left(\frac{\rho}{\rho_{e}}\right) \left(\frac{\partial}{\partial \eta}\right)_{\xi}$$
(24b)

original page is of poor quality

Two parameters $\,F\,$ and $\,\Theta\,$ are introduced and defined as

$$F = \frac{u}{u_e}$$

$$\Theta = \frac{T}{T_e}$$
(25)

together with a transformed normal velocity

$$\nabla = \frac{2\xi}{\rho_{e}u_{e}\mu_{e}r_{o}^{2j}} \left[F\left(\frac{\partial\eta}{\partial s}\right) + \frac{\rho\tilde{v}r_{o}^{j}t^{j}}{\sqrt{2\xi}} \right]$$
(26)

The governing equations in the transformed plane can then be written as follows: Continuity

$$\frac{\partial V}{\partial \eta} + 2\xi \frac{\partial F}{\partial \xi} + F = 0$$
(27)

Momentum

$$2\xi F \frac{\partial F}{\partial \xi} + V \frac{\partial F}{\partial \eta} - \frac{\partial}{\partial \eta} \left(t^{2j} l \bar{\epsilon} \frac{\partial F}{\partial \eta} \right) + \beta (F^2 - \Theta) = 0$$
(28)

Energy

$$2\xi F \frac{\partial \Theta}{\partial \xi} + V \frac{\partial \Theta}{\partial \eta} - \frac{\partial}{\partial \eta} \left(t^{2j} \tilde{\iota} \tilde{\epsilon} \frac{\partial \Theta}{\partial \eta} \right) - \alpha \tilde{\iota} t^{2j} \tilde{\epsilon} \left(\frac{\partial F}{\partial \eta} \right)^2 = 0$$
⁽²⁹⁾

where

$$\left. \begin{array}{l} l = \frac{\rho \mu}{\left(\rho\mu\right)_{e}} \\ \alpha = (\gamma - 1)M_{e}^{2} \\ \beta = \frac{2\xi}{u_{e}} \left(\frac{du_{e}}{d\xi} \right) \end{array} \right\}$$
(30)

By using the viscosity relations (eqs. (14)) and the equation of state (eq. (13)), the parameter l can be written as follows:

Sutherland law

$$l = \sqrt{\Theta} \left(\frac{1 + a_2/T_e}{\Theta + a_2/T_e} \right)$$
(31a)

Power law

$$l = (0)^{a_4 - 1}$$
 (31b)

The transverse-curvature term can be written in terms of the transformed variables as

$$t = \left(1 + \frac{2\sqrt{2\xi} \cos \phi}{\rho_{e} u_{e} r_{o}^{2j} \sqrt{N_{Re,r}}} \int_{0}^{\eta} \Theta d\eta\right)^{1/2}$$
(32)

The physical coordinate normal to the wall is obtained from the inverse transformation; namely,

$$y = \frac{r_{o}}{\cos \phi} \left[-1 + \left(1 + \frac{2\sqrt{2\xi} \cos \phi}{\rho_{e} u_{e} r_{o}^{2j} \sqrt{N_{Re,r}}} \int_{0}^{\eta} \Theta d\eta \right)^{1/2} \right]$$
(33)

The boundary conditions in the transformed plane are as follows:

Wall boundary

$$F(\xi, 0) = 0$$
$$V(\xi, 0) = V_w(\xi)$$
$$\Theta(\xi, 0) = \Theta_w(\xi)$$

(34a)

;

or

$$\left(\frac{\partial\Theta}{\partial\eta}\right)_{\xi,0} = \left(\frac{\partial\Theta}{\partial\eta}\right)_{w}$$

Edge boundary

The boundary condition at the wall for the transformed V component can be related to the physical plane as (see eq. (26))

$$V_{w} = \frac{\sqrt{2\xi}}{\mu_{e} r_{o}^{j}} \begin{pmatrix} \rho_{w} v_{w} \\ \rho_{e} u_{e} \end{pmatrix}$$
(35)

Transition

<u>Transition location</u>.- Because of the large parameter space influencing transition to turbulence (refs. 14 to 17), it is not possible to predict with assurance the location of transition for general flows. However, for certain classes of geometry (e.g., flat plate, cone, etc.), empirical correlations are available. These empirical correlations can be used with confidence provided one realizes that a probable range of transition locations is being predicted. In program VGBLP either the transition location (SST) or the stability index at transition (SMXTR; see ref. 8) must be specified; however, any correlation can be directly incorporated into the program.

<u>Transition extent</u>.- The assumption of a universal intermittency distribution implies that the transition-zone length (transition extent) can be expressed as a function of the Reynolds number at transition $u_{est,i}/v_{e}$. In reference 9 it is shown, for the transition data considered, that the data are represented on the average by the equation

$$N_{\text{Re},\Delta s_{t}} = 5 \left(N_{\text{Re},s_{t},i} \right)^{0.8}$$
(36)

where $N_{\text{Re},\Delta s_t} = \frac{u_e}{v_e}(s_{t,f} - s_{t,i})$. The location of the end of transition $s_{t,f}$ can then be obtained directly from equation (36) as follows:

$$s_{t,f} = s_{t,i} + 5N_{Re}^{-1} (N_{Re,s_{t,i}})^{0.8}$$
 (37)

where N_{Re} is the local unit Reynolds number, u_e/v_e .

In program VGBLP the extent of the transition region $(s_{t,f} - s_{t,i})$ can be specified in one of two ways: (1) from equation (37) (KTCOD = 1); or (2) from the specification of $s_{t,f}/s_{t,i}$ obtained from experimental data (KTCOD = 2). It should be noted that the program can be easily modified to include any desired correlation or equation in place of equation (37).

<u>Transition-flow structure</u>.- The parameter Γ (eqs. (5)) is the streamwise intermittency function which models the turbulent spot distribution in the transitional region. The parameter is a function of the s-coordinate only and is defined (see ref. 9) as follows:

$$\Gamma(\bar{\xi}) = 1 - \exp(-0.412\bar{\xi}^2)$$
(38)

where

$$\bar{\xi} = \frac{s - s_{t,i}}{\lambda}$$
(39)

and

$$\lambda = (s) - (s) - \frac{3}{4} - \frac{1}{4}$$
(40)

It should be noted that $\Gamma = 0$ for laminar flow, $\Gamma = 1$ for fully turbulent flow, and Γ ranges from 0 to 1 for the transitional-flow region. Equations (27) to (29) reduce to the classical laminar boundary-layer equations when Γ is set to zero.

SOLUTION TECHNIQUE

- ---- ----

The system of governing equations (eqs. (27) to (29)) is parabolic and, therefore, can be numerically integrated by a marching procedure in the streamwise direction. In order to cast the equations into a form in which the marching procedure can be implemented, the derivatives with respect to ξ and η are replaced by finite-difference quotients. The method of linearization and solution used in the analysis closely parallels that of references 5 and 6.

Finite-Difference Mesh

Because of the magnitude and variation of the gradients of the dependent variables $(\partial F/\partial y; \partial O/\partial y)$ near the wall boundary for turbulent flow, it is computationally inefficient to use equally spaced mesh points in the y-coordinate. This problem can be alleviated by selecting a variable mesh-point distribution such that $\Delta \eta_{i+1}/\Delta \eta_i > 1$ where the distribution in the wall region is chosen sufficiently small to resolve all gradients. One approach to grid specification is to use a geometric progression

 $\Delta n_{i} = (k)^{i-1} \Delta n_{1} \qquad (i = 2, 3, 4, ..., N) \qquad (41)$

where k is defined as the geometric progression constant $\Delta \eta_{i+1} / \Delta \eta_i$. A schematic of such a grid is presented (not to scale) in figure 1.

Blottner (ref. 7) introduced a variable-grid scheme that is more computationally efficient than the differencing scheme and mesh distribution used in references 3 and 4. The Blottner variable-grid scheme (ref. 7) and the Cebeci-Keller box scheme

(ref. 18) appear to be two of the most promising schemes currently available in the literature for solving the boundary-layer equations. The Cebeci-Keller box scheme, although efficient for two-dimensional flow, yields block-tridiagonal matrices and requires greater computational effort than the simple-tridiagonal matrices of the Blottner variable-grid scheme. Blottner has shown (ref. 7) that the variable-grid scheme is as accurate as the box scheme for the two-dimensional boundary-layer equations and, furthermore, that large values of the geometric progression constant can be used for the normal mesh-point distribution, provided the variable grid is interpreted as a coordinate transformation. In reference 8 it was shown that k values on the order of 1.04 could be used for turbulent flows. In reference 19 it was shown that an accuracy requirement on τ_w of 1 percent required approximately 220 mesh points normal to the wall with $k \approx 1.04$. In order to increase the computational efficiency of such schemes one can reduce the number of mesh points while simultaneously increasing the value of k; however, this approach generally results in unacceptable levels of accuracy. Blottner (ref. 7) demonstrated that with the variable-grid scheme satisfactory results could be obtained with approximately 20 mesh points for k = 1.82. Vatsa and Goglia (ref. 20), using the method of reference 4, showed that the variablegrid scheme proposed by Blottner (ref. 7) could reduce the number of grid points from approximately 201 to 61 for a specified 1-percent accuracy in wall shear stress. They also showed that for most applications one could obtain reasonably accurate solutions for turbulent boundary layers with as few as 25 to 30 mesh points, as compared to approximately 200 mesh points for the method of reference 3.

Blottner (ref. 7) introduced a modified definition for the geometric progression constant such that

$$\bar{k} = (k)^{\frac{N-1}{N_O-1}}$$
(42)

where \bar{k} is now defined as the conventional geometric progression constant for N_o mesh points normal to the wall. Using equation (41), one obtains

$$\eta_{i} = \eta_{e} \left(\frac{k^{i-1} - 1}{k^{N-1} - 1} \right)$$
(43)

which when combined with equation (42) yields the following for the η -mesh distribution:

$$\eta_{i} = \eta_{e} \left[\frac{\frac{(i-1)(N_{O}-1)/(N-1)}{-1}}{\frac{(\bar{k})^{N_{O}-1}-1}{-1}} \right]$$
(44)

Two options are provided in program VGBLP: (1) specify η_{max} , N, and k (IGEOM = 1); or (2) specify η_{max} , N, and $\Delta \eta_1$ (IGEOM = 2). Of these two options, it is recommended that the user select the first option (IGEOM = 1) where the value of k is computed from equation (42) for specified values of \bar{k} and N_0 . Typical values for \bar{k} and N_0 are 1.5 and 25, respectively, for $N \geq 41$. (See ref. 20.) It is obvious that the larger the selected value of N and the smaller the value

of k - 1 ($k \ge 1$), the more accurate the solution. Since program VGBLP is very efficient in terms of computer resources, it is suggested that potential users of the program perform a series of numerical experiments over a range of k and N values in order to gain experience with the procedure. If the second option (IGEOM = 2) is selected (specify η_{max} , N, and $\Delta \eta_1$), the user is cautioned to exercise care in selecting the number of grid points. If transitional or turbulent flow occurs in a given problem, the laminar region of the boundary layer is calculated with the value of k used for the turbulent region; that is, for a given solution, k is invariant.

Difference Equations

Three-point implicit difference relations (see appendices A and B) are used to reduce the transformed momentum and energy equations (eqs. (28) and (29), respectively) to finite-difference form. The difference quotients produce linear difference equations when substituted into the momentum and energy equations provided truncation terms of the order $\Delta\xi_{m-1} \Delta\xi_m$ and $\Delta\eta_{n-1} \Delta\eta_n$ are neglected. (It should be noted that the truncation term for $\partial^2 F/\partial\eta^2$ is of the order $(\Delta\eta_{n-1} - \Delta\eta_n)$.) The resulting difference equations may be written as follows:

Momentum equation

$$A^{1}n^{F}m+1, n-1 + B^{1}n^{F}m+1, n + C^{1}n^{F}m+1, n+1 + D^{1}n^{\Theta}m+1, n-1 + E^{1}n^{\Theta}m+1, n + F^{1}n^{\Theta}m+1, n+1 = G^{1}n$$
(45a)

Energy equation

$$A_{2n}F_{m+1,n-1} + B_{2n}F_{m+1,n} + C_{2n}F_{m+1,n+1} + D_{2n}\Theta_{m+1,n-1} + E_{2n}\Theta_{m+1,n+1} + F_{2n}\Theta_{m+1,n+1} = G_{2n}$$
(45b)

Ξ

The coefficients Al_n , Bl_n , ..., Gl_n and $A2_n$, $B2_n$, ..., $G2_n$ (see appendix B) are functions of known quantities at stations m and m-l. It is important to note that equations (45) are coupled through the dependent variables F and Θ ; however, the dependent variable V does not appear explicitly as an unknown at station m+l. The variable V is uncoupled from the system because of the particular way that the nonlinear terms V $\frac{\partial F}{\partial \eta}$ and V $\frac{\partial \Theta}{\partial \eta}$ are linearized. (See eq. (A23).)

Solution of Difference Equations

The system of difference equations (eqs. (45)) represents a set of 2(N - 1) linear algebraic equations for 2(N - 1) unknowns. The boundary conditions to be used with the difference equations are specified in equations (34). The 2(N - 1) linear algebraic equations may be written in tridiagonal matrix form; consequently, an efficient algorithm (Thomas algorithm) is available for simultaneous solution.

The simultaneous or coupled-solution technique is presented in appendix B of reference 5; however, because of differences between the present work and that presented in reference 5, the solution technique is discussed here in some detail.

Because of the special form of equations (45), the following relations exist (see ref. 21):

$$F_{m+1,n-1} = P_{m+1,n-1}^{(1)} + P_{m+1,n-1}^{(2)}F_{m+1,n} + P_{m+1,n-1}^{(3)}\Theta_{m+1,n}$$
(46a)

$$\Theta_{m+1,n-1} = Q_{m+1,n-1}^{(1)} + Q_{m+1,n-1}^{(2)}F_{m+1,n} + Q_{m+1,n-1}^{(3)}\Theta_{m+1,n}$$
(46b)

Next, equations (46) are substituted into equations (45) to obtain the following relations:

$$Bl_{m+1,n}^{*}F_{m+1,n} + El_{m+1,n}^{*}\Theta_{m+1,n} = Gl_{m+1,n}^{*} - Cl_{m+1,n}F_{m+1,n+1}$$

- Fl_{m+1,n}^{*}\Theta_{m+1,n+1} (47a)

$$B2_{m+1,n}^{*}F_{m+1,n} + E2_{m+1,n}^{*}\Theta_{m+1,n} = G2_{m+1,n}^{*} - C2_{m+1,n}F_{m+1,n+1}$$

- F2_{m+1,n}\Over m+1,n+1 (47b)

where

$$Bl_{m+1,n}^{*} = Bl_{m+1,n}^{*} + Al_{m+1,n}^{P} + Dl_{m+1,n-1}^{(2)} + Dl_{m+1,n}^{(2)} + Dl_{m+1,n-1}^{(2)}$$
(48a)

$$El_{m+1,n}^{\star} = El_{m+1,n}^{\star} + Al_{m+1,n}^{\mu} + h_{m+1,n-1}^{\mu} + Dl_{m+1,n}^{\mu} + h_{m+1,n-1}^{\mu}$$
(48b)

$$Gl_{m+1,n}^{\star} = Gl_{m+1,n} - Al_{m+1,n}P_{m+1,n-1}^{(1)} - Dl_{m+1,n}Q_{m+1,n-1}^{(1)}$$
(48c)

$$B2_{m+1,n}^{*} = B2_{m+1,n}^{*} + A2_{m+1,n}^{P(2)} + D2_{m+1,n}^{Q(2)}$$
(48d)

$$E2_{m+1,n}^{\star} = E2_{m+1,n}^{\star} + A2_{m+1,n}^{\mu}P_{m+1,n-1}^{(3)} + D2_{m+1,n}^{\mu}Q_{m+1,n-1}^{(3)}$$
(48e)

and

$$G2_{m+1,n}^{\star} = G2_{m+1,n} - A2_{m+1,n}P_{m+1,n-1}^{(1)} - D2_{m+1,n}Q_{m+1,n-1}^{(1)}$$
(48f)

The unknown values of F and Θ at station m+l,n are obtained from equations (47) as follows:

$$F_{m+1,n} = P_{m+1,n}^{(1)} + P_{m+1,n}^{(2)} F_{m+1,n+1} + P_{m+1,n}^{(3)} \Theta_{m+1,n+1}$$
(49a)

$$\Theta_{m+1,n} = Q_{m+1,n}^{(1)} + Q_{m+1,n}^{(2)} F_{m+1,n+1} + Q_{m+1,n}^{(3)} \Theta_{m+1,n+1}$$
(49b)

where

$$P_{m+1,n}^{(1)} = \left(E_{m+1,n}^{*} G_{m+1,n}^{*} - E_{m+1,n}^{*} G_{m+1,n}^{*} \right) \Delta_{m+1,n}^{*}$$
(50a)

$$P_{m+1,n}^{(2)} = \left(El_{m+1,n}^{\star} C2_{m+1,n} - E2_{m+1,n}^{\star} Cl_{m+1,n} \right) \Delta_{m+1,n}^{\star}$$
(50b)

$$P_{m+1,n}^{(3)} = \left(E1_{m+1,n}^{\star} F2_{m+1,n}^{\star} - E2_{m+1,n}^{\star} F1_{m+1,n} \right) \Delta_{m+1,n}^{\star}$$
(50c)

$$Q_{m+1,n}^{(1)} = \left(Bl_{m+1,n}^{*}G2_{m+1,n}^{*} - B2_{m+1,n}^{*}Gl_{m+1,n}^{*}\right)\Delta_{m+1,n}^{*}$$
(50d)

$$Q_{m+1,n}^{(2)} = \left(B2_{m+1,n}^{*}C1_{m+1,n} - B1_{m+1,n}^{*}C2_{m+1,n}\right)\Delta_{m+1,n}^{*}$$
(50e)

$$Q_{m+1,n}^{(3)} = \left(B2_{m+1,n}^{*}F1_{m+1,n} - B1_{m+1,n}^{*}F2_{m+1,n}\right) \Delta_{m+1,n}^{*}$$
(50f)

MUNICIPALITY

anđ

$$\Delta_{m+1,n}^{\star} = \frac{1}{\left(Bl_{m+1,n}^{\star}E2_{m+1,n}^{\star} - B2_{m+1,n}^{\star}El_{m+1,n}^{\star}\right)}$$
(50g)

Next, equations (46) are rewritten as follows (where n = n + 1):

$$F_{m+1,n} = P_{m+1,n}^{(1)} + P_{m+1,n}^{(2)} F_{m+1,n+1} + P_{m+1,n}^{(3)} \Theta_{m+1,n+1}$$
(51a)

$$\Theta_{m+1,n} = Q_{m+1,n}^{(1)} + Q_{m+1,n}^{(2)} F_{m+1,n+1} + Q_{m+1,n}^{(3)} \Theta_{m+1,n+1}$$
(51b)

The "no-slip" boundary condition ($F_{m+1,1} = 0$) is applied at the wall boundary to obtain the values of $P_{m+1,1}^{(i)}$ where i = 1, 2, 3; that is,

$$P_{m+1,1}^{(1)} = P_{m+1,1}^{(2)} = P_{m+1,1}^{(3)} = 0$$
(52)

The thermal condition at the wall boundary can be specified in one of two ways: (1) specified wall-temperature distribution (KODWAL = 1); or (2) specified heattransfer distribution (KODWAL = 2). For a specified wall-temperature distribution it can be seen directly from equation (51b) that

$$\begin{array}{c}
 Q_{m+1,1}^{(1)} = \Theta_{m+1,1} \\
Q_{m+1,1}^{(2)} = Q_{m+1,1}^{(3)} = 0
\end{array}$$
(53)

The case in which a heat-transfer distribution is specified presents a somewhat more difficult problem; however, this class of flows is often of interest; for example, adiabatic flows where $q_w^* = 0$.

The heat transfer at the wall boundary can be written in the transformed plane as follows (see ref. 3):

$$q_{m+1,1}^{\star} = -\frac{\mu_{r}^{\star} u_{r}^{\star 2} \sqrt{N_{\text{Re},r}}}{L_{r}^{\star}} \left(\frac{\rho_{e} u_{e}^{T} e^{\mu_{e} r} j}{N_{\text{Pr}} \sqrt{2\xi}} \right)_{m+1,N} \mathcal{I}_{m+1,1} \left(\frac{\partial \Theta}{\partial \eta} \right)_{m+1,1}$$
(54)

Then, for a specified value of $q_{m+1,1}^{\star}$, the gradient of θ can be obtained directly as follows:

$$\left(\frac{\partial \Theta}{\partial \eta}\right)_{m+1,1} = -q_{m+1,1}^{\star} \frac{L_{r}^{\star}}{\mu_{r}^{\star} u_{r}^{\star^{2}} \sqrt{N_{\text{Re},r}}} \left(\frac{N_{\text{Pr}} \sqrt{2\xi}}{\Theta_{\text{e}} u_{\text{e}}^{\text{T}} e^{\mu} e^{r_{\Theta}}}\right)_{m+1,N} \left(\frac{1}{\ell}\right)_{m+1,1}$$
(55)

For the grid-point spacing used in program VGBLP, the gradient of Θ evaluated at the wall, by using a three-point relation, is as follows:

$$\left(\frac{\partial\Theta}{\partial\eta}\right)_{m+1,1} = \frac{\left[1 - (1+k)^2\right]\Theta_{m+1,1} + (1+k)^2\Theta_{m+1,2} - \Theta_{m+1,3}}{k(1+k)\Delta\eta_1}$$
(56)

Equations (55) and (56) then yield the following expression for $\theta_{m+1,1}$:

$$\Theta_{m+1,1} = \frac{k(1+1)\Delta\eta_1}{1-(1+k)^2} \left(\frac{\partial\Theta}{\partial\eta}\right)_{m+1,1} - \frac{(1+k)^2}{1-(1+k)^2} \Theta_{m+1,2} + \frac{1}{1-(1+k)^2} \Theta_{m+1,3}$$
(57)

where $\left(\frac{\partial\Theta}{\partial\eta}\right)_{m+1,1}^{}$ is evaluated from equation (55). Equations (45) are next written at the m+1,2 point to obtain two equations in terms of $F_{m+1,n}$ and $\Theta_{m+1,n}$ where

ORIGINAL PAGE IS

n = 1, 2, 3. (Note that $F_{m+1,1} = 0.$) The quantity $F_{m+1,3}$ is then eliminated from these two equations to obtain one equation in terms of $F_{m+1,2}$ and $\Theta_{m+1,n}$ where n = 1, 2, 3. The quantity $\Theta_{m+1,3}$ is next eliminated through use of equation (57) to obtain the relation

$$\Theta_{m+1,1} = \bar{Q}_{m+1,1}^{(1)} + \bar{Q}_{m+1,1}^{(2)}F_{m+1,2} + \bar{Q}_{m+1,1}^{(3)}\Theta_{m+1,2}$$
(58)

where

$$\bar{Q}_{m+1,1}^{(1)} = \frac{\left[(C2)(G1) - (C1)(G2)\right]_{m+1,2} + \left[(C2)(F1) - (C1)(F2)\right]_{m+1,2} \left[k(1+k)\Delta\eta_1\right] \left(\frac{\partial\Theta}{\partial\eta}\right)_{m+1,1}}{\Delta_{m+1,2}}$$

(59a)

$$\bar{Q}_{m+1,1}^{(2)} = \frac{\left[(C1) (B2) - (C2) (B1) \right]_{m+1,2}}{\Delta_{m+1,2}}$$
(59b)

$$\bar{Q}_{m+1,1}^{(3)} = \frac{\left[(C1)(E2) - (C2)(E1)\right]_{m+1,2} + \left[(C1)(F2) - (C2)(F1)\right]_{m+1,2}(1+k)^2}{\Delta_{m+1,2}}$$
(59c)

and

$$\Lambda_{m+1,2} = \left\{ \left[(C2) (D1) - (C1) (D2) \right] + \left[(C2) (F1) - (C1) (F2) \right] \left[1 - (1 + k)^2 \right] \right\}_{m+1,2}$$
(59d)

By comparing equations (51b) and (58), it is observed that

 $Q_{m+1,1}^{(i)} = \vec{Q}_{m+1,1}^{(i)}$ (i = 1, 2, 3) (60)

which completes the desired boundary condition for the case of a specified heat-transfer distribution along the wall boundary. The temperature at the wall is obtained from equation (57) once $\theta_{m+1,2}$ and $\theta_{m+1,3}$ are known.

The quantities $P_{m+1,n}^{(i)}$ and $Q_{m+1,n}^{(i)}$ where i = 1, 2, 3 (see eqs. (51)) must first be determined across the boundary layer at the m+l station where n = 1, 2, ..., N. These quantities are calculated by the following procedure:

(1) Perform the following steps at the first grid point away from the wall (n = 2):

- (a) Calculate Al₂, Bl₂, ..., Gl₂ from equations (B3)
- (b) Calculate A22, B22, ..., G22 from equations (B4)
- (c) Using the results from steps (a) and (b) and the boundary conditions (eqs. (52) and (53) or (59)), calculate Bl_2^* , $B2_2^*$, El_2^* , $E2_2^*$, Gl_2^* , and $G2_2^*$ from equations (48)
- (d) Using the results from steps (a) to (c), calculate $P_2^{(i)}$ and $Q_2^{(i)}$ where i = 1, 2, 3 from equations (50)

(2) The procedure outlined in step (1) is now repeated at the second grid point off the wall (n = 3) by using the results obtained at n = 2. This procedure is repeated until the entire boundary layer is traversed (n = N) and all values of $P_{m+1,n}^{(i)}$ and $Q_{m+1,n}^{(i)}$ are determined where i = 1, 2, 3 and n = 2, 3, 4, ..., N.

(3) Using the values of $P_{m+1,n}^{(i)}$ and $Q_{m+1,n}^{(i)}$ where i = 1, 2, 3 and $n = 2, 3, 4, \ldots, N$, the values of $F_{m+1,n}$ and $\Theta_{m+1,n}$ where $n = N-1, N-2, \ldots, 2$ are calculated from equations (49). It should be noted that $F_{m+1,N}$ and $\Theta_{m+1,N}$ are specified edge boundary conditions (eqs. (34b)). The wall-boundary values of F and Θ are obtained from equations (34a), or from equation (57) for the case of a specified wall-boundary heat-transfer distribution. At this point in the procedure, the values of $F_{m+1,n}$ and $\Theta_{m+1,n}$ are known for $n = 1, 2, \ldots, N$, and it remains only to determine $V_{m+1,n}$ for all values of n to complete the first iteration.

(4) The continuity equation (eq. (27)) is solved numerically for the $\,N$ - 1 unknown values of $\,V_{m+1\,.\,n}\,$ as follows:

$$V_{m+1,n} = V_{m+1,1} - \int_0^{\eta_n} \left(2\xi \frac{\partial F}{\partial \xi} + F \right)_{m+1} d\eta$$
(61)

where $V_{m+1,1}$ represents the wall-boundary condition V_w . (See eq. (35).) The trapezoidal rule of integration is used to numerically solve equation (61).

(5) The solution is now checked for convergence where the convergence criterion is as follows (q is iteration index):

$$DIF = \left| 1 - \frac{(\partial F/\partial n)^{q}}{(\partial F/\partial n)^{q-1}} \right|_{m+1,1}$$
(62)

If DIF \leq CONV, station m+l is declared converged and m is incremented by l. During the development of program VGBLP, a global convergence check was initially applied to each of the three dependent variables over all values of n. Global convergence was declared once all three variables were converged over all values of n; however, it was observed numerically that a local check on the gradient of F at the wall was a sufficiently accurate criterion. Consequently, the logic and storage requirements for the global check were removed from the software.

Initial Profiles

A major change in the present approach compared with that of references 3 and 4 is the technique for numerically generating the initial profiles at $\xi = 0$. These initial values are required to initiate the three-point implicit marching procedure. In references 3 and 4, the equations at the initial station ($\xi = 0$) were numerically solved using a fourth-order Runge-Kutta scheme for an equally spaced grid $(\Delta \eta = \eta_{max}/(N - 1))$ in the η -direction. The converged solution on the equally spaced grid was then interpolated onto the variably spaced grid $(\Delta \eta_i = k \Delta \eta_{i-1})$. This procedure introduced some interpolation error into the initial profiles which, although decaying in ξ , could cause oscillations in the neighborhood of the stagnation point for blunt-body flows. These oscillations, if they occurred, made it difficult to accurately determine parameters such as $\lim q_w$ and $\lim \tau_w$. Another problem somes→0 s→0 times encountered by users of the approach presented in reference 4 was the sensitivity of the convergence of the initial solution to the selected initial values θF 90 for and required to initiate the Runge-Kutta integration. To ensure $\overline{\partial \eta}|_{\eta=0}$ $\overline{\partial n}|_{n=0}$

convergence, the user would often have to make several trial runs before the initial guesses were sufficiently close to the converged values.

In the present approach these two problems (interpolation and convergence) are completely eliminated. The locally similar form of the momentum and energy equations is numerically solved in finite-difference form for the variable grid used in the marching procedure. Initial value guesses and interpolation procedures are not required. The momentum and energy equations are of tridiagonal form and are easily solved. The continuity equation is uncoupled from the system and solved using the trapezoidal rule of integration. The initial profiles are generated in subroutine SIMILAR.

The marching procedure requires evaluation of the ξ -derivatives at two backward points; consequently, the first solution station SS(1) + SS(2) in the ξ -coordinate requires special attention to assure local accuracy in the neighborhood of the stagnation point. For flows with a stagnation point (IBODY = 1), the profiles at $\xi = \Delta \xi_1$ are reflected about the stagnation point to impose symmetry. For flows without a stagnation point (IBODY = 2), it is assumed that the solution at $\xi = \Delta \xi_1$ is identical to that at $\xi = 0$ (s = 0). As a result of this approach, the solutions are physically correct and merge smoothly with the downstream marching solution ($\xi > \Delta \xi_1$). The quantity $\Delta \xi_1$ is evaluated using Simpson's rule for stagnation-point flows.

Evaluation of Wall Derivatives

The shear stress and heat transfer at the wall are directly proportional to the gradient of F and Θ evaluated at the wall, respectively. By using G to represent a general quantity, where $G_{m+1,1}$ is the value of G at m+l evaluated at the wall, the four-point difference scheme used to evaluate derivatives at the wall is given as

$$\left(\frac{\partial G}{\partial \eta}\right)_{m+1,1} = Y_7 G_{m+1,1} + Y_8 G_{m+1,2} + Y_9 G_{m+1,3} + Y_{10} G_{m+1,4}$$
(63)

where the coefficients are defined by the following relations:

$$Y_{7} = -\frac{(1 + k + k^{2})^{2} [k(1 + k) - 1] + (1 + k)}{(1 + k)(1 + k + k^{2})k^{3} \Delta \eta_{1}}$$
(64a)

$$Y_{8} = \frac{(1 + k + k^{2})}{k^{2} \Delta n_{1}}$$
(64b)

$$Y_{9} = -\frac{(1 + k + k^{2})}{(1 + k)k^{3} \Delta n_{1}}$$
(64c)

 and

$$Y_{10} = \frac{1}{(1 + k + k^2)k^3 \Delta \eta_1}$$
(64d)

For the case of equally spaced grid points in the η -direction (k = 1), equation (63) reduces to the familiar four-point relation:

$$\left(\frac{\partial G}{\partial \eta}\right)_{m+1,1} = -\frac{1}{6 \Delta \eta} (11G_{m+1,1} - 18G_{m+1,2} + 9G_{m+1,3} - 2G_{m+1,4})$$
(65)

PROGRAM DESCRIPTION

Program VGBLP is run on the Control Data CYBER 170 series computers under the NOS 1.4 operating system at the Langley Research Center.

Array Dimensions

Program VGBLP and subroutines TABLE, VARENT, TURBLNT, MESH, SIMILAR, and SOLVE use the variable-dimension capability of the preprocessor at the Langley Research Center. This capability allows the user to designate the minimum storage requirements for a given problem. If the preprocessor capability is not available at the user's installation, the dimension statements can be modified by inserting the required dimensions in place of their equivalent designations (UPDATE, MODIFY, etc.) in accordance with the following definitions for program VGBLP and its subroutines.

Program VGBLP

Variable dimension	Assigned value
JI	1 - (KODPRT \neq 3); NUMB1 - (KODPRT = 3)
JK	IE + 2

ORIGINAL PAGE IS OF POOR QUALITY	
JL	l - (constant entropy); IENDl - (variable entropy)
JM	INTEGER (s _{max} /PRNTINC + IPRNT)
JN	INTEGER (s _{max} /PROINC + IPRO)
JH	IEND1 + 1
Subroutine TABLE	
JH	See definition in VGBLP
JJ	NUMBER
Subroutine VARENT	
JL	See definition in VGBLP
Subroutine TURBLNT	
JI	See definition in VGBLP
JK	See definition in VGBLP
Subroutines MESH, SIMILAR, SOLVE	
JK	See definition in VGBLP

Input Description

Standard CDC NAMELIST is used for all data input. Program VGBLP reads input under \$NAM1. Subroutine TABLE reads input under \$NAM2. For cases where the variable entropy option is required (IENTRO = 2), subroutine VARENT reads input under \$NAM3.

Input/output flexibility is provided to the user wherein either the International System of Units (SI, KODUNIT = 1) or the U.S. Customary Units (U.S., KODUNIT = 0) can be used. The required input and resulting output data are listed in the following sections with appropriate dimensional units. The SI Units are listed first, followed by U.S. Units in parentheses. If no units are listed, the quantity is nondimensional.

Input data for \$NAM1.-

Variable name	Variable description
CONV	Convergence criterion for boundary-layer solution; DEFAULT = 1×10^{-4}
CONVE	Convergence criterion for variable entropy iteration; DEFAULT = 1×10^{-2}
DETAl	Δn_1 (see fig. 1)

FT	<pre>1.0 - nonsimilar solution; 0.0 - locally similar solution; DEFAULT = 1.0</pre>
G	γ ; DEFAULT = 1.4
GLAR	y/δ array corresponding to PRTAR array, used only if KODPRT = 3; NUMB1 values
IBODY	<pre>1 - flows with stagnation point; 2 - flows without stagnation point</pre>
IE	Number of mesh points in n-coordinate
IEND1	Number of steps in S-direction $S_{max} = \sum_{m=1}^{IEND1} SS(m)$ where $SS(1) = 0$
IENTRO	<pre>1 - constant entropy; 2 - variable entropy; DEFAULT = 1</pre>
IGAS	<pre>1 - Sutherland's viscosity (see eq. (7a)); 2 - power-law viscosity (see eq. (7b)); DEFAULT = 1</pre>
IGEOM	1 - specify XEND, IE, XK; 2 - specify XEND, IE, DETA1
IPRNT	Number of specified wall-value printouts desired other than those determined by PRNTINC; DEFAULT = 0
IPRO	Number of specified profile printouts desired other than those determined by PROINC; DEFAULT = 0
ITMAX	Maximum number of iteration cycles, $1 \le m \le IEND1$, for variable-entropy calculations; DEFAULT = 3
IYINT	1 - normal intermittency function, $\overline{\gamma}$ set to 1.0; 2 - normal intermittency function, $\overline{\gamma}$ calculated from equation (17c); DEFAULT = 1
J	j; 0 - two-dimensional; 1 - axisymmetric
KODAMP	<pre>1 - local values used in equation (5b) for damping; 2 - wall values used in equation (5b) for damping; DEFAULT = 2</pre>
KODE	<pre>1 - both laminar and turbulent profile prints are desired for diagnostic reasons once flow is turbulent; 0 - otherwise; DEFAULT = 0</pre>
KODPRT	<pre>l - constant N_{Pr,t}; 2 - Rotta distribution (see eq. (21)); 3 - tabular, N_{Pr,t} = f(y/δ); DEFAULT = 1</pre>

KODUNIT	<pre>0 - all dimensional input and output in U.S. Units; 1 - all dimensional input and output in SI Units; DEFAULT = 0</pre>
KODVIS	<pre>1 - mixing-length model; 2 - two-layer eddy- viscosity model; DEFAULT = 2</pre>
KODWAL	<pre>1 - specified wall temperature distribution; 2 - specified wall heat-transfer distribution; DEFAULT = 1</pre>
KTCOD	<pre>1 - transition extent calculated from equa- tion (37); 2 - transition extent specified as TLNGTH; DEFAULT = 2.0</pre>
NAUXPRO	<pre>1 - auxiliary profile prints are desired (see out- put description); 2 - otherwise; DEFAULT = 2.0</pre>
NITMAX	Maximum number of iterations allowed at any given station; DEFAULT = 1
NUMB1	Number of values read into PRTAR and GLAR arrays if KODPRT = 3
PHII	Opening angle of body at $s = 0$, $\tan^{-1}\left(\frac{ds}{dz}\right)_{s=0}$, deg
PR	N _{Pr} ; DEFAULT = 0.72
PRNTINC	<pre>Incremental s*-value for which wall-value printouts will be made, m (ft); DEFAULT = 0.1</pre>
PRNTVAL	Array of IPRNT specified s*-values for which wall- value printouts are desired, m (ft)
PROINC	<pre>Incremental s*-value for which profile printouts will be made, m (ft); DEFAULT = 1.0</pre>
PROVAL	Array of IPRO specified s*-values for which profile printouts are desired, m (ft)
PRT	N _{Pr,t} ; DEFAULT = 0.95
PRTAR	N _{Pr,t} array, used only if KODPRT = 3; NUMBL values
PTl	$p_{t,\infty}^{\star}$, Pa (lb/ft ²)
R	R [*] , gas constant (eq. (6)), m ² /(s ² -K) (ft ² /(s ² - ⁰ R)); DEFAULT = 1716 ft ² /(s ² - ⁰ R)
SMXTR	Critical-vorticity Reynolds number; DEFAULT = 1×10^8

30

4

1

-4

	ORIGINAL PAGE IS OF POOR QUALITY
SST	s^{\star} -location of transition, $s_{t,i}$, m (ft); DEFAULT = 1 × 10 ⁸
TLNGTH	<pre>s_{t,f}/s_{t,i}, transition extent (see fig. 2); DEFAULT = 2.0</pre>
TT1	$T_{t,\infty}^{\star}$, K (^O R)
VELEDG	Value of F to be used in defining edge of boundary layer; DEFAULT = 0.995
VISICI	a <mark>*</mark> (see eq. (7a)), Pa-s (lb-s/ft ²); DEFAULT = 2.27 × 10 ⁻⁸ lb-s/ft ²
VISIC2	a [*] (see eq. (7a)), K (⁰ R); DEFAULT = 198.6 ⁰ R
VIS2C1	a ₃ (see eq. (7b)), Pa-s (lb-s/ft ²)
VIS2C2	a ₄ (see eq. (7b))
W	<pre>0 - neglect transverse curvature; 1 - include transverse curvature; DEFAULT = 0</pre>
WAVE	$\left. \Theta_{s}^{*} \right _{s=0}$, shock-wave angle at $s = 0$ (see fig. 2), deg
XEND	n _{max} (see fig. 1)
ХК	k, constant in geometric progression (see eq. (42))
ХМА	M _∞
XTl	k_1 (see eq. (16a)); DEFAULT = 0.4
ХТ2	k ₂ (see eq. (16b)); DEFAULT = 0.0168
ХТ3	k ₃ (see eq. (17c)); DEFAULT = 5.0
XT4	k_4 (see eq. (17c)); DEFAULT = 0.78
ХТ5	k ₅ (see eq. (20b)); DEFAULT = 0.108
ХТб	A^+ , damping function; DEFAULT = 26.0
Input data for \$NAM2	
Variable name	Variable description
L	Order of interpolation to be used for \$NAM2 tables; DEFAULT = 1
NUMBER	Number of values read into \$NAM2 tables

ORIGINAL PAGE IS PE OF POOR QUALITY			
	PE OF POOR QUALITY	Edge pressure-distribution array (NUMBER values), Pa (lb/ft ²)	
	QW		<pre>Wall heat-transfer-distribution array (NUMBER values); KODWAL = 2, W/m² (Btu/ft²-s)</pre>
	RMI		Body radial-coordinate array r _o (NUMBER values), m (ft)
	RVWALD		Wall mass-flux array V _w (NUMBER values); DEFAULT = 0, Pa-s/m (lb-s/ft ³)
	S		S-station array (NUMBER values); independent variable for tabular input, m (ft)
	SS		Array of incremental values between adjacent solution stations $(s_1^*, s_2^*, \dots, s_{\text{IENDI}}^*)$; step size can be arbitrary and not directly associated with the S-station array other than $\sum_{m=1}^{\text{IENDI}} SS(I) = s_{max}^*; \text{ the first two members of the array must be equal (SS(2) = SS(1))}$
	TW		Wall-temperature-distribution array (NUMBER values); KODWAL = 1, K (^O R)
	Z		Axial-coordinate array (NUMBER values), m (ft)
	Input dat	a for \$NAM3	
Vari	able name		Variable description
	NUMBER		Number of values read into \$NAM3 tables
	RRS		Array of radial coordinates of shock wave (NUMBER values), m (ft)
	ZZS		Array of axial coordinates of shock wave (NUMBER

A unique relationship exists between the print control parameters (PROINC; PRNTINC; IPRO; IPRNT; PROVAL; PRNTVAL) and IEND1 in \$NAM1 and the SS array in \$NAM2. The potential user of program VGBLP should note that there are exactly IEND1 values in the SS array and that these values specify the solution-station locations along the s-coordinate. Also, a solution station must be located at the s-coordinate locations designated as print (profile or wall) stations. A failure to understand this relationship generally results in a computer run with no output. Consider the following input where the program user wishes to march the solution to $s_{max} = 1.0$:

values), m (ft)
SS = 10*.001, 99*.01 IEND1 = 75 PRNTINC = 0.201, PROINC = 0.501 IPRO = 1, IPRNT = 1 PROVAL = 0.751, PRNTVAL = 0.751

Two errors have been made in the preceding input that will result in the program stopping at s = 0.66 (instead of s = 1.0) without any output (wall print or profile print). The two errors are as follows: (1) IEND1 is not equal to the number of values in the SS array; (2) the designated print locations do not agree with the solution stations designated by the SS array. An example of correct input is as follows:

ORIGINAL PAGE IS OF POOR QUALITY

SS = 10*.001, 99*.01
IEND = 109
PRNTINC = 0.2, PROINC = 0.5,
IPRO = 1, IPRNT = 1,
PROVAL = 0.75, PRNTVAL = 0.75

The program would now have a normal STOP at s = 1.0 with wall prints at s = 0.2, 0.4, 0.6, 0.75, 0.8, and 1.0 and profile prints at s = 0.5, 0.75, and 1.0. Finally, it should be noted that the SS array can be composed of completely arbitrary Δs values with the restriction SS(1) = SS(2), but to obtain output the user must specify print-control input corresponding to the location of the solution stations.

Intermediate Data Storage

The output (S, PE, RMI, TW, Z, DPEDS, RVWALD, DRDZ, QW) required at station m+l generated in subroutine TABLE is written on TAPE 4. Program VGBLP reads this output just prior to obtaining the boundary-layer solution at station m+l. For cases where variable entropy is included (IENTRO = 2), TAPE 4 is rewound at the end of the last computed station s_{max} to enable restart for the next variable-entropy iteration.

Output Description

Program VGBLP first prints namelist data for \$NAM1. Next, subroutine TABLE prints \$NAM2. If the case includes the effect of variable entropy (IENTRO = 2), subroutine VARENT then prints \$NAM3 input. It should be noted that for many cases the user can take advantage of many of the DEFAULT values for \$NAM1 and \$NAM2.

Following the input data prints, the similar-solution profiles at the initial station ($\xi = 0$) are printed as follows:

Criginal page is of poor quality

Variable name	Variable (see "Symbols")
ETA	η
FZ	∂F/∂ŋ
T/TE	Θ
TZ	∂0∕∂n
U/UE	F
V	V
XL	(ρμ)/(ρμ) _e

The initial station parameters are then printed.

MUE	μ_{e}^{\star} , Pa-s (lb-s/ft ²)
PE	p [*] _e , Pa (lb/ft ²)
QSD	$q_{w'}^{\star}$, W/m ² (Btu/ft ² -s)

TE
$$T_e^*$$
, K (^OR)

The units used in input and expected as output for dimensional quantities are next declared as either SI or U.S. Customary.

.

Free-stream and reference variables are then printed.

AAl	a_{∞}^{\star} , m/s (ft/s)
PREF	$\rho_r^{\star}u_r^{\star 2}$, Pa (lb/ft ²)
PTR	$p_{t,\infty}/(\rho_{\infty}u_{\infty}^2)$
PTI	$p_{t,\infty}^{\star}$, Pa (lb/ft ²)
Pl	p_{∞}^{\star} , Pa (lb/ft ²)
REY	$N_{\text{Re},\infty}, m^{-1} (ft^{-1})$
RREF	ρ_r^* , kg/m ³ (lb-s ² /ft ⁴)
RT1	$\rho_{t,\infty}^{\star}$, kg/m ³ (lb-s ² /ft ⁴)
Rl	ρ_{∞}^{\star} , kg/m ³ (lb-s ² /ft ⁴)
TREF	$u_{r}^{\star 2}/c_{p}^{\star}$, K (^O R)
TTl	T [*] t,∞, K (^O R)

34

ORIGINAL PAGE IS OF POOR QUALITY

Tl	T_{∞}^{\star} , K (^O R)
UREF	u [*] , m/s (ft/s)
Ul	u^{\star}_{∞} , m/s (ft/s)
VISREF	μ_r^* , Pa-s (lb-s/ft ²)
XMA	M _∞

The profile-print and wall-print stations are next printed in accordance with input specified in \$NAM1.

Laminar-profile $\frac{T_t - T_w}{T_{t,e} - T_w}$ CROCCO ETA η $\left(\frac{\partial F}{\partial \eta}\right)_{m+1,n}$ FZ M/M_{ρ} , Mach number ratio M/ME $p_t/p_t,r$, total pressure ratio PT/PTR Θ T/TE ^Tt^{/T}t,e TT/TTE $\left(\frac{\partial\Theta}{\partial\eta}\right)_{m+1}$, n TZU/UE F $\chi_{m+1,n} = \left[\frac{y^2}{v} \left(\frac{\partial \mu}{\partial y}\right)\right]_{m+1,n}$, vorticity Reynolds number VORTREY $\frac{(\rho\mu)_{m+1,n}}{(\rho\mu)_{e}}$ -XLM11 Y/YE у/у_ Additional values for transitional and turbulent profiles $\frac{u_e - u}{u_T}$ UDEF

UPLUS $\frac{u}{u_T}$ VISEFF $1 + \frac{\varepsilon}{\mu} \Gamma$, effective viscosity parameterYPLUS $\frac{yu_T}{v}$

Auxiliary-profile values	(NAUXPRO = 1)
DAMP C	$\left[1 - \exp\left(-\frac{y}{A}\right)\right]_{m+1, n}$
EP	$\left(\frac{\varepsilon}{\mu}\right)_{m+1,n}$
EPl	$\left[\left(\frac{\varepsilon}{\mu}\right)_{i}\right]_{m+1,n}$ (see eq. (16a))
EP2	$\left[\left(\frac{\varepsilon}{\mu}\right)_{O}\right]_{m+1,n}$ (see eq. (16b))
FCl	$\left(\frac{\rho}{\nu} \left \frac{\partial u}{\partial y} \right \right)_{m+1, n}$
GRAD (U/UE)	ar an
GRAD (T/TE)	<u>90</u> 91
MIXDEL	$\left(\frac{l}{\delta}\right)_{m+1,n}$
V	V (see eq. (26))
Wall print	
BETA	β , pressure-gradient parameter (see eqs. (30))
CFE	$\frac{\tau_w}{\frac{1}{2}\rho_e u_e^2}$, skin-friction coefficient based on edge condition
CFW	$\frac{\tau_w}{\frac{1}{2}\rho_w u_e^2}$, skin-friction coefficient based on wall density
DLTAST	δ^{ullet} , displacement thickness, m (ft)
DPEDS	dp _e ds, pressure gradient
DSMXO	$\left(\frac{\partial \chi_{\max}}{\partial s}\right)_{m+1}$
DTEDS	dT _e , temperature gradient

-,

ORIGINAL PAGE IS OF POOR QUALITY

DUEDS	du _e ds, velocity gradient
ERROR	value of DIF at convergence (see eq. (62))
FORM	$\frac{\delta^{\star}}{\theta}$
HD	$\frac{q_w}{T_w - T_{aw}}$, heat-transfer coefficient, W/m^2-K (Btu/ft ² -s- ^O R)
ITRO	number of iterations performed for variable entropy
ME	M _e , edge Mach number
MUE	μ_e , Pa-s (lb-s/ft ²)
NOITER	number of iterations required for convergence
NSTE	$\frac{h}{c_{p}(\rho u)}$, Stanton number based on edge condition
NSTW	$\frac{h}{c_p \rho_w u_e}$, Stanton number based on wall condition
NUE	Nusselt number based on edge condition
NUW	Nusselt number based on wall condition
OMEGA	$\left(\frac{\mu_{r}u_{r}L_{r}}{\mu_{r}}\right)^{-1/2}$
PE	p _e , edge pressure, Pa (lb/ft ²)
P20	$\frac{p_{t,e}}{p_{r}u_{r}^{2}}$
QSD	q_w , heat transfer, W/m ² (Btu/ft ² -s)
RE	ρ_{e} , edge density, kg/m ³ (lb-s ² /ft ⁴)
REDELT	$\frac{\rho_e u_e \delta^*}{\mu_e}$, Reynolds number based on local displacement
	ρ _a u _a s
RES	$\frac{\mu_e}{\mu_e}$, local Reynolds number

ORIGINAL PARE IS OF POOR QUALITY

RETHET	$\frac{\rho_e u_e \theta}{\mu_e}$, Reynolds number based on local momentum thickness
RFTRUE	$\frac{T_{aw} - T_{e}}{T_{t} - T_{e}}, \text{ recovery factor}$
RMI	r _o , body radius (see fig. 2), m (ft)
ROUSE	$X_{\max} = \left[\left(\frac{y^2}{v} \frac{\partial u}{\partial y} \right)_{m+1, n} \right]_{\max}$
RSHK	local radius of shock wave, m (ft)
RVWAL	(pv) _w /(pu) _e
RVWALD	(ρv) _w , dimensional mass flux at wall, Pa-s/m (lb-s/ft ³)
S	s, boundary-layer coordinate (see fig. 2), m (ft)
SWANG	local shock-wave angle, deg
TAUD	τ_w , wall shear stress, Pa (lb/ft ²)
TE	T _e , edge temperature, K (^O R)
THETA	heta, momentum thickness, m (ft)
TRFCT	Γ , intermittency distribution (see eq. (38))
TW/TT1	$\frac{T_w}{T_{t,\infty}}$
UE	u _e , edge velocity, m/s (ft/s)
UTAU	$u_{T} = \sqrt{\frac{T_{w}}{\rho}}, m/s (ft/s)$
VW	V _{m+1,1}
XAL	$(\gamma - 1)M_e^2$
XI	ξ
YE	$^{\delta}_{ m e}$, boundary-layer thickness, m (ft)
ҮМР	n-value at y _m
Z	z, axial coordinate of body (see fig. 2), m (ft)
ZSHK	axial coordinate of shock wave, m (ft)

38

. .

ORIGHVAL PAGE IS OF POOR QUALITY

Flow charts and listings for program VGBLP and its subroutines are presented in appendix C.

SAMPLE CASES

A range of test cases is presented as guides for assisting users of program VGBLP in their own specific applications. Five major test cases are presented that include external and internal flows, flows with wall-mass transfer, flows where transversecurvature effects are important, and flows where variable-entropy effects must be included. For each test case presented, the following information is given: (1) schematic of geometry; (2) boundary conditions; (3) all input data including variable dimension specification; (4) samples of output (see appendix D); and (5) plots of selected results. It is suggested that users compute two or more of the test cases prior to applying program VGBLP to their own particular problem. This approach is beneficial in that it (1) confirms that the software has been correctly implemented on the user's computer system and (2) provides experience in using the program and specifying the correct input data; however, the user need not understand the algorithm in order to successfully apply program VGBLP. The first test case, flat-plate flows, is especially useful in developing experience with the grid specification and control.

Test Case No. 1

This case represents the simplest class of flow that is usually encountered. The flat-plate boundary layer need not be similar; for example, turbulent flow, arbitrarily distributed wall-mass transfer, arbitrary heat transfer, or externally imposed pressure gradients result in nonsimilar boundary-layer development.

For the present case, the test conditions of reference 22 are selected. A schematic of the model, including flow conditions and numerical results, is presented in figure 3. The input and sample output are presented in appendix D. Comparisons

Figure 3.- Test case no. 1.

original page is of poor quality

of numerical results with the experimental data of reference 22 are presented in reference 3. A grid refinement study showing the order of accuracy of the numerical approach is presented in reference 20.

Test Case No. 2

This test case is for the flow past a waisted-afterbody configuration (ref. 23). Transverse-curvature terms must be included; also, the flow is supersonic with an attached shock wave. A schematic of the model, flow conditions, and typical numerical results are presented in figure 4. The input and sample output are presented in appendix D. Comparisons of the numerical results with experimental data are presented in reference 3.

NA DEPENDENCE

11111

Figure 4.- Test case no. 2; skin-friction coefficient.

The pressure distribution was taken directly from the experimental data (ref. 23). Results for two calculations are presented: (1) without transverse-curvature (TVC) terms; (2) with TVC terms. This particular configuration is an example of a body where the boundary-layer coordinate s cannot be expressed as an explicit function of the body-coordinate system R,Z, and as such must be obtained by numerical integration. In the previous example for flat-plate flow, this presented no difficulty since S and Z were congruent. It is suggested that the user of program VGBLP develop software to numerically generate the s-coordinate from a specified bodycoordinate system and to interpolate edge-pressure and wall-boundary data, often specified as a function of the body-coordinate system, to the S,R-coordinate system.

ORIGINAL PAGE IS OF POOR QUALITY

The trapezoidal rule is sufficiently accurate and can be easily implemented to integrate the following relationship:

$$s = s_0 + \int_0^z \sqrt{1 + \left(\frac{dr_0}{dz}\right)^2} dz$$
(66)

Test Case No. 3

Flows with wall-mass transfer are often encountered and can be efficiently solved by program VGBLP. The sample case selected is that of reference 24 for laminar boundary-layer flow. A schematic of the model, including flow conditions and numerical results, is presented in figure 5. The required input and sample output are presented in appendix D. It should be noted that program VGBLP can be applied to turbulent flow with wall-mass transfer if the user modifies the A^+ definition in subroutine TURBLNT. (See ref. 2.)

The numerical results for three wall-mass transfer boundary conditions are presented in figure 5: (1) $(\rho v)_W < 0$ (suction); (2) $(\rho v)_W = 0$ (solid wall); and (3) $(\rho v)_W > 0$ (transpiration). The input and sample output are presented in appendix D. Comparisons of the numerical results with experimental data are presented in reference 3. It should be noted that program VGBLP is not limited to fixed values of $(\rho v)_W^*$; that is, $(\rho v)_W^* = g(s)$ can be input in \$NAM2 if required.

(a) Skin-friction coefficient.

Figure 5.- Test case no. 3.

Figure 5.- Concluded.

Test Case No. 4

For hypersonic, blunt-body flows, the effect of variable entropy introduced by the bow shock wave can significantly affect the boundary-layer development. As an example, the flow over a 45° spherically blunted cone in helium flow is considered. (See ref. 25.) A schematic of the model, including flow conditions and numerical results, is presented in figure 6. Experimental pressure data, supplied by the authors of reference 25, were used as input. The shock-wave data were obtained from figure 7(d) of reference 25. The input and sample output are presented in appendix D.

Test Case No. 5

Boundary-layer solutions are usually required for the design and analysis of nozzle flows. A typical wind-tunnel design case (see ref. 26) is presented in figure 7. It should be noted that the solution for this case is initiated in the stagnation chamber and marched downstream to the nozzle exit. The input and sample output are presented in appendix D. Extensive comparisons of the numerical results with experimental data are presented in reference 26.

Nozzle flows are typical of the more difficult applications of boundary-layer theory because of the large variation of pressure gradient dp_e/ds as the solution proceeds from the settling chamber through the sonic throat and into the supersonic region of the nozzle. The thinning effect of the pressure gradient on the boundary-layer thickness in the throat region of the nozzle necessitates care in selecting the grid distribution in the normal-coordinate as well as the marching-coordinate direction.

ORIGINAL PAGE IS OF POOR QUALITY

(a) Shear stress.

Figure 6.- Test case no. 4.

Figure 7.- Test case no. 5; displacement thickness.

A common problem often encountered in large pressure-gradient flows is oscillations in δ^* caused by the specification of $p_e = g(s)$ and/or step size in the s-coordinate. For many applications (e.g., rocket nozzle design), these oscillations may be acceptable, but for facility design, where the design goal is usually to achieve a shock-free flow that meets the design test-section flow conditions, caution and judgment must be exercised in specifying the inviscid pressure distribution and step-size distribution in the s-coordinate. For example, if a relatively course distribution of $p_e = g(s)$ and a fine distribution of Δs were specified, the resulting pressure-gradient distribution $\frac{dp_e}{ds} = \frac{d[g(s)]}{ds}$ would be a series of step functions for linear interpolation. Spline functions or higher-order interpolation could be used to obtain $\,p_e^{}\,$ and $\,dp_e^{}/ds\,$ at the solution stations from the specified input values; however, care must be exercised since higher-order interpolation can introduce oscillations resulting in changes in the sign of the pressure gradient. Splines with tension represent the optimum technique for generating $p_{
m e}$ and $dp_{
m e}/ds$ at the solution stations from the input data; however, experience has indicated that it is more efficient to input a sufficiently dense distribution of $p_{e} = g(s)$ and use linear interpolation. It is suggested that the user of program VGBLP work several

problems with large pressure variations in order to gain experience in specifying

pressure input and step-size distributions.

CONCLUDING REMARKS

A computer program, VGBLP, has been presented for solving the compressible laminar, transitional, or turbulent boundary-layer equations for planar or axisymmetric perfect-gas attached flows. A three-point implicit, variable-grid finitedifference procedure is used to solve the governing equations. The algorithm and software are modifications of the procedures presented in NASA TR R-368 and NASA TM X-2458, respectively. The modifications render the approach easier to implement while increasing the efficiency (computer resources) and accuracy as compared with the original approach presented in NASA TR R-368.

Test cases have been presented and should serve as guides for potential users of the software. These cases cover external and internal flows including flows with wall-mass transfer effects, transverse-curvature effects, and variable-entropy effects.

Langley Research Center National Aeronautics and Space Administration Hampton, VA 23665 November 6, 1981

> ORIGINAL PAGE IS OF POOR QUALITY

I I MANA

111 I MIN

APPENDIX A

DIFFERENCE RELATIONS

Three-point implicit difference relations are used in references 3 and 4 to reduce the transformed momentum and energy equations (eqs. (28) and (29)) to finitedifference form. The differencing scheme proposed by Blottner (ref. 7) is used in program VGBLP. For completeness, both differencing techniques are presented.

It is assumed that all data are known at the solution stations m-l and m. (See fig. 1.) Then, it is possible to obtain the unknown quantities at the grid points for the m+l station. In the subsequent development the notations G and H are utilized to represent any typical variable.

Taylor-series expansions are first written about the unknown grid point (m+1,n) in the ξ -direction as follows:

$$G_{m,n} = G_{m+1,n} - \Delta \xi_2 (G_{\xi})_{m+1,n} + \frac{\Delta \xi_2^2}{2} (G_{\xi\xi})_{m+1,n} - \frac{\Delta \xi_2^3}{6} (G_{\xi\xi\xi})_{m+1,n} + \dots$$
(Ala)

and

$$G_{m-1,n} = G_{m+1,n} - (\Delta \xi_1 + \Delta \xi_2) (G_{\xi})_{m+1,n} + \frac{(\Delta \xi_1 + \Delta \xi_2)^2}{2} (G_{\xi\xi})_{m+1,n} - \frac{(\Delta \xi_1 + \Delta \xi_2)^3}{6} (G_{\xi\xi\xi})_{m+1,n} + \dots$$
 (Alb)

where subscript notation has been utilized to denote differentiation; for example, $G_{\xi} \equiv \partial G/\partial \xi$.

Equations (Ala) and (Alb) can be solved to yield

$$\left(\frac{\partial G}{\partial \xi}\right)_{m+1,n} = \frac{x_1 G_{m+1,n} - x_2 G_{m,n} + x_3 G_{m-1,n}}{2 \Delta \xi_2} + \frac{\Delta \xi_2 (\Delta \xi_1 + \Delta \xi_2)}{6} G_{\xi\xi\xi} + \dots$$
(A2)

and

$$G_{m+1,n} = X_4 G_{m,n} - X_5 G_{m-1,n} + \frac{\Delta \xi_1 \ \Delta \xi_2}{2} \left(1 + \frac{\Delta \xi_2}{\Delta \xi_1} \right) G_{\xi\xi} + \dots$$
 (A3)

Terms of the order of $\Delta\xi_1 \ \Delta\xi_2$, or smaller, are neglected. This produces truncation errors of the order of $\Delta\xi_1 \ \Delta\xi_2$ instead of $\Delta\xi_2$ as in reference 5 where two-point difference relations are used. The X_1, X_2, \ldots, X_5 coefficients appearing in equations (A2) and (A3) are defined as follows:

APPENDIX A

ORIGINAL PAGE IS OF POOR QUALITY

$$x_{1} = 2 \frac{\Delta \xi_{1} + 2 \Delta \xi_{2}}{\Delta \xi_{1} + \Delta \xi_{2}}$$
(A4)

$$x_2 = 2 \frac{\Delta \xi_1 + \Delta \xi_2}{\Delta \xi_1}$$
(A5)

$$x_3 = 2 \frac{\Delta \xi_2^2}{\Delta \xi_1 (\Delta \xi_1 + \Delta \xi_2)}$$
(A6)

$$X_4 = \frac{\Delta \xi_1 + \Delta \xi_2}{\Delta \xi_1}$$
(A7)

and

$$X_5 = \frac{\Delta \xi_2}{\Delta \xi_1} \tag{A8}$$

Taylor-series expansions are next written about the unknown grid point (m+l,n) in the η -direction as follows:

$$G_{m+1,n+1} = G_{m+1,n} + \Delta \eta_n (G_{\eta})_{m+1,n} + \frac{\Delta \eta_n^2}{2} (G_{\eta\eta})_{m+1,n} + \frac{\Delta \eta_n^3}{6} (G_{\eta\eta\eta})_{m+1,n} + \dots$$
(A9a)

and

$$G_{m+1,n-1} = G_{m+1,n} - \Delta \eta_{n-1} (G_{\eta})_{m+1,n} + \frac{\Delta \eta_{n-1}^2}{2} (G_{\eta\eta})_{m+1,n} - \frac{\Delta \eta_{n-1}^3}{6} (G_{\eta\eta\eta})_{m+1,n} + \dots$$
 (A9b)

Equations (A9a) and (A9b) can be solved to yield

$$\left(\frac{\partial^{2}G}{\partial \eta^{2}}\right)_{m+1,n} = Y_{1}G_{m+1,n+1} - Y_{2}G_{m+1,n} + Y_{3}G_{m+1,n-1} + \frac{(\Delta \eta_{n-1} - \Delta \eta_{n})}{3} G_{\eta\eta\eta} + \dots$$
 (A10)

ORIGINAL PAGE IS OF POOR QUALITY

. . .

. . . .

$$\left(\frac{\partial G}{\partial \eta}\right)_{m+1,n} = Y_4 G_{m+1,n+1} - Y_5 G_{m+1,n} - Y_6 G_{m+1,n-1} - \frac{\Delta \eta_n \Delta \eta_{n-1}}{6} G_{\eta\eta\eta} + \dots$$
(All)

The Y_1, Y_2, \ldots, Y_6 coefficients appearing in equations (AlO) and (All) are defined as follows:

$$Y_{1} = \frac{2}{\Delta \eta_{n} (\Delta \eta_{n} + \Delta \eta_{n-1})}$$
(A12)

$$Y_2 = \frac{2}{\Delta n_n \ \Delta n_{n-1}}$$
(A13)

$$Y_{3} = \frac{2}{\Delta \eta_{n-1} (\Delta \eta_{n} + \Delta \eta_{n-1})}$$
(A14)

$$Y_{4} = \frac{\Delta \eta_{n-1}}{\Delta \eta_{n} (\Delta \eta_{n} + \Delta \eta_{n-1})}$$
(A15)

$$Y_5 = \frac{\Delta \eta_{n-1} - \Delta \eta_n}{\Delta \eta_n \Delta \eta_{n-1}}$$
(A16)

and

and

$$Y_{6} = \frac{\Delta \eta_{n}}{\Delta \eta_{n-1} (\Delta \eta_{n} + \Delta \eta_{n-1})}$$
(A17)

For the case of equally spaced grid points in the ξ - and η -coordinates, equations (A4) to (A8) and (A12) to (A17) reduce to the following relations:

$x_1 = 3$		
$x_2 = 4$		
$X_3 = 1$	A18a	l)
$X_4 = 2$		
x ₅ = 1		

48

ł

and

$$Y_{1} = \frac{1}{\Delta \eta^{2}}$$

$$Y_{2} = 2Y_{1}$$

$$Y_{3} = Y_{1}$$

$$Y_{4} = \frac{1}{2\Delta \eta}$$

$$Y_{5} = 0$$

$$Y_{6} = Y_{4}$$

$$(A18b)$$

where $\Delta\xi$ and $\Delta\eta$ represent the spacing between the grid points in the $\xi-$ and $\eta-coordinates, respectively.$

Equations (A2), (A3), (A10), and (A11) can then be written for constant gridpoint spacing as follows:

$$\left(\frac{\partial G}{\partial \xi}\right)_{m+1,n} = \frac{3G_{m+1,n} - 4G_{m,n} + G_{m-1,n}}{2\Delta\xi} + \frac{\Delta\xi^2}{3}G_{\xi\xi\xi} + \dots$$
(A19)

$$G_{m+1,n} = 2G_{m,n} - G_{m-1,n} + \Delta \xi^2 G_{\xi\xi} + \dots$$
 (A20)

$$\left(\frac{\partial^2 G}{\partial \eta^2}\right)_{m+1,n} = \frac{G_{m+1,n+1} - 2G_{m+1,n} + G_{m+1,n-1}}{\Delta \eta^2} - \frac{\Delta \eta^2}{12} G_{\eta\eta\eta\eta} + \dots$$
(A21)

and

$$\left(\frac{\partial G}{\partial \eta}\right)_{m+1,n} = \frac{G_{m+1,n+1} - G_{m+1,n-1}}{2 \Delta \eta} - \frac{\Delta \eta^2}{6} G_{\eta\eta\eta} + \dots$$
(A22)

Quantities of the form $\left(G \frac{\partial H}{\partial \xi}\right)$ that appear in the governing equations must be linearized in order to obtain a system of linear-difference equations. Quantities of this type are obtained from equations (A2) and (A3).

ORIGINAL PLACE IS OF POOR QUALITY

APPENDIX A

$$\left[\left(\frac{\partial G}{\partial \eta}\right)\left(\frac{\partial H}{\partial \eta}\right)\right]_{m+1,n} = \left(\frac{\partial G}{\partial \eta}\right)_{m,n} \left(\frac{\partial H}{\partial \eta}\right)_{m+1,n} - \left(\frac{\partial G}{\partial \eta}\right)_{m,n} \left(\frac{\partial H}{\partial \eta}\right)_{m,n} + \left(\frac{\partial H}{\partial \eta}\right)_{m,n} \left(\frac{\partial G}{\partial \eta}\right)_{m+1,n} + o\left(\Delta\xi_{2}\right)^{2}$$
(A23)

where the terms $\left(\frac{\partial G}{\partial \eta}\right)_{m,n}^{}$ and $\left(\frac{\partial H}{\partial \eta}\right)_{m,n}^{}$ are evaluated from equation (All), but at the known station m. By equating G to H in equation (A23), the linearized form for quantities of the type $\left(\frac{\partial G}{\partial \eta}\right)^2$ is obtained; that is,

$$\left(\frac{\partial G}{\partial \eta}\right)_{m+1,n}^{2} = \left(\frac{\partial G}{\partial \eta}\right)_{m,n} \left[2\left(\frac{\partial G}{\partial \eta}\right)_{m+1,n} - \left(\frac{\partial G}{\partial \eta}\right)_{m,n}\right] + o\left(\Delta\xi_{2}\right)^{2}$$
(A24)

where $\left(\frac{\partial G}{\partial n}\right)_{m+1,n}$ is obtained from equation (All).

The preceding relations for the difference quotients produce linear-difference equations when substituted into the governing differential equations (eqs. (45)). In references 3 and 4 it is noted that in practice the nonlinearities do not require iteration provided a sufficiently fine mesh-point distribution is chosen. However, if one wishes to increase the computational speed by reducing the number of grid points to a minimum, then iteration may become necessary.

Blottner (ref. 7) proposed a variable grid scheme that in principle is only first-order accurate in the normal step size $\Delta \eta_n$, but approaches second-order accuracy when the grid defined by equations (42) to (43) is used. In the variable grid scheme, the following difference relations are used:

$$\left(\frac{\partial G}{\partial \eta}\right)_{m+1,n} = \frac{G_{m+1,n+1} - G_{m+1,n-1}}{\Delta \eta_{n-1} + \Delta \eta_n} - \frac{(\Delta \eta_n - \Delta \eta_{n-1})}{2} G_{\eta\eta} + \dots$$
(A25)

$$\left(\frac{\partial^2 G}{\partial \eta^2}\right)_{m+1,n}$$
 = Equation (A10)

50

APPENDIX A

The nonlinear term is evaluated as follows:

$$\begin{bmatrix} \frac{\partial}{\partial \eta} \left(\mathcal{I} \frac{\partial G}{\partial \eta} \right) \end{bmatrix}_{m+1,n} = \frac{2}{\Delta \eta_n + \Delta \eta_{n-1}} \begin{bmatrix} \mathcal{I}_{m+1,n+\frac{1}{2}} \left(\frac{G_{m+1,n+1} - G_{m+1,n}}{\Delta \eta_n} \right) \\ - \mathcal{I}_{m+1,n-\frac{1}{2}} \left(\frac{G_{m+1,n} - G_{m+1,n-1}}{\Delta \eta_{n-1}} \right) \end{bmatrix} \\ - \frac{1}{12} \begin{bmatrix} \mathcal{I}_{G_{\eta}\eta\eta} + 3\left(\mathcal{I}_{G_{\eta}} \right)_{\eta\eta} \end{bmatrix}_{m+1,n} \left(\Delta \eta_n - \Delta \eta_{n-1} \right)$$
(A26)

where

$$l_{m+1,n+\frac{1}{2}} = \frac{l_{m+1,n+1} + l_{m+1,n}}{2}$$
(A27)

-

APPENDIX B

COEFFICIENTS FOR DIFFERENCE EQUATIONS

Equations (45) are the difference equations used to represent the partial differential equations for the conservation of momentum and energy, respectively. These equations are repeated for convenience as follows:

Momentum equation

$$Al_{n}F_{m+1,n-1} + Bl_{n}F_{m+1,n} + Cl_{n}F_{m+1,n+1} + Dl_{n}\Theta_{m+1,n-1} + El_{n}\Theta_{m+1,n} + Fl_{n}\Theta_{m+1,n+1} = Gl_{n}$$
(B1)

Energy equation

$$A_{n}^{2}F_{m+1,n-1} + B_{n}^{2}F_{m+1,n} + C_{n}^{2}F_{m+1,n+1} + D_{n}^{2}\Theta_{m+1,n-1} + E_{n}^{2}\Theta_{m+1,n+1} + E_{n}^{2}\Theta_{m+1,n+1} = G_{n}^{2}$$
(B2)

These equations are obtained from equations (28) and (29) and the difference quotients presented in appendix A. The coefficients Al_n , Bl_n , and so forth, in equations (B1) and (B2) are functions of known quantities evaluated at stations m and m-l. (See fig. 1.) Therefore, equations (B1) and (B2) can be solved simultaneously. In references 3 and 4, equations (B1) and (B2) were solved simultaneously without iteration. The reader interested in the coefficients for the noniterative simultaneous solution is referred to appendix B of reference 4. In the present approach, using the Blottner variable grid scheme (ref. 7), the coefficients are written as follows:

Momentum equation

$$Al_{n} = -\frac{(v_{m+1,n})_{g}}{\Delta \eta_{n-1} + \Delta \eta_{n}} - \left[\frac{(t^{2j}l\overline{\epsilon})_{m+1,n} + (t^{2j}l\overline{\epsilon})_{m+1,n-1}}{2}\right]Y3_{n}$$
(B3a)

$$Bl_{n} = \left[\frac{\xi(F_{m+1,n})_{g}}{\Delta\xi_{2}}\right] \times 1 + \left[\frac{(t^{2j}\ell\bar{\epsilon})_{m+1,n} + (t^{2j}\ell\bar{\epsilon})_{m+1,n+1}}{2}\right] \times 1_{n} + \left[\frac{(t^{2j}\ell\bar{\epsilon})_{m+1,n} + (t^{2j}\ell\bar{\epsilon})_{m+1,n-1}}{2}\right] \times 3_{n} + 2\beta(F_{m+1,n})_{g}$$
(B3b)

$$Cl_{n} = \frac{(v_{m+1,n})_{g}}{\Delta \eta_{n-1} + \Delta \eta_{n}} - \left[\frac{(t^{2j}l\bar{\epsilon})_{m+1,n} + (t^{2j}l\bar{\epsilon})_{m+1,n+1}}{2} \right] Yl_{n}$$
(B3c)

(B3d)

$$BI_n = -\beta$$
 ORIGINAL PAGE IS
OF POOR QUALITY (B3e)

$$F1_{n} = 0 \tag{B3f}$$

$$GI_{n} = \frac{\xi(F_{m+1,n})_{g}}{\Delta\xi_{2}} \left[(X2)F_{m,n} - (X3)F_{m-1,n} \right] - \beta(F_{m+1,n})_{g}^{2}$$
(B3g)

Energy equation

 $Dl_n = 0$

$$A2_{n} = \frac{2(\alpha lt^{2}j\bar{\epsilon})_{m+1,n} \left[\left(\frac{\partial F}{\partial \eta} \right)_{m+1,n} \right]_{g}}{\Delta \eta_{n-1} + \Delta \eta_{n}}$$
(B4a)

$$B2_n = 0 \tag{B4b}$$

$$C2_{n} = -\frac{2(\alpha lt^{2}j_{\overline{\epsilon}})_{m+1,n} \left[\left(\frac{\partial F}{\partial \eta}\right)_{m+1,n}\right]_{g}}{\Delta \eta_{n-1} + \Delta \eta_{n}}$$
(B4c)

$$D2_{n} = -\frac{(v_{m+1,n})_{g}}{\Delta \eta_{n-1} + \Delta \eta_{n}} - \left[\frac{(t^{2}jl\tilde{\epsilon})_{m+1,n} + (t^{2}jl\tilde{\epsilon})_{m+1,n-1}}{2}\right]Y3_{n}$$
(B4d)

$$E2_{n} = \left[\frac{\xi(F_{m+1,n})}{\Delta\xi_{2}}\right] x_{1} + \left[\frac{(t^{2}j\tilde{l}\tilde{\epsilon})_{m+1,n} + (t^{2}j\tilde{l}\tilde{\epsilon})_{m+1,n-1}}{2}\right] y_{1_{n}} + \left[\frac{(t^{2}j\tilde{l}\tilde{\epsilon})_{m+1,n} + (t^{2}j\tilde{l}\tilde{\epsilon})_{m+1,n-1}}{2}\right] y_{3_{n}}$$
(B4e)

$$F2_{n} = \frac{(v_{m+1,n})_{g}}{\Delta \eta_{n-1} + \Delta \eta_{n}} - \left[\frac{(t^{2j}l\tilde{\epsilon})_{m+1,n} + (t^{2j}l\tilde{\epsilon})_{m+1,n+1}}{2}\right]Y1_{n}$$
(B4f)

$$G_{2n} = \frac{\xi(F_{m+1,n})_{g}}{\Delta\xi_{2}} \left[(x_{2}) \Theta_{m,n} - (x_{3}) \Theta_{m-1,n} \right] - (\alpha \ell t^{2j} \overline{\epsilon})_{m+1,n} \left[\left(\frac{\partial F}{\partial n} \right)_{m+1,n}^{2} \right]_{g}$$
(B4g)

These equations are solved using the coupled solution technique presented in references 3 and 4. A major difference between the present approach (program VGBLP) and that of reference 4 is that the system of equations can be iterated in the present

APPENDIX B

approach as opposed to no iteration in reference 4. The iteration cycle is as follows: (1) the g subscripted quantities are first obtained from known values at stations m-1 and m using equation (A3) for the initial solution of the system at station m+1 (note that the continuity equation is integrated using the trapezoidal rule of integration); (2) for the remaining iterations the g subscripted quantities assume their value at the previous iteration at station m+1. The eddy viscosity is updated after each iteration.

ORIGINAL PAGE IS OF POOR QUALITY

ORIGINAL PAGE IS OF POOR QUALITY

APPENDIX C

FLOW CHARTS AND PROGRAM LISTING

Main Program VGBLP

Program VGBLP controls the sequence of finite-difference solutions for the boundary-layer equations. It reads the input and, through its subroutines, sets up the computational grid, generates the initial solution, controls the parabolic marching procedure wherein the nonsimilar solutions are obtained, calculates all boundarylayer parameters, and prints the output at specified locations. The flow chart for the main program is as follows:

56

58

÷

.

î

60

2 1 10 1 The program listing for program VGBLP is as follows:

PROGRAM VGBLP(INPUT, OUTPUT, TAPE5=INPUT, TAPE6=OUTPUT, TAPE4) DIMENSION PTOPT(JK), STAB2(JK), MOME(JK), TTOTT(JK), CROCO(JK), U 10UPL(JK), TCORD(JK), UDEF(JK), NUNDEL(JK), UEE(JH), PROVAL(JN), PR 2NTVAL(JM), TAUP(JK), RRS(JL), ZZS(JL), DRSD2S(JL), DVT(JL,2), ANS(32), PRTAR(JI) COMMUN /MESH1/ XN(JK), DN(JK), Y1(JK), Y2(JK), Y3(JK), Y4(JK), Y5(JK), Y6 1(JK) COMMON /SOLV1/ F1(JK),F2(JK),F3(JK),T1(JK),T2(JK),T3(JK),V1(JK),V2 1(JK)+V3(JK)+EP2(JK)+EP3(JK)+F22(JK)+F23(JK)+T22(JK)+T23(JK)+XL2(JK 2) \times XL3(JK) \times XLP2(JK) \times XLP3(JK) \times RAT01(JK) \times RAT02(JK) \times RAT03(JK) \times EH2(JK) \times 3EH3(JK), DRATO1(JK), DKATO2(JK), DRATO3(JK), VARA(JK), VARB(JK), VARC(JK 4) = VARŪ(JK) = VARĒ(JK) = Y(JK] = ĒP1(JK) = EH1(JK) = XL1(JK) = XLP1(JK) CUMMON /SOLV2/ Z1,Z2,Z3,Z4,Z5,TE,FAA,FAB,FAC,FAD,BEX1,BEX2,BEX3,BE 1X4 EQUIVALENCE (ZZS, DVT(1,1)), (DRSDZS, DVT(1,2)) COMMON /TRBUENT/ SAKSTRATENGTHATRACTADISINCAXT1,XT2,XT6,XT3,XT4,X 1T50PRTW0RE0UE0XNJE0J0RMI0EPS0JPOINT0IE0WW10WW20WW30WW40WW50 NEDGE 2, KODVIS, A, XBE, X, PR, KOUPRT, PRT, PRTAR, GLAR, NUMB1, XK COMMON /UNIT/ VISIC1, VISIC2, VIS2C1, VIS2C2, PT1, TT1, WAVE, R, PHIO, DS, S 15T, RT1, P1, TI, R1, U1, AA1, TREF, VISREF, PESTAR, TESTAR, RESTAR, UESTAR, MUE 2STAR, YESTAR, THETA, TAUD, QSD, HD, UPLUS, DISP, PE, Z, TW, QW, RVWALD, PROINC, 3PRNTÍNC, ZS, RS INTEGER W REAL MOME, NUE, NUW, KWD, KEU, INTEGT, INTEGL, NONDEL, MUESTAR EXTERNAL INTEGT NAMELIST /NAM1/IGEOM, XEND, IE, XK, DETA1, XMA, PT1, TT1, IGAS, VISIC1, VIS1 1C2,VIS2C1,VIS2C2,G,R,PR,IBUDY,WAVE,PHIL,J,W,IENTRU,SST,SMXTR,KODVI 2S,KTCUD,TLNGTH,IYINT,KUŨAMP,XT1,XT2,XT3,XT4,XT5,XT6,PRT,KUDPRT,NUM 3B1, GLAR, PRTAR, IEND1, PRGINC, PRNTINC, IPRO, IPRNT, NAUXPRO, PROVAL, PRNTV 4AL>FT,KODE,KODWAL>VELEUG,CONV,NITMAX,KODUNIT,ITMAX,CONVE INITIALIZE DATA TO STANDARD INPUT DATA G/1.4/, R/1716./, PR/.72/, PRT/.95/, W/0/, KODE/0/, KJDWAL/1/, IENTR 10/1/,A/1./,KODVIS/2/,SST/1.E8/,FT/1./,SMXTR/1.E8/,TLNGTH/2./,XT1 / 2.4/jxT2/.0168/jxT3/5./jxT4/.78/jxT5/.108/jxT6/26./jPRDINC/1./jPRNT 3INC/.1/, NAUXPRO/O/, NPUTYPE/1/, IPRO/O/, IPRNT/O/, CUNV/.0001/, NUMB1/0 41

```
DATA THATS/0./,RS/0./,P20/0./,NITMAX/1/,SIGN/1./,ST24AX/1000001/,T

1RFACT/0./,KSTR/0/,ITMAX/3/,NUIT/0/,DPEUS/0./,Z/0./,KUDPRT/1/,KTCUD

2/2/,KTCD/0/,IGAS/1/,KUDAMP/2/,VELEDG/.995/,IYINT/1/,SMXN/0./,SMXU/

30./,SMXP/0./,PRTW/.95/,KUDUNIT/0/,ANRAD/1.745329E-2/,VIS1C1/2.27E-

48/,VIS1C2/198.6/,XVAL1/0./,CUNVE/.01/

Y(1)=0.

NONDEL(1)=0.
```

```
DO 1 I=1, JN
```

- 1 PROVAL(I)=0.
- DU 2 I=1,JM
- 2 PRNTVAL(I)=0. D0 3 l=1,JL D&SDZS(I)=0.

```
STORY JAMOR
                                                 ORIGINAL PAGE IS
                             APPENDIX C
TUALO SCOS 70
                                                 OF POOR QUALITY
3 UEE(I)=0.
  DÚ 4 I=1, JK
  EP2(1)=EP3(1)=XL2(1)=XL3(1)=RAT01(1)=RAT02(1)=RAT03(1)=T1(1)=T2(1)
 1=T3(1)=F1(I)=F2(I)=F3(I)=EF1(I)=1.0
  TAUP(1)=1.
  >T482(I)=FZ2(I)=TZ2(1)=XLP2(I)=XLP3(I)=FZ3(I)=TZ3(I)=DRAT01(I)=DRA
 1T02(1)=DRAT03(1)=0.
4 CONTINUE
     READ NAMELIST INPUT
  READ (5, NAM1)
  IF (E0F(5)) 5,6
5 STOP 3
6 WRITE(6,82) IGEOM, XEND, IE, XK, DETA1, XMA, PT1, TT1, IGAS, VIS1C1, VIS1C2,
 IVIS2C1, VIS2C2, G, R, PR, IBODY, WAVE, PHII, J, W, IENTRO, SST, SMXTR, KUDVIS, K
 2TCOD, TLNGTH, IYINT, KODAMP, XT1, XT2, XT3, XT4, XT5, XT6, PRT, KODPRT, NJMB1,
 3GLAR, PRTAR
  WRITE(6,83)IEND1, PROINC, PRNTINC, IPRO, IPRNT, NAUXPRO, FT, KODE, KODWAL,
 IVELEDG, CONV, NITMAX, KODUNIT, ITMAX, CONVE
  IF (KODUNIT.NE.1) GO TO 8
  AT1=TT1
  AT2=TT1/2.
  IF (IGAS.EQ.2) GO TO 7
  AX1=VIS1C1+(AT1++1.5)/(AT1+VIS1C2)
  AX2=VIS1C1+(AT2++1.5)/(AT2+VI51C2)
  AC1=SQRT(5./9.)/47.878258
  VISIC1=AC1+SQRT(AX1+AX2+(AT1+VIS1C2)+(AT2+VIS1C2)/((AT1+AT2)++1.5)
 1)
  VIS102=VIS102*9./5.
  GU TO 8
7 CONTINUE
  AX1=VIS2C1*(AT1**V1S2C2)
  AX2=V1S2C1*(AT2**VIS2C2)
  AC1=((5./9.)**VIS2C2)/47.860258
  VIS2C1=AC1+SQRT(AX1*AX2/1(AT1*AT2)**VIS2C2))
8 CUNTINUE
  1IH9=GIH9
  IF (KUDUNIT.EQ.1) CALL INUNIT (PROVAL, PRNTVAL, JM, JN)
     SET UP GRID NORMAL TO WALL
  W1=XK
  w^{2}=1+w^{1}
  W3 = 1 + W1 + W1 = W1
  W1=W3+W3+(W1+W2-1.)+W2
  WW2=W1*W2*W3*W3
  WW3=W3+W3
  WW4=1.+W1
  WW5=W1*W1*W1*W2*W3
  CALL MESH (XK, XEND, IE, IGEOM, DETA1)
  RPR=1./PR
  DD 9 N=1, JK
  EH2(N)=RPR
```

C C C

> C C C

EH3(N)=RPR

C C

C

ORIGINAL PAGE IS OF POOR QUALITY

```
EH1(N)=RPR
 9 CONTINUE
     PROGRAM CONSTANTS
10 CUNTINUE
   X MAC=1.+.5*(G-1.)*X MA**2
   RT1 = PT1/(R + TT1)
   P1=PT1/(XMAC)++(G/(G-1.))
   R1=RT1/(XMAC)**(1./(G-1.))
   TI=TT1/XMAC
   AA1=SQRT(G*P1/R1)
   U1 = X MA + AA1
   TREF=U1++2/((G/(G-1.))+R)
   GP1=G+1.
   GM1=G-1.
   GMlDG=GM1/G
   XWAVE=ANRAD+WAVE
   IF (KUDWAL.EQ.1) GO TU 12
   IF (XWAVE.EQ.O.) GD TD 11
   XAF=(XMA+SIN(XWAVE))++2
   T2OT1=(2.*G*XAF-GM1)*(GM1*XAF+2.)/(GP1*GP1*XAF)
   XM2=(GP1*GP1*XMA*XMA*XAF-4.*(XAF-1.)*(G*XAF+1.))/((2.*G*XAF-GM1)*(
  1GM1 * XAF + 2.)
   AWT=TI+T20T1+(1.+SuRT(Pk)+GM1+XM2+0.5)
   GO TO 12
11 AWT=TI+(1.+SQRT(PR)+GM1+XMA+XMA+0.5)
12 CONTINUE
   IF (IGAS.EQ.2) GD TO 13
   VIS1=VIS1C1*(TI**1.5)/(T1+VIS1C2)
   VISREF=VISIC1*(TREF**1.5)/(TREF+VIS1C2)
   GO TO 14
13 VIS1=VIS2C1+(TI++VIS2C2)
   VISREF=VIS2C1+(TREF++VIS2C2)
14 CONTINUE
   REY=R1=U1=A/VIS1
   REYREF#REY#VIS1/VISREF
   XCONE=ANRAD*PHIO
   EPS=1./SQRT(REYREF)
   ABC=(XMA*SIN(XWAVE))**2
   P10=PT1/(R1+U1+U1)
   IF (XWAVE.GT..0000001.UK.XWAVE.LT.-.0000001) P10=(1./(G*XMA*XMA))*
  1((XMAC*ABC*(G+1.))/(ABC*(G-1.)+2.))**(G/(G-1.))*((G+1.)/(2.*G*ABC-
  2(G-1.)) **(1./(G-1.))
   T10=0.5+1.0/(XMA+XMA+(G-1.0))
   R10=G*P10/(T10*(G-1.0))
   TC=VISIC2/(TI+XMAC)
   RFL=SQRT(PR)
   RFT=PK**0.33333
      READ TABULAR DATA
   IF (NUIT.GT.0) GD TO 20
   NABC=NPUTYPE+1
```

APPENDIX C

GU TO (19,15,16), NABC 15 CALL TABLE (IEND1, SD, R1, U1, A, TREF, KODWAL, VISREF, KODUNIT, AWT) GO TO 17 16 CALL TABLE1 (IEND1,SD,K1,U1,A,TREF,KODWAL,VISREF,KODUNIT,AWT) 17 GO TO (19,18), IENTRO 18 CALL VARENT (RRS,ZZS,DRSDZS,NNN,KDUUNIT,A) **19 CONTINUE** SET UP PRINT CONTROL SD=SD=ACALL SETUP (PROINC, PROVAL, SU, JN, IPRO) CALL SETUP (PRNTINC, PRNTVAL, SD, JM, IPRNT) WRIT E(6,97) IF(KODUNIT.EQ.1) WRITE(6,84) (PROVAL(I)*.3048,I=1,JN) IF(KODUNIT.EQ.1) WRITE(5,85) (PRNTVAL(I)*.3048,I=1,JM) IF(KODUNIT.NE.1) WRITE(6)84) PROVAL IF(KODUNIT.NE.1) WRITE(6,65) PRNTVAL 20 CONTINUE READ (4) TWORVWALDOGSDOPEODS SI=D5 UE=0. PEOPIO=PE/P10 IF (PEOP10.GT.1.) GO TO 21 GO TO 22 21 CONTINUE ABYZ=ABS(1.-PEUP10) WRITE (6,81) ABYZ STOP 600 22 CONTINUE IF (1800Y.NE.1) UE=SQRT(2.*T10*(1.-(PE0P10)**GM10G)) TE=T10-.5+UE+UE RE=G*PE/((G-1.)*TE)TR=T10+TC/TE TW=TW/TE SUT=VIS1C2/TREF IF (IGAS.EQ.1) XNUE=(TE**1.5)*((1.+SUT)/(TE+SUT)) IF (IGAS.EQ.2) XNUE=TE**VIS2C2 GO TO (23,25), I30DY STARTING PROCEDURE FOR FLOWS WITH STAGNATION POINT 23 SUT=T10+TC IF (IGAS.EQ.1) VIS10=(T10**1.5)*(1.+SUT)/(T10+SUT) IF (IGAS.EQ.2) VISIO=T10++VIS2C2 P1PT2=P1/PT1 IF (XMA.LE.1.) GO TO 24 P1PT2=(((((G+1.)*X*A**2)/2.)**(-G/(G-1.)))*((G+1.)/((2.*G*XMA**2)-(1G-1.)) **(-1./(G-1.))24 CONTINUE DUEDS=SQRT(2.*((G-1.)/G)*T10*(1.-P1PT2)) BELA=R10+VIS10+DUEDS RMI=SIDX1DS=BELA*(SI-DS)**(2*j+1)

C C C

С С С

Ē

.....

С

С С

C C

С

C C

С

ORIGINAL PAGE IS OF POOR QUALITY

```
DXDS=BELA*SI**(2*J+1)
   DX1=(BELA*SI**(2*J+2))/(2*J+2)
   X = D X 1
   ARGM=-778.26*EPS*A*PR/(VISREF*U1*U1*T10*SQRT((J+1)*R10*VIS10*DUEDS
  1))
   XAL=0.
   XBE=1./(FLOAT(J)+1.)
   GO TO 28
     STARTING PROCEDURE FOR FLOWS WITHOUT STAGNATION POINT
25 CONTINUE
   IF (J.EQ.0) GO TO 26
   RMI=SI*SIN(XCONE)
   BELEX=RE+UE+XNUE+(S1N(XCONE)++(2+J))
   IF (J.NE.O.AND.PHIO.EQ.O.) BELEX=RE*UE*XNUE
   DX105=BELEX*((5I-DS)**(2*J))
   GO TO 27
26 CONTINUE
   RMI=1.
   BELEX=RE*UE*XNUE
   DXIDS=BELEX
27 DXDS=BELEX+SI++(2+J)
   DX1=(BELEX*(ST**(2*J+1)))/(2*J+1)
   X = DX1
   QS=DISP=0.
   XAL=UE++2/TE
   XBE=0.
   ARGM=0.
   DUEDS=0.
28 CONTINUE
    GENERATE SELF SIMILAR SOLUTION
   CALL SIMILAR (IE, IGAS, XAL, XBE, PR, KODWAL, TW, DTDZW, XK, TR, VIS2C2, F3, F
  12, T3, T2, V3, V2, FZ3, TZ3, XL3, EP3, ARGM, QSD)
   IF (KODWAL.EQ.1.AND.IBODY.EQ.1) QSD=TZ3(1)*XL3(1)/ARGM
   MUESTAR=XNUE+VISREF
   UESTAR=UE*U1
   TESTAR=TE*TREF
   PESTAR=PE*k1*U1*U1
   RESTAK=RE*R1
   X=0.
   DX2=DX1
     SET UP INITIAL PROFILES
   DO 29 N=1, IE
   V2(N) = V3(N)
   V1(N) = V3(N)
   T2(N) = T3(N)
   T1(N) = T3(N)
   F2(N)=F3(N)
   F1(N) = F3(N)
```

APPENDIX C

```
XL2(N) = XL3(N)
   XL1(N) = XL3(N)
   XLP2(N) = XLP3(N)
   XLP1(N) = XLP3(N)
   TZ2(N) = TZ3(N)
   FZ2(N) = FZ3(N)
29 CONTINUE
   IF (KODUNIT.EQ.1) CALL OUTUNIT (PROVAL, PRNTVAL, JM, JN)
   IF (KODUNIT.EQ.1) CALL WALLOUT (PROVAL, PRNTVAL, JM, JN)
    WRITE INITIAL STATION PARAMETERS
   WRITE (6,72) MUESTAR, UESTAR, TESTAR, PESTAR, GSD, XAL, XBE, RESTAR
   IF (KODUNIT.NE.1) WRITE (6,69)
   IF (KODUNIT.EQ.1) WRITE (6,70)
   PTREF=PT1/(R1*U1*U1)
   WRITE (6,71) PT1,TT1,RT1,P1,TI,R1,U1,AA1,XMA,REY,R1+U1+U1,TREF,R1,
  101, VISREF, PTREF, P10, T10, R10
   IF (KUDUNIT.EQ.1) CALL INUNIT (PROVAL, PRNTVAL, JM, JN)
   ZS=0.
    IF((1ENTRD.EQ.2) .AND. (NDIT.EQ.0)) WRITE(6,88)
     BEGIN MARCHING PROCEDURE ALONG SURFACE
   SM1=-DS
   S=0.
   DXDS=DX1DS
   IENDP1=IEND1+1
   DG 68 M=2, IENDP1
   SM2=SM1
   SM1=5
   READ (4) S, PE, RMI, TW, Z, DPEDS, RVWALD, DRDZ, QW
   PHI=ATAN(DRDZ)
   COSTH=COS(PHI)
   PP=DPEDS
   UE=SQRT(2.0*T10*(1.0-(PE/P10)**((G-1.0)/G)))
   IF (NUIT.GT.O) UE=UEE(N)
   TE=T10-0.5+UE+UE
   XAL=UE+UE/TE
   RE=G*PE/((G-1.0)*TE)
   IF (IGAS.EQ.1) XNUE=(TE**1.5)*(1.0+T10*TC)/(TE+T10*TC)
   IF (IGAS.EQ.2) XNUE=TE**V1S2C2
   DX2DS=DX1DS
   DX1DS=DXDS
   DXDS=RE*UE*XNUE*(RM1**(2*J))
   DX2=(UXDS+UX1DS)*.5+DS
   IF (IBODY.EQ.1) DX2=DX2*.5
   IF (M.EQ.2) DX1=DX2
   IF (M.EQ.2) GO TO 31
     CHECK FOR CHANGE IN STEP INCREMENT
   CKK=(S-SM1)/(SM1-SM2)
   IF (CKK.LT..99999999) 60 TO 30
   IF (CKK.GT.1.0000001) GD TO 30
```

С С С

> C C

С С С

```
APPENDIX C
```

С С

С

```
DX2=(S-SM1)+(DXDS+4.*0X1DS+DX2DS)/3.-DX1
   GG TO 31
30 DX2=(S-SM1)*(DX10S+DX0S)/2.
31 X = X + D X 2
   0Y=2.+X
   DZ = SQRT(DY)
   DUEDS=-PP/(RE*JE*DXDS)
   DTEDS=-UE*DUEDS
   XAL=UE+UE/TE
   XBE=OY+DUEDS/UE
   TR=T10*TC/TE
     SET UP DIFFERENCE-QUOTIENT CUEFFICIENTS FOR X-CUORDINATE
   Z1=2.*((DX1+2.*DX2)/(DX1+DX2))
   Z2=2.*(DX1+DX2)/DX1
   Z3=2.*((DX2*DX2)/(DX1*(UX1+DX2)))
   Z4=(UX1+DX2)/DX1
   Z5=DX2/DX1
   FAA=0Z/(RE*UE*(RM1**J))
   FAB=2.*EPS*W*FAA*COSTH/(RMI**J)
   FAC=2.*EPS+DZ*COSTH/(RE*UE*RMI*RMI)
   FAD=RMI/(EPS+COSTH)
   BEX1=(RMI**J)/(EPS*COSTH)
   IF (J.EQ.O) SIGN=ABS(SIGN)
   BEX2=SIGN++J
   BEX3=(2.**J)*EPS*COSTH*SQRT(2.*X)/(RE*UE*(RMI**(2.*J)))
   BEX4=1./(J+1)
   DFDZw=1.
   N1T=0
32 CUNTINUE
   NIT=NIT+1
   IF (KODWAL•NE•1) ARGM=-QW*778•26*(EPS*A/(V1SFEF*U1**2))*(PR*DZ/(RE
  1*UE*TE*XNUE*RMI**J))
  CALL SOLVE (KODWAL)AKGM)TR)VIS2C2)XAL)XBE)X)DX2)TW)IGAS)IE)J)NIT)R
 1VWALD2R12U12WW12AW22WW32AW42WW52XNUE2XK2EPS2M2IBODY2FT)
  CO=0.
  DISINC=0.
   DISP=0.
   TPK=0.
   THETA=0.
   KON=IE+2
   DU 33 N=2,KON
   TPK=TPK+.5*(T3(N-1)+T3(N))*DN(N-1)
   RATU3(N)=SIGN+SQRT(1.+FAB+TPK)
   DRATU3(N) = FAB + T3(N)
   Y(N)=BEX1*(-1.+BEX2*(1.+BEX3*TPK)**BEX4)
   DISP=DISP+.5*((T3(N-1)-F3(N-1))+(T3(N)-F3(N)))*DN(N-1)
   C=1./(RATD3(N)**J)
   C = C + (F3(N) + (1, -F3(N)))
   THETA=THETA+.5*(CO+C)*ON(N-1)
  C 0 = C
   DISINC=DISINC+.5*((T3(N-1)*(1.-F3(N-1))/RAT03(N-1))+(T3(N)*(1.-F3(
  1N))/RAT03(N)))*DN(N+1)
```

```
APPENDIX C
```

```
33 CUNFINUE
      DISINC=DISINC+EPS+FAA+A
      THETA=THETA*EPS*FAA*A
      DISP=DISP*EPS*FAA*A
Ç
С
      DETERMINE THE LOCATION OF THE BOUNDARY-LAYER EDGE
      SEE INPUT DESCRIPTION FOR DEFINITION FOR VELEDG
C
С
      NCOUNT=0
      DD 34 N=1, IE
      NCOUNT=NCOUNT+1
      IF (F3(N).GE.VELEDG) GO TO 35
   34 CONTINUE
   35 NEDGE=NCOUNT
      YEDGE=Y(NEDGE-1)+(VELEDG-F3(NEDGE-1))*(Y(NEDGE)-Y(NEDGE-1))/(F3(NE
     1DGE)-F3(NEDGE-1))
С
С
      CHECK THE CONVERGENCE
Ĉ
      DIF=ABS(1+-FZ3(1)/DFDZw)
      DFDZw=FZ3(1)
      DIF1=UIF
      IF (NIT.GT.NITMAX) DIF=O.
C
С
        CALCULATE WALL AND INITIAL VALUES REQUIRED FOR BASIC BOUNDARY
C
        LAYER PARAMETERS
С
      MDME(1)=F3(1)/SORT(T3(1))
      XMF1=2.+X4L
      XMF2=T3(1)*TE/T10
      XMF3=1.-XMF2
      TTOFT(1)=(2.*T3(1)+XAL*F3(1)*F3(1))/XMF1
      CROCCO(1) = (TTOTT(1) - XMF2)/XMF3
      UOUPL(1)=0.
      TCORD(1)=0.
      UDEF(1)=0.
      NGNDEL(1)=0.
      XMF4=EPS*XNUE*UE*UE*(RMI**J)*XL3(1)*FZ3(1)/UZ
С
        CALCULATE BASIC BOJNDARY LAYER PARAMETERS
С
С
      KUN=IE+2
      00 37 N=2,KON
      IF (TRFACT.EQ.0.0) GD TD 36
      UPLUS=SQRT(XMF4*T3(1))
      UDUPL(N)=UE*F3(N)/UPLUS
      TCORD(N)=(Y(N)*UPLUS*RE)/(EPS*XNUE*((T3(N)*XL3(N))**2))
      UDEF(N)=UE*(1.-F3(N))/UPLUS
   36 CONTINUE
       TTOTT(N)=(2.*T3(N)+XAL*F3(N)*F3(N))/XMF1
      CKOCCO(N) = (TTOTT(N) - XMF2) / XMF3
      MDME(N) = F3(N) / SQRT(T3(N))
   37 CONTINUE
```
```
APPENDIX C
```

```
CALCULATE VORTICITY REYNOLDS NUMBER
      AND DETERMINE STABILITY INDEX
   IF (TRFACT.GT.0.0.AND.TRFACT.LT.0.9999) GD TD 40
   DO 38 I=1, NEDGE
   TERMB=RE*RE*UE*UE*Y(1)*Y(1)*(RM1*RAT03(1))**J/(SQRT(2.*X)*XNUE*EPS
  1)
38 STAB2(I)=TERM3*FZ3(1)/(XL3(I)*T3(1)**3)
   ST2MAX=STAB2(1)
   D0 39 IX=2, IE
   IF (ST2MAX.GT.STAB2(1X)) GD TU 39
   ST2MAX=STAB2(IX)
39 CONTINUE
   SMXP=ST2MAX
40 CONTINUE
   DSMXO=(SMXP-SMXN)/(S-SM1)
   SMXN=SMXD
   SMX0=SMXP
   IF (KTCOD.EQ.2.0R.KTCD.EQ.1) GO TO 41
   KTCD=1
   RRRR=RE*UE*R1*U1/(XNUE*VISREF)
   TLNGTH=1.+(5.*RRRR**(-1)*(RRRK*A*SST)**.8)/SST
41 CONTINUE
   IF (SMXTR.LE.ST2MAX) CALL TURBLNT (T3)XL3)FZ3)RATU3)Y)EP3)F3)EH3)V
  IARA, VARB, VARC, VARD, VARE, KOUAMP, IYINT, YEDGE, TAUP)
   IF (SST.LE.S*A) CALL TURBENT (T3,XL3,FZ3,RAT03,Y)EP3,F3,EH3,VARA,V
  IARB, VARC, VARD, VARE, KODANP, IYINT, YEDGE, TAUP)
   IF (DIF.GT.CONV) GO TO 32
   DUTPUT QUANTITIES
   DO 42 N=2,KON
   NDNDEL(N)=Y(N)/YEDGE
42 CONTINUE
   IF (J.NE.1) GO TO 44
   TIBURON=2.+DISP/RM1
   IF(TIBURON.LT.-1.)G0 TO 43
   DISP=RMI + (-1.+SQRT(1.+TIBURDN))
   GD TO 44
43 wRITE(6,93)
44 CONTINJE
   THAD1S=DISP/THETA
   REDELT=(RE*UE*DISP/(XNUE*A))*REYREF
   RETHET=REDELT/THADIS
   RES=(RE+UE+S/XNUE)+REYREF
   XMAE=UE/SQRT(TE*(G-1.))
   TWOTT1=T3(1) + TE+TREF/TT1
   RFCTUR=(T3(1)-1.)/((TT1/(TE*TREF))-1.)
   TAUD=vISREF*u1*(XL3(1)*RE*XNUE*UE*UE*UE*(KMI**J)*F23(1)/UZ)/(EPS*A)
   CFE=TAUD/(.5*R1*J1*U1*RE*JE*UE)
  CFW=CFE+TW/TE
   IF (KUDWAL.NE.1) GU TU 45
   QS=-XL3(1)*RE*UE*TE*XNUE*(kMI**J)*TZ3(1)/(PR*DZ*EPS)
```

C C

Ċ

С

ORIGINAL PAGE IS OF POOR QUALITY

```
QSD=Q5+VISREF*U1+U1/(778.26+A)
   GU TO 46
45 QS0=QW
46 CONTINUE
   IF(F23(1).GE.0.) GO TO 92
   WRITE(6,91)S, TAUD, QSD
   STOP 400
92 CONTINUE
   TwD=TREF*TW
   TAWD=(RFL+(RFT-RFL)*TRFACT)*(TT1-TE*TREF)+TE*TREF
   HD=QSD/(TWD-TAWD)
   CHE=778.26*HD*(G-1.)/(G*K*R1*U1*RE*UE)
   CHW=CHE*TW/TE
   HSD=HU+A+S
   KED=R*VISREF*XNUE*G/(778.26*PR*(G-1.))
   KWD=KED*XL3(1)*T3(1)
   NUE=HSD/KED
   NUW=HSD/KWD
           TOTAL PRESSURE RATIO, (PT2)BL/(PT2)REF
   00 49 I=1,IE
   ZEB=(MOME(I)*XMAE)**2
   IF (SQRT(ZEB)-1.) 47,47,48
47 PT2=PE*((1.+(G-1.)*ZEB/2.)**(G/(G-1.)))
   GD TO 49
48 BBA=(ZEB*(G+1.)/2.)**(G/(G-1.))
   B&B=((G+1.)/((2.*G*ZEB)-(G-1.)))**(1./(G-1.))
   PT2=PE*BBA*BBB
49 PTUPT(I)=PT2/PTREF
      VARIABLE ENTROPY CALCULATIONS
   GU TU (51,50), IENTRO
50 INTEGL=INTEGT(F3,NEDGE,DN)
   X X J = J
   RS=((J+1)*EPS*DZ*INTEGL)**((2.-XXJ)/2.)
   IPT=-1
   CALL IUNI (JL, NNN, KRS, 2, DVT, 2, RS, ANS, IPT, IERR)
   ZS=ANS(1)
   TANTHTS=ANS(2)
   THATS=ATAN(TANTHTS)
   SWANG=THATS/.0174533
    PTT+U=(G+1.)*XMA**2*SIN(THATS)**2
   PTT#0=PTTW0/((G-1.)*(XMA)*+2+SIN(THATS)**2+2.)
    PTTW0=PTTW0+*(G/(G-1.))*PT1
   PTT#0=PTTw0*((G+1.)/(2.*G*XMA**2*SIN(THATS)**2-(G-1.)))**(1./(G-1.
  1))
   P20=PTTW0/(R1+J1+U1)
    UEE(M)=SQRT(2.*T10+(1.-(PE/P20)**((G-1.)/G)))
    XVAL2=ABS((UEE(M)-UE)/UE)
    IF (XVAL2.GE.XVAL1) XMX=XVAL2
    XVALI=XVAL2
    NN = IE + 2
```

```
C
C
C
```

```
C
C
C
```

```
С
С
С
```

51 CUNTINUE

NN=IE+2 IF (IENTRO.EQ.1) P20=P10 PRINT PROFILES AND WALL VALUES KPRNT=0 IF (ABS(A-1.).LE.0.0000001) GO TO 52 S=S*A Z = Z * ARNI=RMI+A ZS = ZS * ARS=RS+A 52 CONTINUE DŪ 53 NUMBR=1, JN IF (S.GT.PROVAL(NUMBR)-.000001.AND.S.LT.PROVAL(NUMBR)+.000001) GO 1TO 54 53 CONTINUE GO TO 63 - - -54 CUNTINUE IF (KODUNIT.EQ.1) S#S*.3048 WRITE (6,73) S IF (KODUNIT.EQ.1) S=5/.3046 IEDGEX=NEDGE+10 IF (IEDGEX.GT.IE) IEDGEX=IE IF (NAUXPRD.NE.1) GO TO 56 WRITE (6,74) UD 55 I=1, IEDGEX 55 WRITE (6,75) (XN(I),TAUP(I),V3(I),FZ3(I),TZ3(I),VARA(I),VARB(I),VA lru(I),VARD(I),EP3(I),VARE(I)) 56 CONTINUE IF (KUDE.EQ.1) GO TO 58 IF (TRFACT.GT.).9999) GU TU 61 IF (TRFACT.GT.0.).AND.TRFACT.LT.0.9999) GU TU 58 WRITE (6,76) DD 57 I=1, IEDGEX 57 WRITE (6,77) XN(I),NUNDEL(I),F3(I),T3(I),TTOTT(I),CRUCCU(I),PTUPT(11), MOME(I), FZ3(I), TZ3(I), STAB2(I), XL3(I) GU TU 63 58 WKITE (6,76) DO 59 I=1, IEDGEX 59 WRITE (6,77) XN(I),NONDEL(I),F3(I),T3(I),TTUTT(I),CRUCCU(I),PTUPT(1I) MOME(I) FZ3(I) TZ3(I) STAB2(I) XL3(I) WRITE (6,78) DD 60 I=1.IFDGEX 60 WRITE (6,77) XN(I),NUNDEL(I),F3(I),T3(I),TTOTT(I),CRJCCQ(I),PTOPT(li), MOME(I), TCORD(I), UOUPL(I), UDEF(I), EP3(I) GU TU 63 61 WRITE (6,78) DD 62 I=1, IEDGEX 62 WRITE (6,77) XN(I), NONDEL(I), +3(I), T3(I), T10TT(I), CROCO(I), PT0PT(11), MGME(I), TCORD(I), UOUPL(I), UDEF(1), EP3(I)

63 CONTINUE DD 64 NUMBER=1,JM IF (S.GT.PRNTVAL (NUMBER)-.000001.AND.S.LT.PRNTVAL (NUMBER)+.000001) 1 GO TU 65 64 CONTINUE GO TO 66 65 CONTINUE PESTAR=PE*R1*U1*U1 TESTAR=TE*TREF RESTAR=RE*R1 UESTAK=UE*U1 MUESTAR=XNUE+VISREF YESTAR=YEDGE*EPS*A RVWAL=RVWALD/(RESTAR+UESTAR) GANDDG=RVWALD IF(KDUUNIT.EQ.1)GAND0G=GAND0G/.0063658804 IF (KODUNIT.EQ.1) CALL WALLOUT (PROVAL, PRNTVAL, JM, JN) WRITE (6,79) S,RETHET, PP,CFW,ZS,YESTAR,X,RES,DTEDS,QSD,RS,UPLUS,RM LI, PESTAR, DUEDS, HD, NOIT, TRFACT, Z, TESTAR, DISP, CHE, TWOTTI, JPOINT, XBE, 2RESTAR, THETA, CHW, RECTOR, P20 WRITE (6,80) XAL, UESTAR, THADIS, NUE, ST2MAX, EPS, GANDUG, XMAE, TAUD, NUW 1, DSMXD, REDELT, MUESTAR, CFE, SWANG, V3(1), RVWAL, N1T, DIF1 KPRNT=1 66 CONTINUE AINV=1./A IF (KODUNIT.EQ.1.AND.KPRNT.EQ.1) AINV#AINV*3.280839895 S = S = A I N VZ=Z*AINV RMI=RMI+AINV ZS = ZS + AINVRS=RS*AINV UPDATE VARIABLES FOR MARCHING PROCEDURE DU 67 N=1,NN F1(N)=F2(N)T1(N) = T2(N)V1(N) = V2(N)RATU1(N) = RATU2(N)URATU1(N) = DRAT02(N)X = 1 (N) = X = 2 (N)XLP1(N) = XLP2(N)F2(N) = F3(N) $T_{2}(N) = T_{3}(N)$ V2(N) = V3(N)RATU2(N) = RATU3(N)DRATU2(N) = DRATU3(N)XL2(N) = XL3(N)XLP2(N) = XLP3(N)TZ2(N) = TZ3(N)EP1(N) = EP2(N)EP2(N) = EP3(N)EP3M=EP3(N) IF (N.GT.1.AND.N.LT.1E) EP3M=(EP3(N-1)+EP3(N)+EP3(N+1))/3.

С С С

TAUP(N)=1./(XL3(1)*FZ3(1))*XL3(N)*ABS(FZ3(N))*EP3M EH1(N) = EH2(N)EH2(N) = EH3(N)FZ2(N) = FZ3(N)67 CONTINUE 68 DX1=DX2 IF (IENTRD.EQ.1) STOP 100 IF(NDIT.EQ.ITMAX) WRITE(5,89) IF (NDIT.EQ.ITMAX) STUP 200 IF(XMX.LE.CONVE) WRITE(6,90) IF (XMX.LE.CONVE) STOP 300 NUIT=NOIT+1 WRITE(6,86) ITMAX,NOIT **REWIND 4** GO TO 10 69 FORMAT (1H1,20X,64H****61MENSIONAL OUTPUT QUANTITIES ARE IN U.S. S 1TANDARD UNITS ****/) 70 FORMAT (1H1,20X,55H****DIMENSIONAL OUTPUT QUANTITIES ARE IN S.I. U 1NITS####,/) 71 FORMAT (2X, 30HFREE STREAM VALUES-DIMENSIONAL, /, 5X, 5HPT1 =, E14.6, 2X 1,5HTT1 =,E14.6,2X,5HRT1 =,E14.6,2X,5H P1 =,E14.6,2X,7H T1=,E14. 26,2X,5H R1 =,E14.6,/,5X,5H U1 =,E14.6,2X,5HAA1 =,E14.6,2X,5HXMA =, 3E14.6,2X,5HREY =,E14.6,//,2X,28HREFERENCE VALUES-DIMENSIONAL,/,5X, 55HPREF=,E14.6,2X,5HTREF=,E14.6,2X,5HRREF=,E14.6,2X,5HUREF=,E14.6,2 6X,7HVISREF=,E14.6,2X,5HPTR =,E14.6,//2X,25HPARAMETERS-NONDIMENSION 7AL / / 5X / 5HP10 =/ E14.6/2X / 5HT10 =/ E14.6/2X / 5HR10 =/ E14.6//) 72 FORMAT (2X)5HMUE =,E12.0,2X,5HUE =,E12.6,2X,5HTE =,E12.6,2X,5HPE =,E12.6,2X,5HQSD =,E12.6,/,2X,5HXAL =,E12.6,2X,5HXBE =,E12.6,2X, 1 25HRE = = E12.6) 73 FORMAT (//1X,2HS=F14.4,9H PROFILE/) 74 FORMAT (130H ETA TAUP ۷ GRAD GRAD(U/UE) 1(T/TE)FC1 DAMP EPI EPO EΡ 2 MIXDEL/) 75 FORMAT (11E12.3) 76 FURMAT (//4x)3HETA)8x)4HY/YE,7X,4HU/UE,7X,4HT/TE,6X,6HTT/TTE,5X,6H 1CROCCO, 5X, 6HPT/PTR, 6X, 4HM/ME, 8X, 2HFZ, 9X, 2HTZ, 6X, 7HVORTREY, 6X, 5HXLM 211/) 77 FORMAT (12E11.3) 78 FORMAT (//4X,3HETA,8X,4HY/YE,7X,4HU/UE,7X,4HT/TE,6X,6HTT/TTE,5X,6H 1CROCCO, 5X, 6HPT/PTR, 6X, 4HM/ME, 7X, 5HYPLUS, 6X, 5HUPLUS, 6X, 4HUDEF, 6X, 6H 2VISEFF/) 79 FORMAT (/2X)7HS *,E12.5,2X,7HRETHET=,E12.5,2X,7HDPEDS =,E12.5, 12X,7HCFW =,E12.5,2X,7H2SHK =,E12.5,2X,7HYE =, E12.5, /2X, 7HXI 2 =,E12.5,2X,7HRES =,E12.5,2X,7HDTEDS =,E12.5,2X,7HQSD =,E12. 35,2X,7HRSHK =,E12.5,2X,7HUTAU =,E12.5,/2X,7HRMI =, E12.5, 2X, 7HP =,E12.5,2X,7HOUEDS =,E12.5,2X,7HHD 4E =,E12.j,2X,7HITRO =,I1 52,2X,7HTRFCT =,E12.5,/2X,7HZ =,E12.5,2X,7HTE =, E12.5, 2X, 7HD 6LTAST=,E12.5,2X,7HNSTE =,E12.5,2X,7HTw/TT1=,E12.5,2X,7HYMP **=** 11 72,/2X,7HBETA =,E12.5,2X,7HRE =,E12.5,2X,7HTHETA =,E12.5,2X,7HN 8STW =>E12.5,2X,7HRFTRUE=,E12.5,2X,7HP20 ■,E12.5)

C C C ORIGINAL PAGE IS OF POOR QUALITY

APPENDIX C

- 80 FORMAT (2X,7HXAL =>E12.5,2X,7HUE =>E12.5,2X,7HFORM =>E12.5,2 1X,7HNUE =>E12.5,2X,7HROUSE =>E12.5,2X,7HLOMEGA =>E12.5,2X,7HRVWA 2LD=,E12.5,2X,7HME =>E12.5,2X,7HTAUD =>E12.5,2X,7HNUW =>E12.5 3,2X,7HDSMXD =>E12.5/2X,7HREDELT=>E12.5,2X,7HMUE =>E12.5,2X,7HCFE 4 =>E12.5,2X,7HSWANG =>E12.5,2X,7HVW =>E12.5,2X,7HRVWAL =>E12. 55/2X,7HNOITER=,I12,2X,7HERVWAR =>E12.5)
- 81 FORMAT (/2X, EHMISTAKE=, E12.5, 37H MISTAKE=ABSOLUTE VALUE OF 1.-PE/ 1P10/10X, 106HYOU HAVE MADE AN ERROR IN YOUR INPUT SUCH THAT THE RAT 2IO OF STATIC TO TOTAL PRESSURE IS GREATER THAN UNITY/11X, 66HERROR 3COULD INVOLVE EITHER OR ALL OF THE FOLLOWING:XMA, PT1, PE, WAVE//12X, 497HTHE PROBABILITY IS VERY HIGH THAT YOUR SPECIFIED VALUE OF PE(1) 5 IN \$NAM3 IS NOT CORRECT FOR YOUR /, 12X, 40HSELETED VALUES OF XMA, P 6T1, WAVE IN \$NAM2.//, 12X, 27HPE/PIO CANNOT EXCEED UNITY./)

82 FORMAT(1H1,2X,54\$NAM1,//,2X,8HIGEOM =,112,2X,8HXEND =,E12,5,2X, ■, E12.5, 2X, 8HDETA1 18HIE ■,112,2X,8HXK =, E12.5, 2X, 8HXMA 2 =,E12.5,/,2X,8HPT1 =,E12,5,2X,8HTT1 =,E12.5,2X,8HIGAS = • I 312,2X,8HVIS1C1 =,E12.5,2X,6HVIS1C2 =,E12.5,2X,8HVIS2C1 =,E12.5,/,2 =,E12.5,2X,6HK =, E12.5, 2X, 8HPR 4x,8HVIS2C2 =,E12,5,2X,8HG #yE12.5y//y2Xy8HIB00Y = #yI12y2Xy8HWAVE =,E12.5,2X,8HPHII 5

=,112,2X,8HIENTRO =,112,//,2 6=,E12.5,2X,8HJ =,112,2X,8HW =, E12.5, 2X, 8HS MX TR =, E12.5, 2X, 8HK ODVIS =, I12, 2X, 8HK TCO 7X,8H55T =,112,2X,8HTLNGTH =,E12.5,2X,8HIYINT =,112,/,2X,8HKODAMP =,112 6 D =,E12.5,2X,6HXT3 =,E12,5,2X,8H 9,2X,8HXT1 =,E12.5,2%,bHXT2 =,E12.5,2X,8HXT5 =,E12.5,/,2X,8HXT6 =,E12.5,2X,8HPRT 1XT4 =,E12.5,2X,3HKODPRT =,I12,2X,8HNUMB1 =,I12,2X,6HGLAR =,E12.5 2 4,/,2X,8HPRTAR //(10E12.5))

83 FURMAT(/,2X,8HIEND1 =,112,2X,8HPROINC =,E12.5,2X,8HPRNTINC=,E12.5 1,2X,8HIPRO =,112,2X,8HIPRNT =,112,2X,8HNAUXPRO=,112,/,2X,8HFT 1 =,E12.5,2X,8HKODE =,112,2X,8HKODWAL =,112,2X,8HVELEDG =,E12.5 1,2X,8HCONV =,E12.5,2X,8HNITMAX =,112,/,2X,8HKODUNIT=,112,2X,8HIT 2MAX =,112,2X,8HCONVE =,E12.5,//,2X,119HTHIS COMPLETES THE DUTPUT 3 UF \$NAM1 wITH THE EXCEPTION UF PROVAL AND PRNTVAL. THESE VALUES A 4RE PRINTED JUST PRIOR TO THE,/,2X,22HINITIAL STATION PRINT.)

84 FORMAT(2X,6HPROVAL,/,(10E12.5))

- 85 FURMAT(2X, EHPRNTVAL ,/,(10E12.5))
- 87 FORMAT(/,2x,63HPRINT STATIONS DESIGNATED IN \$NAM1 INPUT AND GENERA ITED IN SETUP;/)
- 88 FURMAT(/,2X,125HFOR YOUR VARIBLE ENTROPY CASE (IENTRO=2) THE FIRST 1 PASS OVER THE BODY IS EQUIVALENT TO A CUNVERGED CUNSTANT ENTROPY(2IENTRO=1)/,2X,92HSOLUTION, VARIBLE ENTROPY EFFECTS ARE TREATED IN 3SUBSEQUENT PASSES; THAT IS FUR NOIT=1,2,...)
- 69 FORMAT(/,2X,117HYDUR VAKIBLE ENTROPY CASE HAS NOT CONVERGED FOR YO 10R INPUT VALUES OF CONVE AND ITMAX. YOU MUST EITHER INCREASE ITMA 2X,/,2X,66HOR REDUCE YOUR CONVERGENCE LEVEL BY INCREASING THE VALUE 3 DF CONVE.)
- 90 FORMAT(/,2X,77HYOUR VARIBLE CASE ENTROPY IS CONVERGED TO YOUR SELE ICTED INPUT VALUE OF CONVE.)
- 91 FORMAT(2X,47HBOUNDARY-LAYER SEPARATION INDICATED BY SOLUTION,/,2X, 12HS=,E12.5,2X,5HTAUD=,E12.5,2X,4HQSD=,E12.5)

93 FURMAT(1H1,2X,61HFUR J=1 DISP IS DEFINED AS(SEE AIAA PAPER NO. 69-1687) FOLLOWS,//,4X,4THDISP=RMI*(-1.+SQRT(1.+2.*DISP(J=0)/RMI))),// 2,2X,109HFUR YOUR CURRENT S-STATION DISP(J=0) IS NEGATIVE(ALLOWED) 3AND 2.*DISP(J=0)/RMI IS LESS THAN -1.(NOT ALLOWED);,/,2X,112HCONSE 4QUENTLY,THE VALUE PRINTED ABOVE IS DISP(J=0) WHERE DISP(J=0) IS TH 5E TWO DIMENSIONAL DEFINITION. THE PROBLEM,/,2X,111HNORMALLY OCCURS 6 FOR (1)EXTREMELY FINE D5 NEAR S=0. FOR BLUNT BODIES WHERE RMI IS 7VEKY SMALL; (2) FLOW OVER VERY,/,2X,110HSLENDER BODY OF REVOLUTION 8(NEEDLE). THE PROBLEM IS EASILY SOLVED BY REFINED GRID DISTRIBUTIO 9N. HOWEVER, IF YOJ,/,2X,100HARE NOT INTERESTED IN THE TWO ABOVE ME INTIONED CASES,IGNORE THIS MESSAGE AND PROBLEM WILL CURE ITSELF,/,2 2X,50HAS S INCREASES FOR ALL PHYSICALLY REALISTIC FLOWS.) END

> ORIGINAL PAGE IS OF POOR QUALITY

Subroutine TURBLNT

Subroutine TURBLNT calculates either the eddy viscosity or mixing-length parameters required for the transitional and/or turbulent boundary-layer equations. The flow chart for subroutine TURBLNT is as follows:

The program listing for subroutine TURBLNT is as follows:

• 2

```
SUBROUTINE TURBENT (T3,XL3,FZ3,RAT03,Y)EP3,F3,EH3,VARA,VARB,VARC,V
 1ARD, VARE, KODAMP, IYINT, YEDGE, TAUP)
  DIMENSION VARA(JK), VARB(JK), VARC(JK), VARD(JK), VARE(JK), Y(JK),
 1 T3(JK), XL3(JK), FZ3(JK), RAT03(JK), EP3(JK), F3(JK), EH3(JK), TA
 2UP(JK)
  DIMENSION PRTAR(JI), GLAR(JI), DVT(JI,1)
  EQUIVALENCE (PRTAR, DVT(1,1))
  COMMON /TRBULNT/ SyKSTRyTLNGTHyTRFACTyDISINCyXT1yXT2yXT6yXT3yXT4yX
 1T5, PRTW, RE, UE, XNUE, J, RMI, EPS, JPDINT, IE, WW1, WW2, WW3, WW4, WW5,
                                                                 NEDGE
 2,KODVIS,A,XBE,X,PR,KODPRT,PRT,PRTAR,GLAR,NUMB1,XK
  COMMON /UNIT/ VISIC1, VISIC2, VIS2C1, VIS2C2, PT1, TT1, WAVE, R, PHIO, DS, S
 1ST, RT1, P1, T1, R1, U1, AA1, TREF, VISREF, PESTAR, TESTAR, RESTAR, UESTAR, MUE
 2STAR, YESTAR, THETA, TAUD, QSD, HD, UPLUS, DISP, PE, Z, TW, QW, RVWALD, PROINC,
 3PRNTINC, ZS, RS
  GO TO (1,2), KSTR+1
1 KSTR = 1
  PRTW=PRT
  STR=S
  XLAMDA=STR*(TLNGTH-1.)/(SQRT((ALOG(50.))/.412))
2 CONTINUE
     CALCULATE STREAMWISE INTERMITANCY
  SNOR M= .412*(((S-STR)/XLAMDA)**2)
  TRFACT=1.
  IF (SNORM.LT.20.) TRFACT=1.-EXP(-SNORM)
     CALCULATE EDDY-VISCOSITY
          2 LAYER MODEL
  IFC=0
  A2=RE*RE*UE*UE*(RMI**J)*XL3(1)*FZ3(1)/(SQRT(2.*X)*XNUE*EPS)
  A3=RE*RE*UE*UE*(RMI**J)/(A*A*EPS*EPS*EPS*XNUE*SQRT(2.*X))
  A4=RE*UE*XT2*DISINC/(EPS*EPS*XNUE*A)
  A5=SQRT(A2/(XL3(1)*XL3(1)*T3(1)**3))
 NDAMP=0
 DO 8 N=2, IE
 ERA=XT3+((Y(N)/YEDGE)-XT4)
 CALL ERF (ERA, ERB)
 YINTER=.5*(1.-ERB)
 IF (IYINT.EQ.1) YINTER=1.
 IF (IFC.EQ.1) GD TO 3
 YPLUS=Y(N)*SQRT(A2/(X13(N)*XL3(N)*T3(N)**3))
  IF (KODAMP.EQ.2) YPLUS=Y(N)*A5
 DAMP=1.
 B2=-YPLUS/XT6
 IF (NDAMP.EQ.0) DAMP=1.-EXP(B2)
  IF (DAMP.GT.0.9999.AND.NDAMP.EQ.0) NDAMP=1
 VARA(N)=A3*(RATO3(N)**J)*ABS(FZ3(N))/(XL3(N)*T3(N)**3)
 VARB(N)=DAMP
 IF (KODVIS.EQ.1) GO TO 4
```

```
XMIXL=XT1+A+Y(N)+DAMP+EPS
      EP1=1.+TRFACT+VARA(N)+XMIXL+XMIXL
      VARC(N)=EP1
    3 CONTINUE
С
С
C
      DUTER EDDY VISCOSITY LAW
С
С
      EP2=1.+TRFACT+A4+YINTER/(XL3(N)+T3(N)+T3(N))
      VARD(N)=EP2
      IF (IFC.E0.1) GO TO 6
      IF (EP1.LE.EP2.AND.IFC.EQ.O) GD TO 5
      IFC=1
      JPOINT=N
      GO TO 6
С
      MIXING LENGTH MODEL
С
С
    4 CONTINUE
      YRAT=1.
      IF (Y(N).LE.YEDGE) YRAT=Y(N)/YEDGE
      XMIXL=XT5+TANH(XT1+YRAT/XT5)+EPS+A+YEDGE+DAMP
      EP3(N)=1.+TRFACT*YINTER*VARA(N)*XMIXL*XMIXL
      GO TO 7
    5 EP3(N)=EP1
      GO TO 7
    6 EP3(N)=EP2
    7 CONTINUE
      VARE(N)=XMIXL/YEDGE
    8 CONTINUE
C
C
       CALCULATE TURBULENT PRANDTL NUMBER
С
      DD 12 N=2,IE
      GO TO (11,9,10), KODPRT
    9 PRT=PRTW-PRTW*.5*((Y(N)/YEDGE)**2)
       IF (Y(N).GE.YEDGE) PRT=PRTW*.5
      GO TO 11
   10 GL=Y(N)/YEDGE
       IF (GL.GT.1) GL=1.
       CALL IUNI (JI, NUMB1, GLAR, 1, DVT, 2, GL, PRT, IPT, IERR)
       EH3(N)=(PRT+(EP3(N)-1.)*PR)/(PR*PRT)
11
   12 CONTINUE
       DO 13 N=2, IE
       IF (EP3(N).LT.1.) EP3(N)=1.
   13 CONTINUE
       VARA(1) = VARA(2)
       VARB(1)=0.
       VARC(1)=1.
       VARD(1)=VARD(2)
       VARE(1)=0.
       RETURN
       END
```


Subroutine VARENT

Subroutine VARENT reads the variable-entropy input (coordinates for shock wave; see fig. 2), computes the derivatives dR_s/dz , and writes the input and derivatives. The flow chart for subroutine VARENT is as follows:

The program listing for subroutine VARENT is as follows:

. .

```
SUBROUTINE VARENT (RRS,ZZS,DRSDZS,NUMBER,KODUNIT,A)
  DIMENSION RRS(JL), ZZS(JL), DRSDZS(JL)
  NAMELIST /NAM3/ NUMBER, RRS, ZZS, DRSDZS
  READ (5, NAM3)
  NUMM1=NUMBER-1
  DO 1 I=2, NUMM1
1 DRSDZS(I)=(RRS(I+1)-RRS(I-1))/(ZZS(I+1)-ZZS(I-1))
  DRSDZS(1) = (RRS(2) - RRS(1)) / (ZZS(2) - ZZS(1))
  DRSDZS(NUMBER)=(RRS(NUMBER)-RRS(NUMBER-1))/(ZZS(NUMBER)-ZZS(NUMBER)
 1 - 1))
  WRITE(6,3) NUMBER, RRS
  WRITE(6,4) ZZS
  WRITE(6,5) DRSDZS
  C5=1.
  IF (KODUNIT.EQ.1) C5=3.28083985
  C6=C5/A
  DO 2 I=1, NUMBER
  RRS(I) = RRS(I) + C6
  ZZS(I)=ZZS(I)+C6
                              2 CONTINUE
3 FORMAT(2X,5H$NAM3,//,2X,8HNUMBER =, I12,/,2X,3HRRS,/,(10E12.5))
4 FORMAT(2X, 3HZZS, /, (10E12.5))
5 FORMAT(2X,6HDRSDZS,/,(10E12.5))
  RETURN
  END
```

ORIGINAL PAGE IS OF POOR QUALITY

Subroutine SOLVE

Subroutine SOLVE is the main subroutine of program VGBLP wherein the nonsimilar laminar, transitional, and/or turbulent boundary-layer equations are solved using a coupled algorithm for the energy and momentum equations. The continuity equation is solved using the trapezoidal rule. An iterative loop is provided to assure convergence of the system of equations to a preselected value. The flow chart for subroutine SOLVE is as follows:

The program listing for subroutine SOLVE is as follows:

SUBROUTINE SOLVE (KODWAL)ARGM, TR, VIS2C2, XAL, XBE, X3, DX2, TW, IGAS, IE, 1 J, NIT, RVWALD, R1, U1, WW1, WW2, WW3, WW4, WW5, XNUE, XK, EPS, M, IBODY, FT) COMMON /SOLV1/ F1(JK),F2(JK),F3(JK),T1(JK),T2(JK),T3(JK),V1(JK),V2 1(JK),V3(JK),EP2(JK),EP3(JK),FZ2(JK),FZ3(JK),TZ2(JK),TZ3(JK),XL2(JK 2), XL3(JK), XLP2(JK), XLP3(JK), RATO1(JK), RATO2(JK), RATO3(JK), EH2(JK), 3EH3(JK), DRATD1(JK), DRATD2(JK), DRATD3(JK), VARA(JK), VARB(JK), VARC(JK 4), VARD(JK), VARE(JK), Y(JK), EP1(JK), EH1(JK), XL1(JK), XLP1(JK) COMMON /SOLV2/ Z1,Z2,Z3,Z4,Z5,TE,FAA,FAB,FAC,FAD,BEX1,BEX2,BEX3,BE 1X4 COMMON /MESH1/ XN(JK), DN(JK), Y1(JK), Y2(JK), Y3(JK), Y4(JK), Y5(JK), Y6 1(JK) DIMENSION XK1(JK), XK2(JK), XK3(JK), XM1(JK), XM2(JK), XM3(JK) THIS SUBROUTINE SOLVES THE COMPLETE B.L. EQUATIONS SET UP THE BOUNDARY-CONDITIONS XK1(1)=XK2(1)=XK3(1)=XM2(1)=XM3(1)=0. IF (KODWAL.EQ.1) GO TO 1 TZ3(1) = ARGM/XL3(1)GO TO 2 **1** CONTINUE XM1(1)=TW/TE T3(1) = XM1(1)2 CONTINUE F3(1)=0. IF (NIT.GT.1) GD TO 6 MAKE FIRST GUESS AT THE CURRENT STATION PROFILES DO 5 N=2, IE $T_3(N) = Z_4 + T_2(N) - Z_5 + T_1(N)$ F3(N)=Z4*F2(N)-Z5*F1(N) IF (T3(N).LT.O.) WRITE (6,18) T3(N), M IF (T3(N).LT.O.) T3(N)=.5*(T2(N)+T1(N)) RAT03(N) = Z4 * RAT02(N) - Z5 * RAT01(N)IF (IGAS.E0.2) GD TO 3 XL3(N) = ((1.+TR) + SQRT(T3(N)) / (T3(N) + TR))XLP3(N) = XL3(N) + (TR - T3(N)) / (2 + T3(N) + (T3(N) + TR))GO TO 4 **3 CONTINUE** XL3(N)=T3(N)**(VIS2C2-1.)XLP3(N) = (VIS2C2-1.)*(T3(N)**(VIS2C2-2.))**4 CONTINUE** TZ3(N)=TZ2(N)FZ3(N)=FZ2(N)EP3(N)=EP2(N)V3(N) = Z4 + V2(N) - Z5 + V1(N)EH3(N)=EH2(N)**5 CONTINUE** 6 CONTINUE IM=IE-1

C C C C C

> C C C

```
SET UP MATRIX ELEMENTS
  DO 8 N=2, IM
  MOMENTUM EQUATION
  A11=X3*F3(N)/DX2*FT
  A12=V3(N)/(DN(N)+DN(N-1))
  CLEBP=.5*RAT03(N+1)**(2*J)*XL3(N+1)*EP3(N+1)+.5*RAT03(N)**(2*J)*XL
 13(N) + EP3(N)
  CLEBM=.5*RATO3(N-1)**(2*J)*XL3(N-1)*EP3(N-1)+.5*RATO3(N)**(2*J)*XL
 13(N) \neq EP3(N)
  A13=X8F
  A14=-XBE*F3(N) **2
  A1=-A12-Y3(N)*CLEBM
  B1=A11+Z1+Y1(N)+CLEBP+Y3(N)+CLEBM+2.*A13+F3(N)
  C1=A12-Y1(N)+CLEBP
  D1=0.
  E1=-A13
  H1=0.
  G1=A11*(Z2*F2(N)-Z3*F1(N))-A14
  ENERGY EQUATION
  CLEHP=.5*RATO3(N+1)**(2*J)*XL3(N+1)*EH3(N+1)+.5*RATO3(N)**(2*J)*XL
 13(N) * EH3(N)
  CLEHM=.5*RATO3(N-1)**(2*J)*XL3(N-1)*EH3(N-1)+.5*RATO3(N)**(2*J)*XL
 13(N) \neq EH3(N)
  A15=XAL*XL3(N)*EP3(N)*RATO3(N)**(2*J)
  A16=-A15+FZ3(N)++2
  A17 = FZ3(N)/(DN(N-1)+DN(N))
  A2=2.+A15+A17
  B2=0.
  C2=-A2
  D2=-A12-Y3(N) +CLEHM
  E2=A11*Z1+Y1(N)*CLEHP+Y3(N)*CLEHM
  H2=A12-Y1(N)+CLEHP
  G2=A11*(Z2*T2(N)-Z3*T1(N))+A16
  IF (KODWAL.EQ.1) GO TO 7
  IF
     (N.GT.2) GD TD 7
  DID=(C2*D1-C1*D2)-((C2*H1-C1*H2)*(((1.+XK)**2)-1.))
  XM1(1)=((C2+G1-C1+G2)+(C2+H1-C1+H2)+(XK+(1.+XK)+DN(1))+TZ3(1))/DID
  XM2(1)=-(C2*B1-C1*B2)/DID
  XM3(1)=-((C2*E1-C1*E2)+((C2*H1-C1*H2)*((1.+XK)**2)))/DID
7 CONTINUE
                        SET UP MATRIX ARRAYS
 B1S=B1+A1+XK2(N-1)+D1+XM2(N-1)
 B2S = B2 + A2 + XK2(N-1) + D2 + XM2(N-1)
 E1S=E1+A1*XK3(N-1)+D1*XM3(N-1)
 E2S=E2+A2*XK3(N-1)+D2*XM3(N-1)
 G15=G1-A1*XK1(N-1)-D1*XM1(N-1)
```

C C

С

C C

С

C C

C

```
OF POOR QUALITY
```

```
<u>____</u>
                              APPENDIX C
   G2S = G2 - A2 + XK1(N-1) - D2 + XM1(N-1)
   D=1./(B1S*E2S-E1S*B2S)
   XK1(N)=D*(G1S*E2S-G2S*E1S)
   XK2(N) = D + (E1S + C2 - C1 + E2S)
   XK3(N)=D*(E1S*H2-H1*E2S)
   XM1(N)=D*(B1S+G2S-B2S+G1S)
   XM2(N)=D*(C1*B2S-B1S*C2)
   XM3(N)=D*(H1*B2S-B1S*H2)
 8 CONTINUE
   KON=IM
   CALCULATE THE SOLUTION VECTOR
   DO 9 N=2, IM
   F3(KON)=XK1(KON)+XK2(KON)*F3(KON+1)+XK3(KON)*T3(KON+1)
   T3(KON)=XM1(KON)+XM2(KON)*F3(KON+1)+XM3(KON)*T3(KON+1)
   KON=KON-1
 9 CONTINUE
   IF (KODWAL.EQ.1) GO TO 10
   T3(1)=(XK*(1.+XK)*DN(1)*TZ3(1)-(1.+XK)**2*T3(2)+T3(3))/(1.-(1.+XK)
  1 + 2
   TW=T3(1)+TE
10 CONTINUE
   INTEGRATE CONTINUITY EQUATION
   V3(1)=(RVWALD+FAA)/(R1+U1+EPS+XNUE)
   BO=0.
   A28=.5*X3/DX2*FT
   DO 11 N=2, IE
   B=A28*(Z1*F3(N)-Z2*F2(N)+Z3*F1(N))+F3(N)*.5
   V3(N) = V3(N-1) - (B+BO) * DN(N-1)
   B∩=B
11 CONTINUE
   COMPUTE NORMAL DERIVATIVES
   DO 12 N=2, IM
   RDN=1./(DN(N-1)+DN(N))
   TZ3(N) = (T3(N+1) - T3(N-1)) * RDN
   FZ3(N)=(F3(N+1)-F3(N-1))*RDN
12 CONTINUE
   FZ3(IE)=0.
   TZ3(IE)=0.
   IF (KODWAL.EQ.1) TZ3(1)=(-WW1*T3(1)+WW2*T3(2)-WW3*T3(3)+WW4*T3(4))
  1/(WW5 + DN(1))
   FZ3(1)=(-WW1*F3(1)+WW2*F3(2)-WW3*F3(3)+WW4*F3(4))/(WW5*DN(1))
   UPDATE VISCOSITY
   KON = IE + 2
   DO 17 N=1,KON
   IF (T3(N).LT.0.) GO TO 13
    GD TO 14
```

С С

С

С С

С

С С

С

C C

С

ORIGINAL PROF IS OF POOR QUALITY

```
13 WRITE(6,19) T3(N), N, M
   STOP 500
14 CONTINUE
   IF (IGAS.EQ.2) GD TO 15
   XL3(N)=((1.+TR)*SQRT(T3(N))/(T3(N)+TR))
   XLP3(N)=XL3(N)*(TR-T3(N))/(2*T3(N)*(T3(N)+TR))
   GO TO 16
15 CONTINUE
   XL3(N)=T3(N)**(VIS2C2-1.)
   XLP3(N)=(VIS2C2-1.)*(T3(N)**(VIS2C2-2.))
16 CONTINUE
   IF (IBODY.NE.1) GO TO 17
   IF (M.NE.2) GO TO 17
   T1(N) = T3(N)
   F1(N) = F3(N)
   RATO1(N) = RATO3(N)
   DRATO1(N) = DRATO3(N)
   XL1(N)=XL3(N)
   XLP1(N) = XLP3(N)
   V1(N) = V3(N)
17 CONTINUE
   RETURN
18 FORMAT (2X)12HNEGATIVE T3=)F15.7)2X)27H REPLACE WITH MEAN OF T1)T2
  1,2X,7HAT N = ,15,2X,2OH AND AT STATION M = ,15
19 FORMAT(//,2X,125HSOLUTION HAS RESULTED IN GENERATION OF NEGATIVE T
  1EMPERATURE WHICH CANNOT BE PHYSICALLY ACCEPTED. THIS GENERALLY OCC
  2URS IN THE // 2X / 125 HREGION OF ADVERSE PRESSURE GRADIENT AND/OR MAS
  35 INJECTION AT WALL BOUNDARY AND IS AN INDICATION OF BOUNDARY LAYE
  4R SEPARATION.,//,2X,118HIF DPEDS IS NEGATIVE AND THERE IS NO MASS
  5INJECTION AT THE WALL BOUNDARY, THE PROBLEM IS PROBABLY CAUSED BY
  6TOD COURSE, /, 2X, 32HA STEP SIZE IN THE S-COORDINATE., //, 2X, 6HT3(N)=
```

С С С

END

7,F15.7,2HN=,I5,2X,2HM=,I5)

Subroutine MESH

Subroutine MESH generates the grid in the y-coordinate and obtains the difference quotient coefficients descriptive of the grid. The flow chart for subroutine MESH is as follows:

The program listing for subroutine MESH is as follows:

```
SUBROUTINE MESH (K, ETAMAX, IE, IGEOM, DETA1)

REAL K

COMMON /MESH1/ XN(JK), DN(JK), Y1(JK), Y2(JK), Y3(JK), Y4(JK), Y5(JK), Y6

1(JK)

XN(1)=0.

JKP1=JK

IGEOM=1 SPECIFY ETAMAX, IE, K =2 SPECIFY ETAMAX, IE, DETA(1)

IF (K.EQ.1.) GD TO 5

IF (IGEOM.EQ.2) GD TO 1

GO TO 4
```

С С С

1 CONTINUE XKD=1.0001 DIF=1. RATIO=ETAMAX/DETA1 NIT=02 CONTINUE A11=1.+(XKO-1.)*RATIO A12=1./FLOAT(IE-1) XKN=A11++A12 NIT=NIT+1 DIF=ABS(1.-XKN/XKO) XKD=XKN IF (NIT.GT.20) DIF=0. IF (DIF.GT.0.0005) GD TD 2 NIT2=0DIF2=1.0 **3 CONTINUE** AN1=FLOAT(IE-1) AN2=AN1-1. FK=(XKO) + + AN1-1.-(XKO-1.) + RATIO DFK=AN1+XKO++AN2-RATIO XKN=XKO-FK/DFK NIT2=NIT2+1 DIF2=ABS(1.-XKN/XKO) XKO=XKN IF (NIT.GT.100) DIF2=0. IF (DIF2.GT.0.00000001) GD TD 3 WRITE (6,9) NIT, NIT2, DIF, DIF2, XKN K=XKN **4 CONTINUE** DN(1)=((1-K)/(1-K**(IE-1)))*ETAMAX GO TO 6 5 DN(1)=ETAMAX/(IE-1) 6 XN(2)=DN(1) DN(2)=K*DN(1) DO 7 N=3, JKP1 DN(N) = (K + + (N - 1)) + DN(1) $7 \times N(N) = X N(N-1) + DN(N-1)$ DO 8 N=2, JKP1 D1=DN(N-1)D2=DN(N)Y1(N)=2./(D2+(D1+D2))Y2(N)=2./(D1+D2)Y3(N)=2./(D1*(D1+D2)) Y4(N)=D1/(D2*(D1+D2)) Y5(N)=(D1-D2)/(D1+D2)Y6(N)=D2/(D1*(D1+D2)) 8 CONTINUE RETURN FORMAT (2X,215,3E16.8)

C C 9

END

С

ORIGINAL PAGE IS OF POOR QUALITY

Subroutine SIMILAR

Subroutine SIMILAR generates the similar solutions for the boundary-layer equations at the initial station ($\xi = 0$). The flow chart for subroutine SIMILAR is as follows:

The program listing for subroutine SIMILAR is as follows:

```
SUBROUTINE SIMILAR (IE, IGAS, XAL, XBE, PR, KODWAL, TW, DTDZW, XK, TR, VIS2C
      12, F3, F2, T3, T2, V3, V2, DFDZ, DTDZ, VIS, EP, ARGM, OW)
       DIMENSION F3(JK), F2(JK), T3(JK), T2(JK), V3(JK), V2(JK), DFDZ(JK)
      1, DTDZ(JK), VIS(JK), EP(JK), E(JK), F(JK)
       COMMON /MESH1/ XN(JK), DN(JK), Y1(JK), Y2(JK), Y3(JK), Y4(JK), Y5(JK), Y6
      1(JK)
       THIS SUBROUTINE GENERATES THE SELF-SIMILAR SOLUTIONS TO THE
С
C
       BOUNDARY-LAYER EQUATIONS
       NITMAX=30
       CONV=.0001
С
       INITIALIZE THE PROFILES
       DO 1 N=1, JK
       F3(N) = F2(N) = T3(N) = T2(N) = VIS(N) = EP(N) = 1.0
       DFDZ(N)=DTDZ(N)=0.0
       V3(N) = V2(N) = -XN(N)
     1 CONTINUE
       DFDZW=1.
       NIT=1
    2 CONTINUE
       IF (KODWAL.NE.1) DTDZW=OW*ARGM/VIS(1)
С
С
       SET UP FOR ENERGY EQUATION
С
       E(IE)=0.
      F(IE)=1.0
      IM=IE-1
      N=TM
      DD 3 I=2, IM
      RDN=1./(DN(N-1)+DN(N))
      VISM1=.5+VIS(N-1)+.5+VIS(N)
      VISP1=.5*VIS(N+1)+.5*VIS(N)
      A = -V3(N) + RDN - VISM1/PR + Y3(N)
      B=VISP1/PR*Y1(N)+VISM1/PR*Y3(N)
      C=V3(N)*RDN-VISP1/PR*Y1(N)
      D=XAL+VIS(N)+DFDZ(N)++2
      E(N) = -A/(B+C+E(N+1))
      F(N)=(D-C*F(N+1))/(B+C*E(N+1))
      N=N-1
    3 CONTINUE
      T3(1) = TW
      IF (KODWAL.EQ.1) GO TO 4
С
      HEAT TRANSFER BOUNDARY CONDITION
      ANMR=XK*(1.+XK)*DN(1)*DTDZW-(1.+XK)*(1.+XK)*F(2)+F(3)*F(2)+F(3)
      DNMR = 1 - (1 + XK) + (1 + XK) + E(2) + (1 + XK) + (1 + XK) - E(3) + E(2)
      T3(1)=ANMR/DNMR
    4 CONTINUE
      DO 5 N=2, IE
      T2(N) = T3(N)
      T3(N) = E(N) + T3(N-1) + F(N)
```

С

С

```
2
                               APPENDIX C
                                                    ORIGINAL PAG
Y. . . .
                                                    OF POOR
                                                             QUI
 5 CONTINUE
   DO 7 N=1, IE
   IF (T3(N).LT.O.) T3(N)=1.
   IF (IGAS.EQ.2) GD TD 6
   VIS(N) = ((1, +TR) + SQRT(T3(N))/(T3(N) + TR))
   GD TO 7
 6 CONTINUE
   VIS(N)=T3(N)++(VIS2C2-1.)
 7 CONTINUE
                                                    ORIGINAL PAGE IS
   SET UP FOR SOLVING MOMENTUM EQUATION
                                                    OF POOR QUALITY
   E(IE)=0.
   F(IE)=1.
   IM=IE-1
   N=IM
   DO 8 I=2, IM
   RDN=1./(DN(N-1)+DN(N))
   VISM1=.5*VIS(N-1)+.5*VIS(N)
   VISP1 = .5 + VIS(N+1) + .5 + VIS(N)
   A = -V3(N) + RDN - VISM1 + Y3(N)
   B=VISP1+Y1(N)+VISM1+Y3(N)+2.+XBE+F3(N)
   C=V3(N)*RDN-VISP1*Y1(N)
   D=XBE*(F3(N)**2+T3(N))
   E(N) = -A/(B+C+E(N+1))
   F(N) = (D - C + F(N+1)) / (B + C + E(N+1))
   N=N-1
 8 CONTINUE
   F3(1)=0.
   DD 9 N=2, IE
   F2(N)=F3(N)
   F3(N) = E(N) + F3(N-1) + F(N)
 9 CONTINUE
   IF (NIT.LT.5) GO TO 11
   DO 10 N=2,IE
   F3(N)=.5*(F3(N)+F2(N))
   T3(N)=.5*(T3(N)+T2(N))
10 CONTINUE
11 CONTINUE
   DO 12 N=2, IM
   RDN=1./(DN(N-1)+DN(N))
   DTDZ(N) = (T3(N+1) - T3(N-1)) * RDN
   DFDZ(N) = (F3(N+1) - F3(N-1)) * RDN
12 CONTINUE
   XK1=XK+1.
   XK2=XK1**2
   DTDZ(1) = DTDZW
   IF (KODWAL.EQ.1) DTDZ(1)=((1.-XK2)*T3(1)+XK2*T3(2)-T3(3))/(XK*XK1*
  1DN(1))
   DFDZ(1)=((1.-XK2)*F3(1)+XK2*F3(2)-F3(3))/(XK*XK1*DN(1))
   DTDZ(IE)=0.
   DFDZ(IE)=0.
```

с с с

С SOLVE THE CONTINUITY EQUATION С Ĉ V3(1)=0. DO 13 N=2, IE V3(N)=V3(N-1)-DN(N-1)*.5*(F3(N)+F3(N-1)) **13 CONTINUE** DIF=ABS(1.-DFDZW/DFDZ(1)) DFDZW=DFDZ(1) NIT=NIT+1 IF (NIT.GT.NITMAX) WRITE (6,15) DIF,NIT IF (NIT.GT.NITMAX) DIF=0. IF (DIF.GT.CONV) GO TO 2 С ASSIGN PROFILES AT THE PREVIOUS STATION С AND PRINT THE SIMILAR SOLUTION WRITE (6,18) WRITE (6,19) 00 14 N=1, IE WRITE (6,20) XN(N), F3(N), T3(N), V3(N), DFDZ(N), DTDZ(N), VIS(N) F2(N)=F3(N) T2(N) = T3(N)V2(N) = V3(N)**14 CONTINUE** WRITE (6,17) NIT WRITE (6,16) RETURN C С С 15 FORMAT (2X,27HTHE ERROR IN WALL SHEAR IS=,E15.7,5HAFTER, I5,12HITER 1ATIONS= /) 16 FORMAT (1H0,20X,26HINITIAL STATION PARAMETERS,/) 17 FORMAT (9X,40HCONVERGED SELF-SIMILAR SOLUTION REQUIRED, 15, 11HITERA ITIONS.,/) 18 FORMAT (1H1,20X,46HSIMILAR SOLUTION REQUIRED TO INITIATE MARCHING, 110H PROCEDURE,///,20X,14HPROFILE VALUES,/) 19 FORMAT (15X, 3HETA, 11X, 4HU/UE, 10X, 4HT/TE, 10X, 1HV, 13X, 2HFZ, 12X, 2HTZ, 112X,2HXL,//) 20 FORMAT (10X, 7E14.6)

END

Subroutine TABLE

Subroutine TABLE reads tabular input data for body geometry, pressure distribution, and wall-boundary conditions. These inputs are nondimensionalized and distributed to the solution stations designated in the SS array. The flow diagram for subroutine TABLE is as follows:

The program listing for subroutine TABLE is as follows:

```
SUBROUTINE TABLE (IEND1, SD, R1, U1, A, TREF, KODWAL, VISREF, KODUNIT, AWT)
   DIMENSION PE(JJ), Z(JJ), RMI(JJ), TW(JJ), S(JJ), RVWALD(JJ), QW(JJ
 1), PD(JH), ZED(JH), RMIDD(JH), SS(JH)
   DIMENSION DVT1(JJ,3), ANS1(3)
  EQUIVALENCE (Z, DVT1(1,1)), (RMI, DVT1(1,2)), (PE, DVT1(1,3))
  NAMELIST /NAM2/ NUMBER, L, PE, Z, RMI, TW, RVWALD, QW, S, SS
  DATA C1/.0208854346/,C2/1.8/,C5/3.280839895/,C15/.0063658804/,C16/
 1.0000881/, SS(2)/0./,L/1/
  DO 1 I = 1, JJ
  QW(I)=RVWALD(I)=0.0
  RMI(I)=1.
  TW(I)=AWT
1 CONTINUE
  READ (5, NAM2)
  IF (EOF(5)) 2,3
2 STOP 5
3 CONTINUE
  WRITE(6,23) NUMBER, L, S
  WRITE(6,24) Z
  WRITE(6,25) RMI
  IF(KODWAL.EQ.1) WRITE(6,26) TW
  WRITE(6,27) QW
  WRITE(6,28) RVWALD
  WRITE(6,29) PE
  WRITE(6,30) SS
  IF (KODUNIT.NE.1) GO TO 7
      CONVERT $NAM2 INPUT DATA TO U.S.STANDARD UNITS
  DO 4 I=1, IEND1
4 SS(I)=SS(I)+C5
  DO 6 I=1, NUMBER
  S(I)=S(I)+C5
  Z(I)=Z(I)+C5
  RMI(I) = RMI(I) + C5
  PE(I)=PE(I)+C1
  RVWALD(I)=RVWALD(I)+C15
  IF (KODWAL.NE.1) GO TO 5
  TW(I)=TW(I)+C2
  GO TO 6
5 QW(I)=QW(I)*C16
6 CONTINUE
7 DO 9 I=1, NUMBER
  PE(I)=PE(I)/(R1*U1*U1)
  S(I)=S(I)/A
  RMI(I)=RMI(I)/A
  IF (KODWAL.NE.1) GO TO 8
  TW(I)=TW(I)/TREF
  GO TO 9
```

C C C C C C C

```
8 CONTINUE
9 Z(I)=Z(I)/A
   DO 10 I=1, IEND1
10 SS(I)=SS(I)/A
   GO TO 12
   ENTRY TABLE1
   READ (5, NAM2)
   IF (EOF(5)) 11,12
11 STOP 14
12 CONTINUE
   DS=SS(1)
   IF (SS(1).GT.DS+.000001.DR.SS(1).LT.DS-.000001) GD TD 13
   IF (SS(2).GT.DS+.000001.DR.SS(2).LT.DS-.000001) GD TD 13
   IF (SS(3).GT.DS+.000001.DR.SS(3).LT.DS-.000001) GD TO 13
   GD TO 14
13 WRITE (6,22) SS(1),SS(2),SS(3),DS
   STOP 77
14 CONTINUE
   TEMP=0.
   DO 15 I=1, IEND1
   SS(I)=TEMP+SS(I)
15 TEMP=SS(I)
   WRITE(6,31) SS
   TEMP1=0.
   TEMP2=SS(1)
   DO 16 I=1, IEND1
   SS(I)=TEMP1
   TEMP1=TEMP2
   IF (I.LT.IEND1) TEMP2=SS(I+1)
   IPT=-1
   SD=DS+(I-1)
   IF (SS(2) \cdot NE \cdot O \cdot) SD = SS(I)
   CALL IUNI (JJ, NUMBER, S, 3, DVT1, L, SD, ANS1, IPT, IERR)
   ZED(I) = ANS1(1)
   RMIDD(I)=ANS1(2)
   PD(I) = ANS1(3)
16 CONTINUE
   SD=TEMP1
   IENDP1=IEND1+1
   IPT=-1
   CALL IUNI(JJ, NUMBER, S, 3, DVT1, L, SD, ANS1, IPT, IERR)
   ZED(IENDP1)=ANS1(1)
   RMIDD(IENDP1)=ANS1(2)
   PD(IENDP1)=ANS1(3)
   SS(IENDP1)=TEMP1
   WRITE (4) TW(1), RVWALD(1), QW(1), PE(1), DS
   TWODS=2.*DS
   DO 21 I=2, IENDP1
   IPT = -1
   SD=DS+(I-1)
   IF (SS(2).NE.O.) SD=SS(I)
   IF (KODWAL.EQ.1) GO TO 17
   CALL IUNI (JJ, NUMBER, S, 1, QW, L, SD, QWD, IPT, IERR)
   GO TO 18
```

```
17 CONTINUE
   CALL IUNI (JJ, NUMBER, S, 1, TW, L, SD, TWD, IPT, IERR)
18 CONTINUE
  CALL IUNI (JJ, NUMBER, S, 1, RVWALD, L, SD, RVWALDD, IPT, IERR)
   IF (I.EQ.IENDP1) GO TO 19
   DRDZ=(RMIDD(I+1)-RMIDD(I-1))/(ZED(I+1)-ZED(I-1))
   IF (SS(2).NE.O.) TWODS=SS(I+1)-SS(I-1)
   DPEDSD=(PD(I+1)-PD(I-1))/TWODS
   GD TO 20
19 IF (SS(2).NE.O.) DDS=SS(I)-SS(I-1)
   DPEDSD=(PD(I)-PD(I-1))/DDS
   DRDZ = (RMIDD(I) - RMIDD(I-1))/(ZED(I) - ZED(I-1))
20 WRITE (4) SD, PD(I), RMIDD(I), TWD, ZED(I), DPEDSD, RVWALDD, DRDZ, QWD
21 CONTINUE
   REWIND 4
   RETURN
22 FORMAT (1X, 7HSS(1) =, F9.4, /1X, 7HSS(2) =, F9.4, /1X, 7HSS(3) =, F9.4, /1
            =,F9.4,/1X,53HTHESE VALUES MUST BE EQUAL FOR THE STARTIN
  1X,7HDS
  2G PROCEDURE)
23 FORMAT(/,2X,5H$NAM2,//,2X,8HNUMBER =,I12,/,2X,8HL
                                                            =,I12,/,2X,
  11HS,/,(10E12.5))
24 FORMAT(2X, 1HZ, /, (10E12.5))
25 FORMAT(2X, 3HRMI, /, (10E12.5))
26 FORMAT(2X,2HTW,/,(10E12.5))
27 FORMAT(2X,2HQW,/,(10E12.5))
28 FORMAT(2X,6HRVWALD,/,(10E12.5))
29 FORMAT(2X, 2HPE, /, (10F12.5))
30 FORMAT(2X, 2HSS, /, (10E12.5))
31 FORMAT(//,2X,117HTHE FOLLOWING SPOINT VALUES DESIGNATE THE S-COORD
  1INATE LOCATIONS WHERE THE SOLUTIONS ARE OBTAINED DURING THE S-MARC
  2H.,/,2X,116HYOUR PRINT STATION MUST AGREE WITH ONE OR MORE OF THE
  3SPOINT LOCATIONS; IE, YOU CAN PRINT ONLY AT SOLUTION STATIONS.,/,2
  4X, 113HIF THE CASE COMPLETES WITH A NORMAL STOP AND NO OUTPUT IS PR
  SINTED, YOUR PRINT INPUT IS IN ERROR. THE ERROR CAN BE, /, 2X, 50HNOTE
  6D BY COMPARING PROVAL AND PRNTVAL WITH SPOINT.,///,2X,6HSPOINT,/,(
```

END

710E12.5))

С С С

ORIGINAL PAGE IS

APPENDIX C

Subroutine INUNIT

Subroutine INUNIT converts the International System (SI) of dimensional input data to the U.S. Customary System of Units for calculations in the program. The subroutine then converts the output data back to the SI System of Units before output. The flow diagram for subroutine INUNIT is as follows:

The program listing for subroutine INUNIT is as follows:

```
SUBROUTINE INUNIT (PROVAL, PRNTVAL, JM, JN)
  COMMON /TRBULNT/ SyKSTR, TLNGTH, TRFACT, DISINC, XT1, XT2, XT6, XT3, XT4, X
 1T5, PRTW, RE, UE, XNUE, J, RMI, EPS, JPOINT, IE, WW1, WW2, WW3, WW4, WW5,
                                                                      NEDGE
 2, KODVIS, A, XBE, X, PR, KODPRT, PRT, PRTAR, GLAR, NUMB1, XK
  COMMON /UNIT/ VIS1C1, VIS1C2, VIS2C1, VIS2C2, PT1, TT1, WAVE, R, PHIO, DS, S
 1ST, RT1, P1, T1, R1, U1, AA1, TREF, VISREF, PESTAR, TESTAR, RESTAR, UESTAR, MUE
 2STAR, YESTAR, THETA, TAUD, QSD, HD, UPLUS, DISP, PE, Z, TW, QW, RVWALD, PROINC,
 3PRNTINC, ZS, RS
  DIMENSION PROVAL(JN), PRNTVAL(JM)
  REAL MUESTAR
  DATA RT1, P1, T1, R1, U1, AA1, TREF, VISREF/8+1.0/, UPLUS/0.0/
  DATA TAUD, S, RMI, Z, ZS, RS, YESTAR, DISP, THETA, QSD, HD/11+0./
  DATA CC1/.0208854346/, CC2/1.8/, CC4/5.97995/, CC5/3.280839895/, CC6/.
 10019403196/,CC7/47.880258/,CC8/.55555555/,CC10/.167225478/,CC11/.3
 2048/,CC12/515.379/,CC13/11348.93/,CC14/20428.0758/
      CONVERT $NAM1 VALUES TO U.S. STANDARD UNITS
  PROINC=PROINC+CC5
  PRNTINC=PRNTINC*CC5
  DO 1 I=1, JN
1 PROVAL(I)=PROVAL(I)+CC5
```

с с с с

DO 2 I=1, JM

ORIGINAL PAGE IS OF POOR QUALITY

2 PRNTVAL(I)=PRNTVAL(I)*CC5 A=A+CC5 U1=U1+CC5 AA1=AA1*CC5 SST=SST*CC5 PT1=PT1+CC1 P1=P1+CC1VISREF=VISREF*CC1 TREF=TREF+CC2 T1=T1+CC2 TT1=TT1+CC2 R=R*CC4 RT1=RT1+CC6R1=R1+CC6 GD TD 5 CONVERT \$NAM1 VALUES TO INTERNATIONAL STANDARD UNITS ENTRY DUTUNIT PROINC=PROINC*CC11 PRNTINC=PRNTINC*CC11 DO 3 I=1, JN 3 PROVAL(I)=PROVAL(I)+CC11 DD 4 I=1, JM 4 PRNTVAL(I)=PRNTVAL(I)*CC11 A=A*CC11 SST=SST+CC11 U1=U1*CC11 AA1=AA1*CC11 PT1=PT1+CC7 P1=P1*CC7 VISREF=VISREF*CC7 TREF=TREF*CC8 T1=T1*CC8 TT1=TT1+CC8 R=R*CC10 RT1=RT1+CC12 R1=R1*CC12 GO TO 5 CONVERT WALL VALUES TO INTERNATIONAL STANDARD UNITS ENTRY WALLOUT PESTAR=PESTAR*CC7 MUESTAR=MUESTAR*CC7 TAUD=TAUD+CC7 TESTAR=TESTAR*CC8 S=S*CC11 RMI=RMI*CC11 Z=Z*CC11 ZS=ZS*CC11 RS=RS*CC11

UPLUS=UPLUS*CC11 DISP=DISP*CC11 UESTAR=UESTAR*CC11 YESTAR=YESTAR*CC11 THETA=THETA*CC11 RESTAR=RESTAR*CC12 QSD=QSD*CC13 HD=HD*CC14 5 RETURN END

,

ORIGINAL PACE IS OF POOR QUALITY

.

Function INTEGT

Function subroutine INTEGT integrates the continuity equation by the trapezoidal rule. The flow diagram for function INTEGT is as follows:

The program listing for function subroutine INTEGT is as follows:

```
REAL FUNCTIONINTEGT(YY,NOPTS,DX)
DIMENSION YY(NOPTS), DX(NOPTS)
INTEGT=0.
IF (NOPTS.LT.2) GO TO 2
DO 1 N=2,NOPTS
1 INTEGT=INTEGT+(DX(N-1)/2.)*(YY(N-1)+YY(N))
2 RETURN
END
```

ORIGINAL PAGE IS OF POOR QUALITY

Ē

_

=

APPENDIX C

Subroutine SETUP

Subroutine SETUP determines from input where profiles and wall values are to be printed. The flow diagram for subroutine SETUP is as follows:

The program listing for subroutine SETUP is as follows:

```
SUBROUTINE SETUP (A,B,C,J,K)
DIMENSION B(J)
IF (A.EQ.O) RETURN
KPLUS2=K+2
B(K+1)=A
IF(KPLUS2.GT.J) RETURN
DO 1 I=KPLUS2,J
B(I)=B(I-1)+A
IF (B(I).GE.C) RETURN
1 CONTINUE
RETURN
END
```

APPENDIX D

RESULTS FROM TEST CASES - INPUT/OUTPUT

The input and selected output from each of the test cases is presented in the following order: (1) VARDIM data; (2) input data for \$NAM1, \$NAM2, and \$NAM3 (note that \$NAM3 data are required only for test case number 4); (3) initial profile $(\xi = 0)$; (4) free-stream and reference values; (5) selected wall-print locations; (6) selected profile-print locations. It should be noted that (5) and (6) are selected locations and not all the print locations obtained for the input data. The selected print values allow users to verify that the software has been correctly implemented on their computer system.

-
.0N
w
₹.
0
2
ΤE

THE LISTING FOR TEST CASE ND. I INCLUDES THE FOLLOWING: (1) VARDIM DATA; (2) \$NAM1 AND \$NAM2 INPUT\$ (3) INITIAL STATION SOLUTION; (4) REFEFENCE VALUES; (5) PROFILE AND WALL PRINTS AT S=1.0 M.

*VARDIM/VGBLP(JK=103,JL=1,JM= 11,JN= 2,JI=1,JH=217)
*VARDIM/TABLE(JJ=2,JH=217)
*VARDIM/VARENT(JL=1)
*VARDIM/TURBLNT(JL=1,JK=103)
*VARDIM/TURBLNT(J1=1,JK=103)
*VARDIM/MESH(JK=103)
*VARDIM/SIMILAR(JK=103)
*VARDIM/SOLVE(JK=103)
*VARDIM/SOLVE(JK=103)

SNAMI

AP	PEN	DIX D	
.28000E+01 I	4	2.10800E+00	O IA
••	•	••	
XMA VIS20	IENTR	IVINI XT5 X	NAUXE NI TMA
11033E+03	0	.20006+01 .78000E+00 I	.10000E-03
• •		• • • -	• • •
DETAL	з	TLNGTH XT4 GLAR	LPRNT CONV
.12754E+01 .14582E-05 .72000E+00	0	2 • 50000 E + 0 1 0	1 • 99500E+00
			••
XK VI SICI PR	~	KTCOD XT3 NUMB1	IPRO VELEDG
101 1 •28696€+03	•	2 •16800E-01 1	.10000E+00 2 .10000E-01
IE IGAS R	IIHd	KODVIS XT2 KODPRT	PRNTIN Kodval Conve
.12000E+03 .31100E+03 .14000E+01	••	.24000E+04 .40000E+00 .95000E+00	.10000E+01 0 3
			•••
XEND TT1 G	WAVE	SMXTR XT1 PRT	PRDING Kode Itmax
.41400E+07 I	2	.10000E+09 2 .26000E+02 L	216 .10000E+01 1
	٠		••
IGEDM PT1 /IS2C2	1 800 Y	SST KODAMP KT6 PRTAR	IENDI FT Koduni

THIS COMPLETES THE DUTPUT OF \$NAML WITH THE EXCEPTION OF PROVAL AND PRNTVAL. THESE VALUES ARE PRINTED JUST PRIOR TO THE Initial station print.

SNAM2

NUMBER -L

.

s c									
•0	• 1 0000 F + 0 I								
0. 	•10000E+01								
•10000E+01	•10000E+01				,				
	••								
RVWALD									
0• PE	••								
.15255E+06	 15255E+06 								
•10000E-02	.10000E-02	.10000E-02	.10000E-02	.1000CF-02	.10000F-02	-10000E-02	.100005-02	100005-03	10006-03
•10000E-02	.10000E-02	.1000CE-02	.10000E-02	.10000E-02	.10000E-02	.10000E-02	.10000E-02	.10000E-02	.10000F-02
•50000E-02	•50000E-02	-50000E-02	• 50000E-02	.50000E-02	• 50000E-02	• 50000E-02	• 50000E-02	• 50000E-02	•50000E-02
• 5 0000E-02	• 50000E-02	• 50000E-02	• 50000E-02	• 50000E-02	• 50000E-02	• 50000E-02	.50000E-02	.50000E-02	.50000E-02
• 50000E-02	• 50000E-02	-50000E-02	• 50000E-02	• 50000E-02	• 50000E-02	 50000E-02 	.50000E-02	.50000E-02	.50000E-02
• 50000E-02	-50000E-02	•50000E-02	.50000E-02	.50000E-02	• 50000E-02	 50000E-02 	• 50000E-02	• 50000E-02	.50000E-02
• 50000E-02	• 50000E-02	• 50000E-02	•50000E-02	.50000E-02	.50000E-02	• 50000E-02	• 50000E-02	•50000E-02	.50000E-02
50000E-02	• 30000E-02	• 50000 02	.50000E-02	. 50000E-02	• 50000E-02	• 50000E-02	• 50C00E-02	• 50000E-02	•50000E-02
.50000E-02	.50000F-02	.50000F-02	.50000E-02	-50000E-02	• 50000E-02	-50000E-02	• 50000E-02	.50000E-02	.50000E-02
•50000E-02	.50000E-02	.50000E-02	.50000E-02	.50000E-02	• 50000E-02	.50000E-02	.50000F-02	.50000F-02	.50000E-02
.50000E-02	• 50000E-02	.50000F-02	• 50000E-02	•50000E-02	• 50000E-02	• 50000E-02	. 50000E-02	.50000E-02	-50000E-02
•50000E-02	.50000E-02	• 50000E-02	•50000E-02	• 50000E-02	•50000E-02	.50000E-02	 50000E-02 	•50000E-02	-50000E-02
-50000E-02	• 50000E-02	• 50000E-02	• 50000E-02	.50000E-02	.50000E-02	.50000E-02	.50000E-02	.50000E-02	•50000E-02
• 50000F-02	-50000F-02	- 50000F-02	-50000E-02	• 50000E-02	• 200005-02	• >0000E-02	- 50000E-02	.50000E-02	+50000E-02
• 50000E-02	.50000E-02	.50000E-02	• 50000E-02	.50000E-02	.50000F-02	.50000F-02	.50000E-02	.50000E-02	.50000E-02
•50000E-02	•50000E-02	.50000E-02	.50000E-02	.50000E-02	.50000E-02	.50000E-02	.50000F-02	-50000E-02	- 50000E-02
•50000E-02	.50000E-02	• 50000E-02	• 50000E-02	• 50000E-02	• 50000E-02	. 50000E-02	.50000E-02	• 50000E-02	-50000E-02
•50000E-02	• 50000E-02	•50000E-02	• 50000E-02	•50000E-02	• 50000E-02	 50000E-02 	.50000E-02	.50000E-02	-50000E-02
•50000E-02	.50000E-02	-50000E-02	• 50000E-02	• 50000E-02	• 50000E-02	• 50000E 02	• 50000E-02	.50000E-02	.50000E-02
•>0000F-02	• • • • • • • • • • • • • • • • • • •	• 50000E-02	•50000E-02	• 50000E-02	• 500C0E-02	I			

INT									
		-30000E-02	• + 0 0 0 0 E - 0 2	• 20000E-02	• • • • • • • • • • • • • • • • • • •	• /0000E-02	• 80000E-02	• 40000E-02	•10000E-01
0006-01	•12000E-01	.13000E-01	.14000E-01	•15000E-01	.16000E-01	• 17000E-01	.18000E-01	•19000E-01	•20000E-01
000E-01		.35000E-01	.40000E-01	.45000E-01	.50000E-01	.55000E-01	.60000E-01	•65000E-01	-70000E-01
000E-01	.80000E-01	.85000E-01	 90000E-01 	.95000E-01	10000E+00	.10500E+00	 11000E+00 	.11500E+00	 12000E +00
500E+00	•13000E+00	.13500E+00	14000E+00	.14500E+00	15000E+00	 15500E+00 	.16000E+00	.16500E+00	.17000E+00
500E+00	.18000E+00	• 1 8 500 E+00	19000F+00	19500E+00	 20000E + 00 	 20500E+00 	• 21 000E+00	•21500E+00	. 22000E+00
500E+60	•23000E+00	• 23 500E+00	24000E+00	.24500E+00	 25000E+00 	 25500E+00 	.26000E+00	-26500E+00	.27000E+00
500E+00	•28000E+00	.28500F+00	29000F+00	 29500E+00 	 30000E + 00 	 30500E+00 	.31000E+00	.31500E+00	.32000E+00
500E+00	•33000E+00	.33500E+00	.34000E+00	.34500E+00	• 35000E+60	 35500E+00 	.36000E+00	 36500E+00 	 37000E+00
500E+00	• 38000E+00	 38500E+00 	 39000E+00 	• 39500E+00	. 40000E+00	.40500E+00	.41000E+00	.41500E+00	.42000E+00
500E+00	.43000E+00	43500E+00	• 44 000E+00	• 44 500E+00	.45000E+00	.45500E+00	• 46000E+00	•46500E+00	.47000E+00
500E+00	•48000E+00	•48500E+00	•49000E+00	.49500E+00	• 50000E+00	• 50500E+00	.51000E+00	.51500E+00	• 52000E +00
500E+00	.53000E+0U	•53500E+00	.54000F+00	- 54 500E+00	• 55000E+00	55500E+00	• 56000E+00	 56500E+00 	.57000E+00
500E+00	• 5 8000 E+00	• 58500E+00	.59000E+00	.59500E+00	• 60000E+00	.60500E+00	•61000E+00	.61500E+00	.62000E+00
500E+00	•63000E+00	•63500E+00	<pre>.64000E+00</pre>	• 64 500E+00	• 65000E + 00	•65500F+00	•66000E+00	•66500E+00	.67000E+00
500E+00	•68000E+00	• 6 8 500 E+00	•69000F+00	•69500E+00	- 70000E +00	.70500E+00	 71000E+00 	.71500E+00	.72000E+00
50:0E+00	· 73000E+00	.73500E+00	 74000E+00 	-74500E+00	 75:000E+00 	.75500E+00	.76000E+00	.76500E+00	 77000E+00
500E+00	78000E+00	.78500E+00	.79000E+00	 79500E+00 	 E0000E+00 	. R0500E+00	• 81000E+00	.81500E+00	 82000E+00
500E+00	 83000E+00 	83500E+00	84 000E + 00	. 84 500E +00	 85000E+00 	. R5500E+00	86000E+00	 86500E+00 	87000E+00
500E+00	. 88000E+00	.88500E+00	89000E+00	.89500E+00	. 90000E+00	• 90500E+00	.91000E+00	.91500E+00	.92000E+00
500E+00	 93000E+00 	•93500E+00	. 94000F+00	.94500E+00	•.95000E+00	. 95500E+00	• 96000E + 00	.96500E+00	.97000E+00
500E+00	•98000E+00	•98500E+00	• 99000E + 00	• 99500E+00	•10000E+01	I			
NT STATI	DNS DESIGNAT	FED IN SNAM1	INPUT AND GE	NEPATED IN S	ETUP				
VAL 000E-02 1741	.10000E+01								
000E+01	.10000E+00	 20000E+00 	• 30000E +00	.40000E+00	• 50000E+GU	• 60000E+00	• 70000E+00	.80000£+00	• 90000E +00

THE FOLLOWING SPOINT VALUES DESIGNATE THE S-COOPDINATE LOCATIONS WHERE THE SALUTIONS ARE DBTAINED DURING THE S-MARCH. Your print station must agree with one or more of the spoint locations; ie, you can print only at solution stations. If the case completes with a normal stop and no nutput is printed, your print input is in epror. The error can be Noted by comparing proval and printum spoint.

.

i

110 .20

10110

P R OC EDURE
MARCHING
D INITIATE
REQUIRED TO
SOLUTION
SIMILAR

PROFILE VALUES

ETA	U/UE	1/TE	>	FZ	TZ	xL
c	c		4			
	•••	•232179E+01	•0	 502786E+00 	•••	.9C0739E+00
- 400942E-04	•452780E-09	•232203E+01	203874E-18	 502786E+00 	115652E+06	. 900739F+00
• 204909E-08	 103026E-08 	.232203E+01	105554E-17	.5027865+00		0007205400
.351396E-U8	.176677E-08	•232203E+01	310417F-17	-502786E+00		0013651004
• 538224E-08	.270612E-08	.232203E+01	7282485-17	-502786F+00		- 700/34E+00
.776505E-08	.390416E-08	.232203E+01	151580F-16	-502786F+00	.131052E_06	• 400/345400
<pre>.108041E-07</pre>	.543214E-08	.232203F+01	703447E-16	502786E400		
•146801E-07	.7380946-08	•232203E+01	5417646-16	- 502786E+00		• 400 134E +00
.196235E-07	.9866435-08	.2322036401	0480705-14			• 900 / 39E +00
259284E-07	1303666-07	222202E101		0010001200	• 240042E-04	• 400 73 9E +00
				• 202 / 86E +00	•237738E-04	• 900739E+00
- 33 4040E-0 /	·1 /0 / 64 E-0 /	•2322036+01	290091E-15	 502786E+00 	 256304E-04 	• 900739E+00
•	•	•	•	•	•	•
•	•	•	•	•	•	•
•	•	•		•	•	•
-134389E+02	0048145400	0002000400	- 1320166.03			•
		0013601664			- 113927E-05	+100001E+01
20+300+T/T+	• TODOOT = +01	•100002E+01	- .1 59823E+02	.137030E-05	299940E-05	00+3666666 *
• 218603E+02	. 999825E+00	.999734E+00	207022E+02	6184345-06	132710F-05	-100001-
-278806E+02	.100000E+01	.100001.E+01	267220E+02	.2857305-06	-605893E-06	1000005401
• 355590E+02	.9998296+00	.999743E+00	343997F+02	133960F-06	2820355-06	
.453519E+02	.100000E+01	.100000E+01	441918E+02		.1328735-06	• 100000 1 E 101
•578418E+02	.9998315+00	. 9997465400	- 5448075403			
.737715E+02	.10000F+01	.1000006+01	7260016402			• 10000/1E+01
- 940 AR1 F +0 2	000831E+00	0007676400			• 300 990 E=0 /	• 100000E+01
					144071E-07	•100001E+01
	• TOOOOCE+OT	•100000E+01	IIR834E+03	•0	•0	 100000F+01
CUNVERGED SELF-S.	IMILAR SOLUTION	PEOUIRED 1	GITERATIONS.			

INITIAL STATION PARAMETERS

* .152552E+06 0SD =0. ъ Б . .1211C6E+03
. .438968E+01 UE_____617610E+03 TE XBE__=0._____RE MUE = .839745E-05 XAL = .313600E+01

ORIGINAL PAGE IS OF PCCR QUALITY

.247251E+01

.220214E-04 PTR =

.617610E+03 VISREF=

.438968E+01 UREF=

.379788E+03 RREF=

REFERENCE VALUES-DIMENSIONAL PREF= .167441E+07 TREF=

438968E+01

R1 *

.121106E+03

11=

.152552E+06 .322849E+09

• •

P1 REY

.463896E+02 .280000E+01

RT1 = XMA =

.311000E+03 .220575E+03

FPEE STREAM VALUES-DIMENSIONAL PT1 = .4140006+07 TT1 = U1 = .6176106+03 AA1 =

APPENDIX D

S= 1	0000 PRUF	:1LE									
ETA	7.YE	U/UE	T/TE	TT/TTE	CROCCO	PT/PTR	M / M E	YPLUS	UPLUS	UDEF	VISEFF
-									a	c	1005401
c	c		244F+01	.952E+00	.147E-12	.3686-01	•	•0	0.	•••	
•0 •0 •0	2355-10	1225-07	244F+01	.952F+00	.221E-12	.3685-01	.7795-08	• 396E-06	.358E-UD	20434624	
60-1706 ·			34.45 401	0525400	- 221 E-12	.3685-01	.1775-07	.907E-06	.814E-06	20+1+62°	• TODE + OT
.205E-08	.515E-10			00-10-C+		3685-01	304 5-07	.1576-05	.140E-05	.2945+02	.100E+01
.351E-08	.889E-10	.475E-07	• 244E +01	• 45 CE+UU	97.3000.		20-3444 4446-07	2305-05	.2145-05	.2946+02	.100E+01
.5385-08	.136E-09	.7285-07	•244E+01	•952E+00	-441E-12	• 30 8E-UI			2005-05	2045402	.100F+01
	1075-00	.1055-06	.244E+01	.952F+00	.882E-12	.3685-01	• 6 / ZE-U /	• 340E-U3			
			7445 +01	.952F+00	.1476-11	.3685-01	.934E-07	.481E-05	•424E-UD	70134670	
.108E-0/	• C / 3E - O 4				2505-11	. 36.85-01	.1276-06	•654E−05	.5836-05	294E+02	•100E+01
.147E-07	.372E-09	.1486-00	T0+3+42+	00132C4			10000	0.75C-05	.7805-05	294E+02	.100E+01
1 96 5-07	497F-09	.265E-06	.244E+01	•952E+00	.4126-11	• 30 85-VI				2046402	1005+01
2 5 0 E - 0 7	656F-09	.3516-06	.244E+01	.952E+CO	.640E-11	.368E-01	•224E-06	+ n- 30 TT.	- 10 36 01 -	• • • • • • • •	
				•	•	•	•	•	•	•	•
•	•	•	•	•	•		•	•	-	•	•
•	•	•	•	•	•	•	•	ı		•	•
	,	•	•	•	•	•	•	•			220C 404
			1516401	0045400	.880E+00	.183E+00	.665E+00	•896E+04	• 240E+02	* 7 3 7 E T U L	
•134E+02	• 2 30 E + UU	00-1-10-		DOFE TOO	0025400	.195F+00	.689E+00	.118E+05	245E+02	•488E+01	•252E+04
.171F+02	2876+00	.834E+00		0010555		2006400	7176+00	.1566+05	.2516+02	.430E+01	.268E+04
.219E+02	.357E+00	.854F+00	.142E+01	-440E+00	0013126			208F405	257E+0.2	.365E+01	287E+04
.2796+02	•444E+00	.876E+00	.1366+01	.998E+00	• 955E+00	. 2285+00		2010405	2645402	.295F+01	.301E+04
. 356F+02	.550E+00	.900E+00	•130E+01	•999E+:00	.983E+00	• 2015+00			2735403	2185+01	271F+04
	1705400	. 9745400	.123E+01	.100E+01	.101E+01	278E+00	.836t+UU	• • • • • • • • •			1000404
* 5 4 L 4 0 C				1005+01	.1035+01	.319E+00	.900E+00	545E+05	.281E+02	*1 24 E+UL	+ 0 + 3 6 + T +
578E+02	• 8 30 E + UC	• • • • •			1015401	3836400	. 991 F+00	.821E+05	.293E+02	.984E-01	• 277 5 + 03
.738E+02	.101E+01	.997E+00	10+3T0T*	1011001		2005-000	1005+01	-102F+06	.294E+02	.287E-03	.598E+01
.941E+02	.122E+01	.100E+01	• 999£ +00	•TONE+OT				1 245406	2045402	.9265-08	.100E+01
.120E+03	.149E+01	.100E+01	.100E+01	.100F+01	.100E+01	• 384E+UU					

****DIMENSIGNAL DUTPUT QUANTITIES ARE IN S.I. UNITS****

•••

.75919E-02 .10372E-01 .10300E+01 .24725E-01 .92126E-04
YE UTAU TRFCT P20 P20 UMEGA RVWAL
ZSHK 0. ITRO 0. ITRO 0. ITRO 0. 1721 0. 951696+00 8710 0. 281246+00 8710 0. 281246+00 8710 0. 115516+03 VW 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
<pre>23161E-02 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.</pre>
CCF CCF CCF CCC CCC CCC CCC CCC CCC CCC
EDS 0. EDS 0. EDS 0. TAST .251056-02 ETA .254354E-03 RM .46189E+01 UD .79342E+03 F .94770E-03
0000000000 000000000 00000000000000000
.1754RE+0 .32285E+0 .15255E+0 .12111E+0 .43897E+0 .43897E+0 .61761E+0 .83975E+0 .83975E+0
R E T HE P E P E P E P E P E M U E R R O P E R R O P
.100006+01 .381335+00 .100005+01 .100005+01 .313605+01 0. .810526+06
S XI RMI BEFA BEFA RPWALD RPWA

Ĵ

THE LISTING FOR TEST CASE NO. 2 INCLUDES THE FOLLOWING: (1) VAPDIM DATA; (2) %NAM1 AND \$NAM2 INPUT; (3) INITIAL STATION SOLUTION; (4) REFEFENCE VALUES; (5) PROFILE AND WALL PPINTS AT S=1.07 M. NOTE: TWO RUNS ARE INCLUDED IN THIS TEST CASE: W=1; W=0.

TEST CASE NO. 23 W = 1.

*VARDIM/VGRLP(JK= 63,JL=1,JM= 17,JN=2,JI*1,JH=165) *VARDIM/TABLE(JJ=41,JH=165) *VARDIM/VAPENT(JL=1) *VARDIM/TURBLNT(JL=1, *VARDIM/TURBLNT(JL=1,JK= 63) *VARDIM/MESH(JK= 63) *VARDIM/SIMILAR(JK= 63) *VARDIM/SOLVE(JK= 63)

\$NAM1												
IGEOM - PT1 - VIS2C2 -	47511E+(1 XEND 15 TT1 1 G		.60000E+02 .29780E+03 .14000E+01	IE IGAS R	61 1 •28696E+03	XK VISICI = PP	<pre>.12754E+01 .14582F-05 .72000E+00</pre>	DETA1 VISIC2	I .11033E+03	XMA =	17000E+01
IBUDY	_	2 WAVE		43523E+02	= IIH4	20000E+02	•	1	•	1	IENTRO =	1
SST KODAMP XT6 PPTAP I	-90000E-1	31 SMXTR 2 XT1 32 PPT		.10000E+09 .40000E+00 .95000E+00	К 00VIS XT2 К 00ррт	2 .16800E-01 1	KTCOD XT3 NUMB1	2 • 50000E+01 0	TLNGTH XT4 GLAR	. 200006+01 . 786006+00 I	1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 ×	2 • 10800E+00
IENDI FT KODUNIT	.10000E+	64 PPOIN 01 KODE 1 ITMAX	 ⊻	0 m 0	PRNTINC= KODWAL = CONVE =	.10000E+00 2 .10000E-01	IPRQ = VELEDG =	1 • 99500E+00	LPRNT CONV	2 .10000E-03	NAUXPRO= NITMAX =	οn

THIS COMPLETES THE OUTPUT OF \$NAM1 WITH THE EXCEPTION OF PROVAL AND PRNTVAL. THESE VALUES ARE PRINTED JUST PRIOR TO THE Initial station print.

•

\$NAM2									
NUMBER = L = S	41 1								
0. 40049E+00 78518E+00 .11685E+01 .15542E+01	.40545E-01 .43877E+00 .82376E+00 .82376E+00 .12068E+01	.81090E-01 .47690E+00 .86227E+U0 .12452E+01	.12164E+00 .51501E+00 .90072E+60 .12836E+01	.16218E+00 .55324E+00 .93913E+00 .13220E+01	.20273E+00 .59164E+00 .97749E+00 .13605E+01	.24324E+00 .63023E+00 .10158E+01 .13991E+01	.28334E+00 .66897E+00 .10541E+01 .14377E+01	.32288E+00 .70777E+00 .10922E+01 .14764E+01	.36190E+00 .74652E+00 .11303E+01 .15152E+01
0. .38100E+00 .76200E+00 .115240E+01 .15240E+01	.38100E-01 .41910E+00 .80010E+00 .11811E+01	.76200E-01 .45720E+00 .83820E+00 .83820E+00	.11430E+00 .49530E+00 .87630F+00 .12573E+01	.15240E+00 .53340E+00 .91440E+00 .12954E+01	.19056E+00 .57150E+00 .95250E+00 .13335E+01	.22860E+00 .60960E+00 .99060E+00 .13716E+01	<pre>.26670E+00 .64770E+00 .64770E+00 .10287E+01 .14097E+01</pre>	<pre>.30480E+00 .68580E+00 .10668E+01 .14478E+01</pre>	.34290E+00 .72390E+00 .11049F+01 .14859F+01
0. 12063E+00 .12063E+00 .82739E-01 .51229E-01 .10948E+00	<pre>.13867E-01 .12430E+00 .76681E-01 .55247E-01</pre>	.277356-01 .125596+00 .710716-01 .596126-01	.41602E-01 .12463E+00 .65875E-01 .64313E-01	.55469E-01 .12161E+00 .69384E-01	.69336E-01 .11684E+00 .56593E-01 .74859E-01	.83118E-01 .11070E+00 .52443E-01 .80772E-01	.95612E-01 .10368E+60 .49042E-01 .87156E-01	.10618E+00 .96332E-ú1 .47498E-01 .94046E-01	.11457E+00 .89279E-01 .48314E-01 .10147E+00
0000 000 000 00 00 00 00	 	 		0000 0000	0000 0000	 	0000 0000		••••
PE •16545E+05 •98360E+04 •70202E+04	.16605E+05 .85489E+04 .76013E+04	.16665E+05 .74028F+04 .81278E+04	.16726E+05 .64416E+04 .86529E+04	<pre>.16817E+05 .57289E+04 .90624F+04</pre>	.16847E+05 .53851E+04 .95845E+04	.16545E+05 .53078E+04 .10174E+05	.15291E+05 .54409E+04 .10923F+05	.12882E+05 .57882E+04 .12019E+05	.11293E+05 .63758E+04 .12759E+05

.

•13511E+05	.500006-02 .500006-01 .100006-01 .100006-01 .100006-01 .100006-01 .100006-01 .100006-01 .100006-01 .100006-01 .100006-01	E S-MARCH. Stations. Can be	.950006-01 .110006-00 .210006+00 .310006+00 .410006+00 .510006+00 .510006+00 .810006+00
.13231E+05	.100006-01 .500006-01 .100006-01 .100006-01 .100006-01 .100006-01 .100006-01 .100006-01 .100006-01 .100006-01 .100006-01 .100006-01	ED DURING TH At Sclution • The Error	.90006-01 .140006-01 .300006+00 .400006+00 .400006+00 .500006+00 .500006+00 .800066+00
.13006E+05	.100006-01 .500006-02 .100006-01 .100006-01 .100006-01 .100006-01 .100006-01 .100006-01 .100006-01 .100006-01 .100006-01 .100006-01	S ARE OBTAIN Print only IS in Epror	.80000E-01 .13500E+00 .13500E+00 .39000E+00 .49000E+00 .49000E+00 .59000E+00 .59000E+00
.12833E+05	.100006-01 .500006-02 .500006-02 .100006-01 .100006-01 .100006-01 .100006-01 .100006-01 .100006-01 .100006-01 .100006-01 .100006-01 .100006-01	THE SOLUTION TE, YOU CAN PRINT INPUT	<pre>* 700005 -01 * 130005 +00 * 130005 +00 * 280005 +00 * 280005 +00 * 480005 +00 * 480005 +00 * 580005 +00 * 680005 +00 * 780005 +00 * 780005 +00</pre>
.12710E+05	.100006-01 .500006-02 .500006-02 .100006-01 .100006-01 .100006-01 .100006-01 .100006-01 .100006-01 .100006-01 .100006-01 .100006-01 .100006-01 .100006-01	TIONS WHERE ' LOCATIONS; PINTED, YOUR	<pre>* 60000E -01 * 12500E +00 * 17500E +00 * 27000E +00 * 77000E +00 * 57000E +00 * 57000E +00 * 67000E +00 * 6700E +00 *</pre>
.12661E+05	.100006-01 .500006-02 .500006-02 .100006-01 .100006-01 .100006-01 .100006-01 .100006-01 .100006-01 .100006-01 .100006-01	DINATE LOCAL DF THE SPOINT Output is Pr Jt.	<pre>* 50000E-01 *12000E+00 *12000E+00 *26000E+00 *46000E+00 *46000E+00 *56000E+00 *56000E+00 *56000E+00 *76000E+00</pre>
.12686E+05	.100006-01 .50006-02 .50006-02 .100006-01 .100006-01 .100006-01 .100006-01 .100006-01 .100006-01 .100006-01 .100006-01 .100006-01 .100006-01 .100006-01 .100006-01 .100006-01	TE THE S-COOR DNE OR MORE C STOP AND NO AL WITH SPOIN	<pre>40000E-01 11500E+00 16500E+00 35000E+00 45000E+00 655000E+00 655000E+00 655000E+00 657000E+00 65700E+00 6</pre>
•12833E+05	.100006-01 .500006-02 .500006-02 .100006-01 .100006-01 .100006-01 .100006-01 .100006-01 .100006-01 .100006-01 .100006-01 .100006-01	UES DESIGNAT Agree with C Th a normal il and prntva	<pre>*30000E-01 *11000E+00 *16000E+00 *24000E+00 *34000E+00 *444000E+00 *444000E+00 *64000E+00 *64000E+00 *74000E+00 *74000E+00</pre>
•12956E+05	.100006-01 .500006-02 .500006-02 .100006-01 .100006-01 .100006-01 .100006-01 .100006-01 .100006-01 .100006-01 .100006-01 .100006-01	IG SPOINT VAL .Tation must .completes wi iparing prove	<pre>~ 2 0000E -01 ~ 10500E +00 ~ 15500E +00 ~ 23000E +00 ~ 43000E +00 ~ 43000E +00 ~ 63000E +00 ~ 63000E +00 ~ 73000E +00</pre>
.129R1E+05 .13848E+05	.500006-02 .500006-02 .500006-02 .100006-01 .100006-01 .100006-01 .100006-01 .100006-01 .100006-01 .100006-01 .100006-01	THE FOLLOWIN Your Print S If The Case Noted By Com	SPDINT 10000E-01 10000E+00 15000E+00 222000E+00 422000E+00 422000E+00 422000E+00 422000E+00 472000E+00

ORIGINAL PAGE IS OF POOR QUALITY

APPENDIX D

.

.

.92000E+00 .10200E+01 .112200E+01 .12200E+01 .13200E+01 .13200E+01 .14200E+01	.93006400 .103006401 .113006401 .123006401 .133006401 .143006401	.94006+00 .104006+01 .114006+01 .134606+01 .134666+01 .134606+01 .154006+01	.95000000000000000000000000000000000000	.96000000000000000000000000000000000000	.97000E+00 .10700E+01 .11700E+01 .12700E+01 .13700E+01 .14700E+01	.98000E+00 .10800E+01 .11800E+01 .12800E+01 .13800E+01 .14800E+01	.99000E+00 .10900E+01 .11900E+01 .12900E+01 .13900E+01 .13900E+01	.10000E+01 .11000E+01 .12000E+01 .13000E+01 .14000E+01 .15000E+01	.101006+01 .111006+01 .121006+01 .131006+01 .141006+01 .151006+01	
PRINT STATI	DNS DESIGNAT	ED IN \$NAM1	INPUT AND GEN	VEPATED IN SI	ETUP					
PRUVAL 10700E+01 PRNTVAL .10700E+01 .90000E+00	0. .15500E+01 .10000E+01	.10000E+00 .11000E+01	.20000E+00 .12000E+01	.30000E+00 .13000E+01	.40000E+00 .14000E+01	.50000E+00 .15000E+01	.60000E+00	-70000E+00	• 80000E+00	

SIMILAR SALUTION REQUIPED TO INITIATE MARCHING PROCEDURE

PROFILE VALUES

ETA	U/UE	T/TE	>	FZ	T 2	xL
•0	•0	•129560E+01	••	.484458F+0C	•0	.950876E+C0
.757409E-05	 366933E-05 	<pre>.129568E+01</pre>	1389595-10	•484458E+00	.461521E+01	.950876E+00
.172341E-04	.834919E-05	<pre>.129568E+01</pre>	719454E-10	• 484458E+00	219528E-05	+950876E+00
• 295545E-04	.143179E-04	129568E+01	211579E-09	•484458E+00	369595E-05	.950876E+00
•452678E-04	.219304E-04	129568E+01	496370E-09	• 484458E+00	561053E-05	.950876E+00
• 653087E-04	•316393E-04	.129568E+01	103316E-08	•484458E+00	805249E-05	•950876E+00
• 908688E-04	•440221E-04	.129568E+01	200012E-08	•484458E+00	111673E-04	.950876E+00
123468E-03.	.598151E-04	.129568E+01	369263E-08	• 484458E+00	151403E-04	.950876E+00
<pre>.165045E-03</pre>	.799576E-04	129568E+01	659831E-0.8	.484458E+00	2020756-04	.950876E+00
 21 R073E-03 	105647E-03	129568E+01	115194E-07	•484458E+00	266703E-04	.950876E+00
•	•	•	•	•	•	•
•	•	•	•	•	•	•
•	•	•	•	•	•	•
.671942E+01	.100034E+01	I00005E+01	553421E+01	 730311E-04 	 192905E-04 	• 999991E+00
856996E+01	.999935E+00	.999987E+00	738501E+01	226654E-04	501431E-05	.100000E+01
.109301E+02	.100025E+01	.100003E+01	974540E+01	843866E-05	.170021E-05	00+3+66666
.139403E+02	• • 999981E+CO	.9999966 +00	127559E+02	347684E-05	664433E-06	•100000E+01
177795E+02	•100022E+01	100003E+01	165955E+02	151994E-05	.281627E-06	"999995E+00
.226759E+02	.999994E+00	00+3666666	-*214925E+02	6885985-06	125266E-06	•100000E+01
289209E+02	.100022E+U1	.100003E+01	277381E+02	 318888E-06 	•573730E-07	•999995E+00
 368857E+02 	•999998E+00	.100000E+01	357038E+02	149719E-06	267574E-07	•100000E+01
.470441E+02	.100021E+01	.100003E+01	458632E+02	.709106E-07	.126216E-07	• 999995E +00
• 600000E+02	.100000E+01	.100000E+01	588205E+02	••	•••	.100000E+01
LUNVERGEU SELF-S	ITLAK SULUITUN	KEQUIKED I	DILEKALIUNS.			

= .165451E+05 @SD =0.

ΡE

. 220606E+03
. 261356E+00

uu ⊢a

UE = .393777E+03 XBE =0.

MUE = .144383E-04 XAL = .699833E+00

INITIAL STATION PARAMETERS

ì

- - 141

I II AUTORNIA

ORIGINAL PAGE IS OF POOR QUALITY

1.070(0 PR0F1	LF .									
7	/YE	U/UE	T/TE	TT/TF	CROCCD	ΡΤ/ΡΤΡ	3M/ME	γριυς	UPLUS	UDEF	VISEFF
•		•0	.1476+01	.977E+00	.310E-08	.240E+00	• 0	0.	•0	0.	.1006+01
5	326-06	*289F-04	.147E+01	.977E+00	.342E-08	• 240E-00	.239E-04	.107E-02	.100E-02	.346E+02	.100E+01
4	21E-05	.658E-04	•147E+01	.977E+00	.177E-07	• 240E+00	•543E-04	.245E-02	• 228E-02	.346E+02	.100E+01
~	08E-05	 113E-03 	.147E+01	.977E+00	•521E-07	240E+00	.932E-04	.419E-02	• 391E-02	.346E+02	.100E+01
e.	186-05	.173F-03	.1476+01	.977E+00	.122E-06	.240E+00	.143E-03	-642E-02	• 598E-02	.346E+02	.100E+01
3	596-05	.2495-03	.147E+01	.977E+00	•254E-06	• 24 0E + 00	.206E-03	.927E-02	• 863E-02	.346E+02	.100E+01
9	38E-05	.34:7E-03	.1476+01	.9776+00	•492E-06	.240E+00	.287E-03	.1296-01	.120E-01	346E+02	.100E+01
æ.	67E-05	.47:2E-03	.147E+01	.977E+00	.909E-06	.24CE+00	.3895-03	.175E-01	.163E-01	<pre>.346E+02</pre>	.100E+01
7	165-04	•631F-03	.147E+01	•977F+00	.162E-05	-240E+00	.520E-03	.234E-01	.21 RE-01	•346E+02	.100E+01
7	53E-04	.833E-03	.147E+01	.977E+00	•284E-05	240E+00	.6885-03	.3096-01	.2886-01	346E+02	.100E+01
	•	•	•	•	•	•	•	•	•	•	•
	•	•	•	-	•	•	•	•	•	•	•
	•	•	•	•	•	•	•	•	•	•	•
ē.	845+00	.753F+00	.121E+01	.997F+00	•878E+00	.501E+00	•684E+00	.105E+04	.261E+02	.855E+01	*320E+03
4	756+00	.801E+00	.118E+01	00+3666°	• 939E +00	.556E+CO	•738E+00	136E+04	• 277E + 02	•688E+01	•333E+03
ŝ	83E+00	.855E+00	•113E+01	.100f+01	•999E+00	•629E+00	• 903E+00	178E+04	•296E+02	.501E+01	• 333E+03
-	10E+00	•917E+00	.108E+01	.100E+01	.105F+01	.727E+00	•881E+00	.234E+04	.3176+02	.289E+01	•273E+03
60	57E+0C	.981E+60	 102E+01 	.100E+01	.104E+01	.854E+CO	.972E+00	.313E+04	• 340E+02	•649E+00	.130E+03
÷	03E+01	-998E+00	.100E+01	.100F+01	•996E+00	.892E+00	.997E+00	•387F+04	 345E+02 	.753E-01	.187E+02
4	24E+01	.100E+01	.100E+01	.100F+01	.101E+01	. R98E+00	.100F+01	.467E+04	• 346E+02	255E-01	.129E+01
÷	486+01	.100E+01	.100F+01	.100E+01	.1005+01	. R96E+CO	.100E+01	560E+04	• 346E+02	.980E-02	.100E+01
-	786+01	.100E+01	.100E+01	10+3071.	1015+01.	• 897E+00	100E+01	.671E+04	• 346E+02	107E-01	.1006+01
~	13E+01	.100F+01	• 100F +01	.100E+01	.100F+01	.P97E+00	.100E+01	803E+04	346E+02	.163E-07	.100E+01

****DIMENSIONAL OUTPUT QUANTITIES ARE IN S.I. UNITS****

.177738E+00

.

2

.188720E+33

-11

.962539E+04 .658109E+07

. . P1 REY

.555966E+00

. .

RT1 Xma

.297800E+03 .275348F+03

FREE STPEAM VALUES-DIMENSIONAL PTI = .475108E+05 TTI = UI = .468092E+03 AAI =

.121997E+01

. P T R

.143045E-04

.468092E+03 VISREF=

UR EF =

177738E+00

RREF

.218160E+03

REFERENCE VALUES-DIMENSIONAL PREF= .389443E+05 TREF=

:

113

ORIGINAL PAGE IS OF POOR QUALITY

- ------

•	.10700E+01	RETHET*	14735E+05	DPEDS -	.73790E+00	CFW	= 16699E-02	Z SHK = 0.	⊀Е	.19267E-01
• IX	•66998E-02	RES	.72574E+07	DTEDS -	.28226E+03	020	• 0.	RSHK = 0.	UTAU =	.84142E-02
- INS	.49397E-01	• ĐE	.11381E+05	DUEDS -	29544E+03	0H	- 0.	ITRO	TRFCT .	.10000E+01
= Z	.10446E+01	T E •	. 19824E+03	DL TAST-	.55260E-02	NSTE	• 0•	TW/TT1= .97708E+00	• 4MY	50
8ETA -	41437E+01	н Н	. 20006E+00	THETA =	.21724E-02	NSTW	• 0.	RFTRUE= .93145E+00	P20 =	.12142E+01
- XAL	.10045E+01	• NE	.44720E+03	FORM =	.25437E+01	NUE	- 0.	ROUSE =25906E+05	DMEGA .	.41465E-03
RVWALD-	.0	• •	15847E+01	TAUD =	.22759E+02	NUM	- 0.	DSMX0 =43617E+04		
REDELT=	.37481E+05	MUE -	13191E-04	CFE -	.11377E-02	SWANG	• 0•	-01 A	RVWAL -	••
NOITER-	•	ERROP =	988R1E-05							

114

1.....

TEST CASE ND. 2 # W = O Note : all input with the exception of W = O in \$NAM! is identical to case for W = 1 # Consequently. DNLY The profile and wall print at S = 1.07 M are presented.

1.0700 PROFILE 5

ETA	Y/YE	U/UE	T/TE		TT/TTE	CROCCO	Ld	/ PTR	M/ME	YPLUS	UPLUS		UDEF	VISEFF
••	• • •	.0	.147F	101	. 078F +00	1 - 2 7 8 7	· · ·	00.00						
.757E-05	•557E-06	-261E-	04 .1476	104	0795400		•••		•••	•0	•	•		.100E+01
.172E-04	-127E-05	5036				•	2.	40E+00	•215E-04	.102E-02	-950E-(1	3645402	1005+01
2045-04	2176-05				• Y / 8E +00	•150E-C	.2	40E+00	•489E-04	.232E-02	2165-0		3665403	
		• • 10 CE-	-03 •147E	10+	•978F+00	-440E-0	7 .2	40E+00	. 839F-04	2085-02				
+0-20c++	• 333E-05	156E-	-03 .147E	101	•978E+00	.103E-C	5. 5	405+00	1205-02			-	364E+02	.100E+01
•03E-04	• 4 80E-05	5 .225E-	-03 .147E	10+	978F+00	-2156-0				20-2010	• 208E-	•	364E+02	.100E+01
• 909E-04	•668E-05	-313E-	-03 .147E	10+	.978F+00				- T07E-03	• 880E-02	•819E-()2 22	364E+02	.100F+01
.123E-03	.908E-J5	. 425F-	03 1475		0795100			+ 0E+00	• 2 9 8 E - 0 3	.122E-01	•114E-0	 	364E+02	.100E+01
.165E-03	-121E-04	56.85					2	40E+00	•351E-03	.1666-01	•155E-C		364F+02	1001-1001-
-71RF-03				1	• 7 / 8E + UO	•137E-C	J5 •2	40E+00	•469E-03	.222E-01	-207F-C		3645402	
		• • • • •	3/4T* CO.	10+	-978F+00	.240E-C	5.2	40E+00	.6195-03	.2946-01	- 774F-0		3645402	
•	•	•	•		•	•			•				201L10C	
•	•	•	-		•	•			•	•	•		•	•
•	•	•	. •			•		•	•	•	•		•	•
•672E+01	-405F+00	730541	100 100	101		• •		•	•	•	•		•	•
.857F+01	500E+00				00+3255	• 8 7 7 E +O	*	86E+00	•668E+00	e0+3166.	-269F+0	~	0505401	3405403
1000100			00 • 114E	10+	• 9995+00	• 944E+0	0 0	43E+00	.726E+00	.129F+04	2885	10	7635401	
2013607.	+0736+0C	+ 3 2 C A +	00 .114E	1 0	.100F+01	.101E+0	1 .6	24E+00	.7995+00	1605406				• 3/3E+03
• 1 5 9 E + 0 Z	 746E+00 	-926E+(00 .107E	+01	•100E+01	.105F+0	~	455400	BOAC 400		0+ 30 T 5 +	2	040E+01	• 363E+03
178E+02	• 898E+00	•991E+(00 .101E	+01	.1005+01	102540				+ 7 7 7 7 + 0 +	• 338E+0	20	269E+01	.274E+03
•227E+02	108E+01	• 998E+(00 .100F		-1005-01		•••	1 2E+UU	• 986E+UO	•303E+04	•361E+0	~	340 E+00	 104E+03
• 289E+02	.129E+01	-100F+C	01 . 9995			0+3055+		43E+00	• 998E+00	•368E+04	• 364E+0	2.	518E-01	.102F+02
*369E+02	.155F+01	-100E+(10430010	• 101 E + 0		48E+00	100E+01	•444E+04	•365E+0	- 2	294E-01	.1076+01
-470F+02	1965401				•100E+01	-100E+0	- - -	96E+00	.100E+01	•532E+04	-364F+0		1385-02	
-600F+02	2236401				•100E+01	•101E+0	1 •	97E+00	.100E+01	•638E+04	-365F+0		073E-02	
	Thissis	• TOUE + (UL .100E	10+	.100E+01	•100E+0	1 .8	97E+00	.100E+01	763E+04	• 364E+0		1725-07	.100F+01
•	10700E+01	RETHET=	•16626E+0	5 DPE	787 203	005+00		15.05		•				
· = IX	66998E-02	PES -	.72574E+0	7 015		266403			ARY 20130	•	⊢ ∠	•	.18425E-	01
- INA	48397E-01	• Hd	11381 E+0					•••	R SHK	•	U	= NV.	-79895E-	02
- 2	10446F+01	• 1	10824540					•	ITRO		0 TR	FCT =	.10000F+	10
BETA =	41437F+01					191E-02	NSTE	•	T N T	T197800	E+00 YM	•		
XAL - XAL	100456+01					135-02	NSTW -	• •	RFTR	UE= .93420	E+0C P2	•	.1216264	
RVUALD - 0				5	822° = L	10+324	NUE -		ROUS	E = _23024	F+05 DM	= V01	414465	• •
REDELT.	370775405		•1284/E+0	I TAU	10 • • 205	00E+02	NON	•••	DSMX	7 =91544	F+02			n)
REDFIT.	270776405		•13191F-0		102	47E-02	SUANG .	••••	*>	.0	74	- 144	c	
NOTTED.			•15141E-U	4 CFE	- 102	47E-02	SVANG -		22				•	
	n	EKKUP .	.27836E-0	•					•	•	> L		•	

ORIGINAL PAGE IS OF POOR QUALITY

TEST CASE NO. 3

THE LISTING FOR TEST CASE 3 INCLUDES THE FULLOWING: (1) VAFOIM DATA;; (2) \$NAM1 AND \$NAM2 INPUT; (3) INITIAL STATION SQLUTION VALUES; (4) REFERENCE VALUES; (5) PROFILE AND WALL PPINTS. NOTE: THREE RUNS ARE INCLUDED IN THIS TEST CASE: RVWALD = 0; RVWALD = 0; RVWALD > 0.

TEST CASE ND. 3 ; RVWALD = 0.

.

PREPROCESSOR CONTROL CARDS

*VARDIM/VGBLP(JK= 43,JL=1,JM= 30,JM= 3,JI=1,JH=85) *VARDIM/TABLE(JJ=11,JH=85) *VARDIM/VARENT(JL=1) *VARDIM/VARENT(JL=1,JK= 43) *VARDIM/MESH(JK= 43) *VARDIM/SIMILAR(JK= 43) *VARDIM/SIMILAR(JK= 43) *VARDIM/SCLVE(JK= 43)

S NA M I						2	1	127666401	DETAI	.0.	XMA = .7	4000E+01
IGEOM = PTI =	1 •41400E+07	XEND TT1	je 14 M	.100006+02 .833006+03 .140006+01	IE IGAS *	41 1 128696E+03	VISICI =	.14582E-05 .14582E-05 .72060E+60	VISICS	.11033E+03	VIS2C1 = 0.	
VIS2C2 = (IBODY =	•	a MAVE		.92140E+01	• 11Hd	.5000E+01	•	T	3	•	IENTRO -	
SST	•16000E+09 2	SMXTR XT1	N #	.1000CE+09 .4000CE+00	KODVIS = XT2 =	2 • 16800E-01	KTCOD • XT3 •	2 • 50000E+01 0	TLNGTH XT4 GLAR	 20000E+01 78000E+00 0. 		1080UE+00
XT6 =	.26000E+02	1 X 4	•	.9500CE+00	KCDPKI -	4	1					
0. IENDI	84	PROINC KODE		.10000€+00 C	PKNTINC# Kcowal #	.10006F-01	IPRO = VELEDG =	0 0 00E+00	I PRNT C LNV	• • •10000E-03	NAUXPRO- NITMAX -	0 0
FT FT F		ITHAX	•	ε	CGNVE	.100006-01			1 1 1 1 1 1 1 1 1 1 1 1 1	A TAIL ATEN	LOR TO THE	

Ľ 1 4 7 1 THIS COMPLETES THE OUTPUT OF \$KAM1 WITH THE EXCEPTION JF PROVAL AND PRNTVAL. THESE VALUES ARE PRINTED JUST Initial station print.

ą.

.

÷

Load to contract the con-

(1 + b)

- 10 m m

and the standard strates of a start for the start

is de La I

		•28804E+00	•28694E+00	.25104E-01	•31665E+03	-		.12465E+04	50000E-02 10000E-02 10000E-02 10000E-02 50000E-02 50000E-02 50000E-02
		•26426E+00	.26326E+00	.23032E-01	.31665E+03	•	°	•12465E+04	<pre>>> 00000E - 02 >> 10000E - 02 >> 10000E - 02 >> 0000E - 02</pre>
		.24016E+00	•23927E+00	•20933Ê-01	•31665E+J3	°.	•	•12465E+04	 500006-02 500006-02 100006-02 10006-02 10006-02 10006-02 500006-02 500006-02 500006-02
		•19202E+00	•191296+00	 16736E-01 	• 31665E+03	0.	•0	•12465£+04	.50339E-02 .50339E-02 .50339E-02 .100306-02 .10356-02 .50356-02 .50356-02 .50356-02
		•16794E+00	•1¢730E+0C	•14637E-01	•31¢65E+03	• 0	•0	•12465E+04	• 50000E - 02 • 50000E - 02 • 10000E - 02 • 50000E - 02
		.1 4417E+00	•143625+00	.125656-01	•31665E+03	ن.	•0	•12465E+04	.50006-02 .50006-02 .100066-02 .100066-02 .100066-02 .100066-02 .500006-02
		 12009£+00 	•11963£+0C	.10467ê-J1	•31665E+03	ں •	•	•12465±+04	
		.96012E-01	.95646E-G1	• P3668E+02	• 31665E+03	ر. ر	•0	•12465E+04	5000066100 5000066100 1000006100 1000006100 1000006100 1000006100 1000006100 1000006100 100000000
	11	•94488E-01	•94122E-01	•92296E-02	•31665E+J3	••	•	•12465E+C4	• 5000002 • 5000002 • 1000002 • 1000002 • 5000002 • 5000002 • 5000002 • 5000002 • 5000002 • 5000002
SNAMZ	NUMBEK L V	0. .30480E+00 7	0. .30364 E+00 RMI	0. .26565E-01 TV	.31665E+03 .31665E+03 04		RVWALD	PE •12465E+04 •12465F+04 SS	5000066-02 500066-02 1000066-02 1000066-02 500006-02 500006-02

THE FOLLOWIN Your Print S If The Case Noted by Com	IG SPJINT VA Station Must Completes W IParing Prov	LUES DESIGNAI Agree with (Ith a normal al and prntvi	TE THE S-COOR DNE DR More d Stop and NC NL WITH SPOIN	DINATE LOCA JF THE SPOIN Output IS Pr IT.	LIDNS HHERE T Locations; sinted, your	FHE SJLUTIONS IE, You Can Print input	. ARE OBTAINE Print only a Is in Error.	D DURING THE T Solution S The error C	S-MARCH. Tations. .an Be
SPDINT 500006-02 550006-01 93006-01 13006-00 113006-00 113006-00 1135006-00 1185006-00 235006+00 285006+00 285006+00	<pre>.10000E-01 .60000E-01 .60000E-01 .94000E-01 .10400E+00 .11400E+00 .14000E+00 .14000E+00 .19000E+00 .22000E+00</pre>	.150006-01 .650006-01 .950006-01 .105006-01 .115006-00 .145006-00 .145006-00 .195006-00 .245006+00 .245006+00	.20000E-01 .70000E-01 .96000E-01 .10600E+00 .11600E+00 .115000E+00 .25000E+00 .25000E+00	.255006-01 .750006-01 .750006-01 .107006+00 .117006+00 .155006+00 .205006+00 .255006+00	.300006-01 .800006-01 .960006-01 .160006+00 .116006+00 .160006+00 .210006+00 .260006+00	.35000E-01 .85000E-01 .99000E-01 .10900E+00 .11900E+00 .116500E+00 .21500E+00	<pre>,40000E-01 ,90000E-01 ,10000E+00 ,110000E+00 ,12000E+00 ,17000E+00 ,22000E+00 ,22000E+00 ,27000E+00 ,27000E+00 ,27000E+00</pre>	<pre>45000E-01 9100000E-01 101000E+00 111000E+00 12500E+00 17500E+00 222500E+00 27500E+00</pre>	<pre>.50C00E-01 .92000E-01 .10200E+00 .112200E+00 .13200E+00 .13000E+00 .18000E+00 .18000E+00 .28000E+00</pre>
PRINT STATI(PRDVAL *10000E+00 PRNTVAL *11000E+00 *21000E+00	DNS DESIGNAT .20000E+00 .20000E-01 .12000E+00 .22000E+00	ED IN \$NAM1 .30000E+00 .30000E-01 .13000E+00 .23000E+00	INPUT AND GER 400006-01 140006-00 .240006+00	<pre>verated IN 5 *50000E-01 *15000E+00 *25000E+00</pre>	ETUP . 60000E-01 . 16000E+00 . 26000E+00	.70000E-01 .17000E+00 .27000E+00	.80000E-01 .18000E+00 .28000E+00	.90000E-01 .19000E+00 .29000E+00	.10000E+00 .20000E+00 .30000E+00

11

APPENDIX D

ORIGINAL PAGE IS OF POOR QUALITY

un print.

.

1

ETA U/UE 1/0 0. 0. 38150555-04 381505555-04 381505555-04 381505555-04 381505555-04 381505555-04 381505555-04 381505555-03 38150515555-03 3815055555-03 3815055555555555555555555555555555555555	r/TE 34858E+01 34858E+01 3495E+01 3495E+01 35048E+01 35048E+01 35164E+01 35164E+01 35279E+01 35622E+01	V 0. 	FZ + 97793E+00 • 497806E+00 • 497806E+00 • 497838E+00 • 497838E+00 • 497930E+00 • 497930E+00 • 497930E+00 • 497930E+00	TZ 214623E+01 214623E+01 214504E+01 214524401 214312E+01 214312E+01 2143186401 214017E+01 23566+01	XL 884947E+00 884947E+00 884928E+00 8844903E+00 884871E+00 884871E+00 884871E+00 884779E+00 884779E+00 884779E+00
0. 163732E-03 .163732E-03 .16556E-03 .372556E-03 .63889E-03 .978571E-03 .978571E-03 .185466E-03 .386 .141180E-02 .132888E-03 .385	94858E+01 94858E+01 94893E+01 94995E+01 95095E+01 95098E+01 95058E+01 95522E+01 95622E+01	0. 	<pre>497793E+00 49783E+00 49783E+00 49783E+00 497862E+00 497862E+00 497862E+00 497930E+00 49707862E+00 498040E+00 498040E+00</pre>	<pre>214623E+01 .214504E+01 .214504E+01 .21452E+01 .214422E+01 .214186E+01 .214186E+01 .214186E+01 .214186E+01</pre>	<pre>884947E+00 8849428E+00 884903E+00 884871E+00 884871E+00 884871E+00 884779E+00 884779E+00 884714E+00 884530E+00</pre>
.163732E-03 .815055E-04 .386 .372556E-03 .185460E-03 .386 .9738899E-03 .3124646E-03 .386 .973857E-03 .312464E-03 .386 .141180E-02 .977966E-03 .383 .1664966E-02 .177648E-02 .385 .47424E-02 .177648E-02 .385 .471416E-02 .177648E-02 .386 .471416E-02 .177648E-02 .386 .111938E+01 .556841E+00 .421 .142782E+01 .556841E+00 .379 .182121E+01 .817184E+00 .296	34893E+01 54938E+01 34995E+01 35068E+01 35161E+01 35279E+01 354276+01 35622E+01	667252E-08 345469E-07 101598E-06 238355E-06 238355E-06 496129E-06 177332E-05 177332E-05	<pre>4978065400 4978205400 4978205400 4978525400 49789256400 49789256400 49789256400 4978926400 4978926400 4978926400</pre>	2145685401 2145645401 2145245401 2144225401 2143185401 2143185401 2140175401 2138015401	8849994 884999 8849038400 8848718400 8848318400 8848318400 8847798400 8847796400 8847146400
.372556E-03 .185460E-03 .366 .538889E-03 .318046E-03 .386 .978571E-03 .318046E-03 .385 .978571E-02 .702852E-03 .385 .196434E-02 .137896E-03 .385 .3856785E-02 .137648E-02 .385 .3856785E-02 .177648E-02 .385 .3856785E-02 .177648E-02 .385 .3856785E-01 .556841E+00 .421 .111938E+01 .556841E+00 .371 .182121E+01 .812184E+00 .296	54938E+01 34995E+01 35068E+01 35161E+01 35279E+01 356736+01 35622E+01		<pre>4978265400 4978385400 49789255400 49789255400 49789255400 4979305600 49797855 400 49707855 400</pre>	2145046401 2145046401 2144226401 2143186401 2143186401 2140176401 213556401	.884903E400 .884903E400 .884871E400 .884831E400 .884779E400 .884719E400
.638899E-03 .31E046E-03 .386 978571E-03 .487158E-03 .385 141180E-02 .772952E-03 .385 .266906E-02 .97296EE-03 .385 .385785E-02 .137848E-02 .385 .3856785E-02 .177648E-02 .385 .3856785E-02 .177648E-02 .385 .111938E+01 .556841E+00 .371 .111938E+01 .556841E+00 .371 .182121E+01 .812184E+00 .296	34995E+01 35068E+01 35161E+01 35279E+01 35430E+01 35430E+01	101598E-06 238355E-06 496129E-06 960490E-06 177332E-05 316865E-05	<pre>497838540 4978526400 4978526400 4979305400 4979305400 4979785400 4980405400</pre>	214226401 2143186401 2141866461 2141866461 2140176401 2135066401	.884871E+00 .884871E+00 .8848779E+00 .884779E+00 .884779E+00 .8846714E+00
•978571E-03 •487158E-03 •385 •141180E-02 •702852E-03 •385 •1956944E-02 •132888E-02 •385 •356785E-02 •177648E-02 •385 •4714168-02 •177648E-02 •385 •4714168-02 •234742E-02 •385 •111938E+01 •556841E+00 •421 •142782E+01 •584084E+00 •371 •182121E+61 •812184E+00 •296	35068E+01 35161E+01 35279E+01 35430E+01 35430E+01	238355E-06 496129E-06 960490E-06 177332E-05 316865E-05	 497862 E +00 497892 E +00 497930 E +00 497978 E +00 498040 E +00 	2149185401 2149185401 2140175401 2138015401	.884831E+00 .884779E+00 .8845779E+00 .8845714E+00
.141180E-02 .702852E-03 .385 .196434E-02 .977966E-03 .385 .3567966-02 .177648E-02 .385 .471416E-02 .177648E-02 .385 .471416E-02 .234742E-02 .385 .111938E+01 .556841E+00 .421 .142782E+01 .556841E+00 .371 .182121E+01 .812184E+00 .296	35161E+01 35279E+01 35430E+01 35622E+01	496129E-06 960490E-06 177332E-C5 316865E-05	.497892E+00 .497930E+00 .497978E+00 .497978E+00	.214186E+61 .214017E+01 .213801E+01	.8847795+00 .8847145+00 .8845305+00
.196434E-02 .977966E-03 .382 .266906E-02 .132888E-02 .385 .471416E-02 .177648E-02 .385 .471416E-02 .234742E-02 .385 .111938E+01 .556841E+00 .421 .142782E+01 .684086E+00 .371 .182121E+61 .812184E+00 .296	35279E+01 35430E+01 3562E+01	960490E-06 177332E-C5 316865E-05	 497930E+00 497978E+00 498040E+00 	•214017E+01 •213801E+01 •213526E+01	.884530E+00 .884530E+00
.266906F-02 .132888E-02 .385 .356785E-02 .177648E-02 .385 .471416E-02 .234742E-02 .385 .4711938E-01 .556841E+00 .421 .111938E+01 .556841E+00 .371 .1812121E+01 .812184E+00 .296	35430E+01 35622E+01	177332E-C5 316865E-05	.497978E+00 .498040E+00	-213526E+01	- 884630E+00
.356785E-02 .177648E-02 .385 .471416E-02 .234742E-02 .385	35622E+01	316865E-05	•498040E+00	-2135266+01	
.471416E-02 .234742E-02 .385 .111938E+01 .556841E+00 .421 .142782E+01 .684086E+00 .371 .182121E+61 .812184E+00 .296	000000000000000000000000000000000000000			())]]]]]	
.111938E+01 .556841E+00 .421 .142782E+01 .684084EE+00 .371 .182121E+61 .812184E+00 .296		** 553249E - 05	•498119E+00	•213174E+01	•884388E+00
.111938E+01 .556841E+00 .421 .142782E+01 .6884086E+00 .371 .182121E+C1 .812184E+00 .296	•	•	•	•	•
.111938E+01 .556841E+00 .421 .142782E+01 .684086E+00 .371 .182121E+01 .812184E+00 .296	•	•	•	•	•
<pre>.1119385+01 .556841E+00 .421 .142782E+01 .684086E+00 .371 .182121E+01 .812184E+00 .296</pre>	•	•	•	•	•
<pre>.142782E+01 .684086E+00 .371 .182121E+01 .812184E+00 .296</pre>	213336+01	316420E+00	.436282E+00	136939E+01	.8651315+00
•1921216+01 •8121846+00 •296	'1567E+01	507796E+00	•363826E+00	177287E+01	.892380F+00
	36909E+U1	802102E+00	.261914E+00	179556F+01	.9358735+00
• 232293E+01 .918527E+00 .210	08446+01	123627E+01	.148601E+00	1377706+01	- 985428F+00
.296283£+01 .981830E+00 .139	19627E+01	184429E+01	• 563286E-01	731029F+00	.101057F+01
.377896E+01 .100054E+01 .104	04405E+01	265322E+01	•966652E-02	217523F+00	.100292E+01
•481984E+01 •999781E+00 •992	123296+00	369428E+01	212271E-03	1797666-01	- 999437F+00
.614739E+01 .100004E+01 .100	01476+01	502171E+01	•372291E-04	1695366-02	•100011E+01
•784055E+01 •999693E+00 •997	17450E+00	671481E+01	105317E-04	3817105-03	- 9998136+00
•1000006+02 •1000006+01 •100 DNVF86FD SFIE-STWTLAP SOLUTION SECU	00006+01	887415E+01	•0	.0	.100000E+01

INITIAL STATION PARAMETERS

_

= .124651E+04 QSD =0. = .422781E+02 PE
= .527947E-01 R E UE = .122800E+04 XBE =0. .565042E-05
 .182484E+02 MUE

ORIGINAL PAGE IS OF POOR QUALITY

						H)	r F	Ľ	INT		. Л	L	,																
350699E-01	769929E+02		TTWIN	• 885E+00	• 887 E+UU	•885E+00	.885E+00	.885E+00	.885E+00	. 885E+00	• 885E+00	.885E+00	.884E+00	.884E+00	•	•	•	. 865E+00	.892F+00		-985F+00	1016401		T013001 .	.994E+00	.100E+01	*100E+01	.100E+01	
R1 -	PTR =		VORTREY	0.	• 3 4 Z E - 0 3	.177E-04	.521E-04	.1225-03	.254E-03	• 4 92 E 03	.908E-03	.162E-02	.283E-02	•485E-02	•	•	•	.135E+03	-246F+03	- 4846+03	ORGE+07			+ 143E+U3	•	•	•	•	
96954E+02	531367E-04		12	.214E+01	.2146+01	.214E+01	.214E+01	.214E+01	.2146+01	.214E+01	.2146+01	,213E+01	.213E+01	.2136+01	•	-	•	137E+01	177F+01		13AE+01			-*Z16E+UU	180E-01	.1705-02	382E-03	••	
116	VISREF.		ΕZ	.498E+00	•498E+00	.4985+00	.498E+00	.498E+00	.498E+00	.4985+00	•498E+00	•498E+00	.4985+00	.498E+00	•	•	•	-4366+00	3645400	2625400	1495400		• 7 6 4 E - 0 L	.968E-02	212E-03	.370E-04	105E-04	.0	
11388E+03 21384E+07	23825E+04		M/ME	.0	•415E-04	• 945E-C4	.162E-03	.248E-03	.358E-03	.498E-03	.6776-03	.9056-03	.1196-02	.1566-02	•	-	•	. 271 E+00	2655400	00+3165°	4225400		• 831E+00	• 979E+00	.100E+01	• 999E + 00	.1006+01	.1006+01	
Pl = .7	UREF= .1	-	PT/PTR	.301E-03	.301E-03	.301E-03	.301E-03	.301E-03	.3016-03	.301E-03	.301E-03	.301E-03	.3015-03	.301E-03	•		•	1455-02		20-3/67.			•123E-01	.171E-01	.180E-01	.1786-01	.179E-01	.1785-01	
173195E+02 740000E+01	350699E-01		CRUCCO	573E-14	.5606-04	.1276-03	2185-03	.334E-03	.483F-03	.672E-03	.9136-03	.1226-02	1416-02	2126-02	•	I	•	• FOOLLOO		00+34C9*	00+3678*		.101E+01	.101E+01	.998E+00	.100E+01	• 999E+00	.1005+01	
RT1 = "1 XMA = "7	KREF.		TT / TTE	.380E+00	.3806+00	.380E+00	-380F+00	380F+00	.380F+00	. 381F+00	.381F+00	.381E+00	3815+00	-381F+00			•	• • •		- 789E+00	• 888E +00	00+0707.	.101E+01	.101E+01	-00+3666*	1005+01	1005+01	1005-01	
833000E+03 167331E+03	152661E+04		T/TE	.385E+01	.3856+01	3855+01	.3856+01	3855+01	3855+01	3856+01	- 385F+01	3866+01	2865401	-386F+01			•		1011111	-372E+01	• Z47E+01	•ZIIE+01	.140E+01	.1045+01	.992E+00	1005+01	- 997E+00	1000401	
ENSIONAL TT1 = AA1 =	IS IONAL	LE	U/UE	.0	.8156-04	1956-03	2186-03	6875-03	7036-03	C78F-03	1336-02	1785-02	2265_02	201250102		•	•	•	*22/E+00	•684E+00	.812E+00	•918E+00	•982E+00	.1005+01	-100F+01	.1005+01	.100F+01		TOLUOT.
<pre>\ VALUES-DIM .414000E+07 .123625E+04</pre>	ALUES-DIMEN .5377126+05	1000 PROFI	7 /YE	.0	. 4255-04	1425-03	2446-03	2765-03		7616-02		1365-02		• 1 80E-02	• • • • •	•	•	•	•4/7E+00	•591E+00	•714E+00	•833E+00	.936E+00	1036+01	1125+01	1245401	.139F+61		• 104E + U 1
FREE STREAP PT1 = U1 =	REFERENCE V Pref=	• 5	ETA	- 0	1645-03						20-367°	2675-02		20-31/4°	• 0 T 0 E	•	•	•	.11ZE+01	.143E+01	.182E+01	.232E+01	.296E+01	3781401	4876401		7945401		.100L+UZ

.

.....

. . . .

:

1 VIII - 1 1. UVI - 1

that a Mi

APPENDIX D

YE	YE - 80673E-03 UTAU - 0. Trect - 0. Ymp - 76543E+02 P20 - 76543E+02 Dmega - 11062E-02 Rvwal - 0.
ZSHK 0. ZSHK 0. ITRO 1 TRO 38014E+00 TV/TT1 31220E+00 RFTRUE 31220E+00 ROUSE 15917E+04 DSMXD 0.85922E+04 VW 0.	ZSHK • 0. RSHK • 0. ITRD • 0. TW/TT1• • 38014E+00 RFTRUE• • 31220E+00 RDUSE • 16754E+04 DSMXD • • 81947E+04 VW • 0.
CFW - 387836-02 GSD - 161406+05 HD -400866+05 NSTE -616116-03 NSTE -616116-03 NSTE -508986+02 NUE -508986+03 NUW - 149456+03 SWANG - 0.	CFW = .36976E-02 QSD = .15388E+05 HD = .38219E+05 NSTE = .58741E-03 NSTE = .58741E-03 NSTW = .22607E-02 NUE = .53379E+03 NUE = .15673E+03 SWANG = 0.
03 DPEDS = 0. 07 DTEDS = 0. 04 DUEDS = 0. 02 DLTAST = .562966-03 01 THETA = .330886-04 04 FORM = .170146+02 01 TAUD = .401146+02 05 CFE = .103776-02 10	03 DPEDS = 0. 07 DTEDS = 0. 04 DUEDS = 0. 02 DLTAST = 592896-03 01 THETA = 34705E-04 04 FORM = 11044E+02 01 TAUD = 38245E+02 05 CFE = 96077E-03
ETHET= .37964E+ ES = .11474E+ ES = .12465E+ E = .82278E+ E = .52795E- E = .12280E+ E = .12280E+ E = .12280E+ E = .36984E- RKOR = .36984E-	ETHET39819E+(ESTHET)
.100006+00 R .401496-06 R .871466-02 P .996196-01 T .996196-01 T .0.182486+02 U .0.182486+02 U .0.182486+02 M	.11000E+00 R .53453E-06 R .95867E-02 P .10958E+00 T 0.12458E+00 R 0.12248E+02 R 0.18248E+02 N 0.68028E+04 M
S XI R M Z B E T A S B E T A R V W A L D R C D E L T N O I T E R	S XI RMI BETA BETA XAL KVWALD KFDELTI RFDELTI

APPENDIX D

TEST CASE ND. 3 ; RVWALD < 0. NDTE : ALL INPUT WITH THE EXCEPTION OF RVWALD IN \$NAME IS IDENTICAL TO THE CASE FOR RVWALD = 0 ; Consequently only rvwald input and the profile and wall prints are presented.

RVHALD 0.

-.90117E-01 -.90117E-01 -.90117E-01 -.90117E-01 -.90117E-01 -.90117E-01 -.90117E-01 -.90117E-01 • --90117E-01

.1COO PROFILE 5

TTWNX	 885 E + 00 884 E + 00 	.898E+00 .932E+00 .973E+00 .101E+01 .999E+000 .999E+000 .100E+01 .100E+01
VORTREY	0. 39666-05 39666-05 .1166-03 .2736-03 .5676-03 .1066-02 .2026-02 .2026-02 .2026-02 .1076-02	.156E+03 .286E+03 .547E+03 .547E+03 .104E+04 .261E+03 0.261E+03 0.0
ΤZ	<pre> • • • • • • • • • • • • • • • • •</pre>	181E+01 181E+01 153E+01 102E+01 463E+00 102E+00 167E-02 .584E-02 .584E-03
FZ		.352E+00 .271E+00 .179E+00 .179E+00 .276E-01 .276E-01 .151E-02 -871E-03 -138E-03 -221E-04
M/ME	0. 2116-04 2116-03 3636-03 5556-03 8006-03 1116-02 1516-02 2666-02 3486-02 3486-02	.370 .460 .460 .584 .60 .746 .00 .918 .00 .101 .011 .011 .011 .011 .011 .01
PT/PTR	.301E-03 .301E-03 .301E-03 .301E-03 .301E-03 .301E-03 .301E-03 .301E-03 .301E-03 .301E-03 .301E-03	.2576-02 .3896-02 .6166-02 .9986-02 .9986-02 .1516-01 .1786-01 .1786-01 .1786-01
CROCCO	.573E-14 .118E-03 .662E-03 .762E-03 .102E-03 .142E-02 .142E-02 .142E-02 .142E-02 .142E-02 .142E-02 .142E-02 .142E-02 .147E-02	.682E+00 .806E+00 .921E+00 .97E+00 .102E+01 .100E+01 .100E+01 .100E+01 .100E+01
11/1TE	.3866+00 .3866+00 .3806+00 .3806+00 .3816+00 .3816+00 .3816+00 .3816+00 .3816+00 .3826+00 .3826+00 .3826+00	.803E+00 880E+00 951E+00 998E+00 101E+01 100E+01 100E+01 100E+01
T/TE		.361E+01 .364E+01 .234E+01 .166E+01 .118E+01 .999E+00 .997E+00 .997E+00
U/UE	0.18 4156-03 4156-03 1576-03 1576-02 2196-02 23976-02 33976-02 5866-02	.703E+60 .802E+00 .893E+00 .962E+00 .97E+00 .997E+00 .100E+01 .100E+01 .100E+01
7.YE	0 175 1716 1716 1716 1716 1716 03 6496 03 1236 03 1236 03 1236 03 1236 03 1236 03 1236 03 1236 03 176 02	.553E+00 .671E+00 .790E+00 .903E+00 .100E+01 .110E+01 .122E+01 .136E+01 .154E+01 .154E+01
ETA	0. 164E-03 373E-03 97395-03 97395-03 97395-03 1416-03 1416-03 1416-02 .357E-02 .357E-02 .4716-02	.1126+01 .1436+01 .1826+01 .2326+01 .2966+01 .3786+01 .4826+01 .4826+01 .7846+01 .7846+01 .1006+02

. . .

-

_

• • • • • • • • • • • • • • • • • • •	<pre>. 58139E-03 . 0 0 76543E+02 . 11062E-02 13900E-02</pre>
YE Utau Trfct Ymp P20 Dmega Rvmal	YE Utau Trfct Ymp P20 Dmega Rvmal
ZSHK 0. RSHK 0. ITR0 0. TW/TT1	ZSHK = 0. RSHK = 0. ITKO = .38014E+00 RFTRUE = .31220E+00 RFTRUE = .85055E+03 DSMXO =15633E+05 VW =12745E+01
 86813E-02 -34131E+05 -34131E+05 -13029E-02 13029E-02 50142E-02 107638+04 -31603E+03 	 10460E-01 -42263E+05 10497E+03 10497E+03 E 10437E-02 14661E+04 43046E+03 NG 0
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0	0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
DPEDS DTEDS DUEDS DUEDS DLTAST THETA FORM TAUU CFE	0PEDS DTEDS DUEDS DUEDS DLTAST THETA TAUD TAUD CFE
.332516+03 .114746+07 .124656+04 .822786+04 .527956-01 .527956-01 .575436+01 .55536+04	 288376+03 126216+07 124656+04 8227956+01 527956+01 122806+04 675436+01 565046+05 197376+05
Р К К Т Н К К Т Н К К Т Н К К Т Н К К К К	RETHET PE FE TE TE RE ME RE RE RE RE RE RE RE RE RE RE RE RE RE
.100006+00 .40149E-06 .87146E-02 .99619E-01 0.18248E+02 -90117E-01 .53480E+04 4	.110006+00 .53453E-06 .95867E-02 .10958E+00 0. .18248E+02 -90117E-01 .47202E+04
S XI Rri 2 Beta Seleta Redelte Redelte	S KMI Z Beta Beta Rvwald Rvwald Redelta Voiter

APPENDIX D

ORIGINAL PAGE IS OF POOR QUALITY

o . CASE ND. 3 ; RVWALD > 0. 1 ALL INPUT WITH THE EXCEPTION OF RVWALD IN SNAME IS IDENTICAL TO THE CASE FOR RVWALD 2 CONSEQUENTLY JNLY RVWALD INPUT AND THE PROFILE AND WALL PRINTS ARE PRESENTED. TEST Note

.90117E-01

.90117E-01

.90117E-01

.90117E-01

.901176-01

.901176-01

.901176-01

.901176-01

់

RVWALD 0.

••

XLM11 VORTREY • T 2 F Z A/ME PT/PTR CROCCO 11/116 1/TE 0 / UE .1CUO PROFILE 7/YE .90117E-01 ETA • 5

.847E+00 .847E+00 .845E+00 .910E+00 .979E+00 .101E+01 .100E+01 .100E+01 *885 E +00 858E+02
164E+03
318E+03
684E+03
162E+04
277E+04
126E+04 .620E-06 .321E-05 .945E-05 .222E-04 .462E-04 .165E-04 .165E-04 .165E-03 .517E-03 .517E-03 .517E-03 ::: .3216+00 -.4046+00 -.1346+00 -.1796+01 -.1796+01 -.1396+01 -.1546+00 -.1546+00 -.1516-01 -.1516-01 \$11E+00
*511E+00
*511E+00
*511E+00
*511E+00
*511E+00
*512E+00
*512E+00
*513E+00 .372E+00 .434E+00 .424E+00 .317E+00 .3156E+00 .910E+001 .910E-02 .825E-03 .327E-04 .901 E-01 .902 E-01 .962 E-01 .903 E-01 .903 E-01 .904 E-01 .906 E-01 .906 E-01 ٠ ٠ .108E+00 .167E+60 .259E+00 .259E+00 .400E+00 .936E+00 .936E+00 .974E+00 .998E+00 .100E+01 0 752E-05 171E-05 2945E-04 450E-04 649E-04 649E-04 1236E-04 1236E-04 1236E-04 2176E-03 2176E-03 285E-03 ٠ . . .430E-03 .652E-03 .652E-02 .297E-02 .297E-02 .129E-01 .177E-01 .177E-01 .3016-03 .3016-03 .3016-03 .3016-03 .3016-03 .3016-03 .3016-03 .3016-03 .3016-03 .3016-03 ٠ .573F-14 .133E-04 .303E-04 .520E-04 .197E-04 .160E-03 .160E-03 .291E-03 .291E-03 .365E-03 .504E-03 .1926+00 .3066+00 .4876+00 .7186+00 .9156+00 .9156+00 .1006+01 .1006+01 .9996+00 . .4996400 .5706400 .6826400 .6826400 .8256400 .9486400 .9986400 .1006401 .1006401 •380E+00 • .457E+01 .457E+01 .428E+01 .340E+01 .340E+01 .224E+01 .137E+01 .105E+01 .105E+01 .106E+01 .100E+01 .3856+01 .38556+01 .3856+01 .3856+01 .3856+01 .3856+01 .3856+01 .3856+01 .3856+01 .3856+01 .3856+01 .3856+01 . 0 1248E-04 336F-64 .5778-04 .1276-03 .1276-03 .1276-03 .1276-03 .2276-03 .3228-03 .5596-03 .232E+00 .357E+00 .536F+00 .536F+00 .737E+00 .978E+00 .978E+00 .100E+01 .100E+01 0. 471E-04 137E-03 134E-03 565E-03 565E-03 767E-03 1365-03 1365-03 1365-02 .344E+00 .44E+00 .445F400 .569E+00 .703E+00 .826E+00 .926E+00 .110E+01 .110E+01 .110E+01 .110E+01 . . 1126+01 .1436+01 .1436+01 .2326+01 .2366+01 .2966+01 .4826+01 .4826+01 .4826+01 .4826+01 .4826+01 .4826+01 .1006+02 .1646-03 .3736-03 .6796-03 .6796-03 .1966-02 .1966-02 .1966-02 .3576-02 .3576-02 .3576-02

-

-

-

0 055 0 055 1 + + 1 1	- 05 - 05 - 05 - 05	THE ON•
.0200E 	5302E 5302E 6543E 1062E- 3900E-	ARATI
		accur R Sep
YE Utau Trfct Ymp P20 Dmega Rvwal	YE Utau Trect Ymp P20 Dmega Rvwal	IERALLY IRY LAYE By tod
0. 0. .38014E+00 .31220E+00 .27699E+04 .58418E+04 .12151E+01	0. .38014E+00 .38014E+00 .51653E+04 .13475E+06	FED. THIS GEN .Cn of Bounda .ably Caused
ZSHK RSHK ITRO T#/TTI RFTRUE ROUSE	2SHK RSHK ITRC TW/TTL RFTTL RFTUE BSMX0	LLY ACCEPT M Indicati Em Is Prob
•70232E-03 •70232E-03 •95464E+04 •14672E-03 •56468E-03 •12121E+03 •35590E+03 I	.78597E-04 .52038E+03 .12924E+01 .19864E-04 .76450E-04 .18051E+02 .18051E+02 .18051E+02 .53002E+01	BE PHYSICAL RY and IS an The proble
• • • • • • • • •	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	NNUT NUNDA DARYJ
AN NENDO AN AN NENDO AN AN A	N N N N N N N N N N N N N N N N N N N	LL BC
0. 0. .75760E-03 .19637E+02 .19637E+02 .72642E+01 .18249E-03	0. 3. 11162E-02 51124E-02 .51124E-04 .21834E+02 .81295E+06 .20422E-04	APEKATURE WHI Jection at Wa I at the Wall
UPEDS DTECS DUEDS DLEDS DL TAST THETA FORM TAUD CFE	DPEDS DTECS DUEDS DUEDS DUEDS DLTAST THETA THETA TAUD TAUD CFE	SATIVE TEN MASS INU INJECTION
.42666+03 .114746+07 .124656+04 .827956+04 .527956+01 .122806+04 .675436+01 .555046-05	.58659E+03 .12651E+07 .12465E+04 .8278E+02 .52795E-01 .12280E+04 .67543E+01 .556504E-01 .556504E-01	ATION OF NEG Dient and/or is no mass e.
	жет кет же ка те ке ке ке ке ке ке ке ке ке ке ке ке ке	' IN GENER SSURE GRA AND THEKE COORDINAT
<pre>.10000f+30 .40149E-06 .87146E-05 .99619E-01 018248E+02 .90117E-01 .86926E+04 5</pre>	.11000£+00 .53453E-06 .95667E-02 .10958E+00 0. .18248E+02 .18248E+02 .18248E+02 .12809E+05 .12809E+05	HAS RESULTED F ADVERSE PRE IS NEGATIVE :2E IN THE S-
S XI RMI 2 BETA BETA rvwald fedelta nditer	S XI RMI B 2 B 2 Xal Rvhald Redelt Redelt Noiter	SOLUTION Region of If dpeds A step si

WALL BOUNDARY, THE PROBLEM IS PROBABLY CAUSED BY TOO COURSE ų 46

x 36 -5.8932609N= T3(N)=

125

.

ORIGINAL PAGE IS OF POOR QUALITY		.20300E+02 .50231E-06	- 5	.10800E+00	C IN	
		XMA = VIS2C1 =	IENTRO -	IYINT *	NAUXPRO= NITMAX =	IOR TO THE
INPUTS 495 M. 405 M. Constant Lution.		I 19860E+03	0	.20000E+01 .78000E+00 I	10000E-03	TED JUST PR
AA#2 S==0 S TD - PY SD		••	•	4 • •		PRIN
AND SN 115 AT SPONDS ENTROL		DETA1 VISIC2	3	TLNGTH XT4 GLAR	I PRNT Conv	ES ARE
(2) \$NAMI No Wall Prin E BODY CORRE Ged Varible		10000E+01 22700E-07 68800E+00	1	2 • 50000E +01 0	1 99500E+00	THESE VALU
DATA5 :ILLA5 /ER TH CONVER		•••			• • 0	NTVAL.
ARDIM PROF ASS DV		XK VISIC Pr	7	KTCOC XT3 NUMB]	I PRO Velei	ND PR
ING: (1) V Alues; (5) The First P He Body For		41 2 .20790E+04	• 90000E +02	2 16800E-01 1	.15000E-02 10000E-03	OF PROVAL A
CASE ND. 4 The Follow Refefence V Llow: (1) Pass over T	JH= 34)	IE " IGAS "	• IIHd	KODVIS = XT2 = KODPRT =	PRNTINC= KODWAL =	EXCEPTION
TEST TEST 4 INCLUDES 10N3 (4) Results Fo The Final	« I = I 7 « Z = N 7 «	.10000E+02 .28900E+03 .16667E+01	. 90000E+02	•10000E+09 •40000E+00 •95000E+00	.30000E-01	2 N1 UTTH THE
50LUT. 65 DF (2)	ຕ ຕ ສ		۰		• • U	
ST CAS ATION LISTIN	= 33,J = 34) = 43)	XEND TT1 G	V NA VE	SMXTR XT1 PRT	PP OIN KODE	ITMAX
STING FOR TES I INITIAL STU TWO OUTPUT I	LP(JK= 43,JL LE(JJ=150,JH ENT(JL= 33) BLNT(JI=1,JK BLNT(JI=1,JK H(JK= 43) TLAR(JK= 43) VE(JK= 43)	1 • 70000E+07 • 4 700E+00		.10000E+09 2 .26000E+02	33 100005+01	1
ТНЕ LIS NDTE: NDTE: EN	*VARDIM/VGB *VARDIM/TAB *VARDIM/TAB *VARDIM/VAR *VARDIM/TUR *VARDIM/SIM *VARDIM/SIM	SNAM1 1660m PT1 2000		SST = SST = KDDAMP = XT6 = PRTAR	I IEND1 • FT	KODUNIT -

2 × H THIS COMPLETES THE OUTPUT OF \$NAM1 WITH INITIAL STATION PRINT.

APPENDIX D

126

and the standard states of the second states of the

.

-

1

-

----· --

.

			20076E-03	631735-03			10-10/07-701	10-12-2010	-1401/E-01		-205015-01	320155-01	362615-01	3056655501		10-32607+•		-49539E-01			•103/9E-02	-23885E-02	42453E-02	65200E-02	.88709E-02	11222E-01	135736-01	15924F-01	182755-01	20626F-01	22977E-01	25328E_01	27670E_01	200305-01	
			.265995-02	-50847E-02	030055-02	- 700 - 00 - 00 - 00 - 00 - 00 - 00 - 0		102846-01	10-3507470		.20250E-01	.325836-01	- 35008F-01	20224E-01	LOUTE OF COLOR			• + 4 20 / E - 0 I	105305 03		• 73636E=U3 .	•22299E-02	.40383E-02	.62850E-02	• 86359E-02	.10987E-01	.13338E-01	.15689E-01	-18040E-01	-20391E-01	-22742E-01	25093F-01	. 276465-01	207055-01	
			.232746-02	.56522F-02	. 89770E-02	123025-01	15627F-01	180525-01	- 22277E-01	· 25601 F-01	-28926F-01	.32251E-01	-3557AF-01	-38902E-01	. 42227E-01	10-302-372 •		*****	14 2005-02		COLUTE 700 .	- CO / O/3 E - O/2	• 38359E-02	.60497E-02	.84009E-02	•10752E-01	.13103E-01	<pre>.15454E-01</pre>	.17805E-01	.20156E-01	.22507E-01	.24858F-01	- 27209E-01	.29560E-01	• • • • • • • • •
			.199495-02	.53197F-02	- 86447E-02	-11969F-01	.152946-01	.186105-01	21044F-01	.25269F-01	-28594F-01	.31919E-01	.352445-01	.38569F-01	-41 RO7E-01	45217E-01			106365-03			20-300241.	•36381E-02	.581476-02	.816566-02	.10517E-01	.12868E-01	.15219E-01	.17570E-01	.19921E-01	.22272E-01	.24623E-01	-26974F-01	-29325F-01	
			.16624E-02	.49871E-02	.831226-02	.116375-01	.14962E-01	-18287E-01	.216125-01	.24936E-01	-28261E-01	•31586E-01	.34912E-01	.38237E-01	.41559F-01	-44885E-01	403105-01	T0-30T304 +	- 72401F-04		178485-03		• 3445ZE-0Z	55797E-02	.793066-02	 10282E-01 	 12633E-01 	.14984E-01	.17335E-01	19686E-01	.22037E-01	.24388E-01	.26739E-01	.29090F-01	
			•13299E-02	.46549E-02	.797976-02	.11304E-01	.14630E-01	.179546-01	.21279F-01	.24604E-01	.27929E-01	.31254E-01	.34580E-01	.37902E-01	.41227F-01	-44553F-01	478786-01		.464066-04	565865-03	16470F-03		-36308E-02	•53465E-02	•76956E-02	.10047E-01	.12398E-01	.14749E-01	.17100E-01	.19451E-01	.21802E-01	.24153E-01	.26504E-01	.28855E-01	
			•99746E-03	.43224E-02	.76471E-02	.10972E-01	.14297E-01	.17622E-01	.20946E-01	.24272E-01	.27596E-01	.30922E-01	.34247E-01	.37570E-01	.40895E-01	.44220E-01	47546E-01		-26107F-04	-48826E-03	151446-02	207225-02		* 1176E-02	•74603E-02	•98115E-02	.121625-01	.14514E-01	.16865E-01	•19216E-01	 21567E-01 	.23918E-01	26269E-01	.28620F-01	
			•66498E-03	 39898E-02 	.73146E-02	.10640E-01	.13964E-01	.17289E-01	.20614E-01	.23939E-01	.27264E-01	•30590E-01	.33912E-01	.37237E-01	.40563E-01	•43888E-01	-47214E-01		.11605E-04	-41630F-03	.13871F-02	28047E-02	20-3144074	• 4 8 4 3 0 E-02	• /ZZ53E-0Z	•95762E-02	•11927E-01	.14278E-01	.16630E-01	.18981E-01	•21331E-01	.23683E-01	.26034E-01	.28385E-01	
150	-		.33248E-03	 36573E-02 	•69821E-02	.10307E-01	.13632E-01	•16957E-01	.20282E-01	.23606E-01	.26931E-01	.30256E-01	.33580E-01	.36905E-01	•40231E-01	.43556E-01	.46881F-01		•29014E-05	.35000E-03	.12653E-02	-27200E-02		20-362/04*	• • • • • • • • • • • • • • • • • • •	• 93412E-02	•11692E-01	•14043E-01	.16394E-01	.18746E-01	•Z1096E-01	•23447E-01	.25799E-01	.28149E-01	
NUMBER -	•	ŝ	••	 33248E-02 	•66498E-02	.99746E-02	 13299E-01 	16624E-01	•10-3646F-01	.23274E-01	 26599E-01 	29924E-01	.33248E-01	.36573E-01	.39898E-01	.43224E-01	.465495-01	7	•••	.28941E-03	.11489E-02	-25522E-02				• 91 062 E-02	•11457E-01	•13808E-01	·16159E-01	•18510E-01	•Z0861E-01	-23212E-01	 25563E-01 	.27914E-01	

APPENDIX D

SNAN2

ł

22 298016-02 22 .520216-02 22 .620216-02 21 .119896-01 21 .119896-01 21 .167626-01 21 .167626-01 21 .191136-01 21 .191136-01	01 .23815E-01 01 .26166E-01 01 .28517E-01 01 .330867E-01 01 .335270E-01 01 .37920E-01 03 .288895E403	03 2889999403 03 2888999403 03 2888999403 03 2888999403 03 2888999403 03 2888999403 03 2888994403 03 28889494403 03 2888944403 03 2888944403 000000000000000000000000000000000	
.26512E-C .58869E-C .89434E-C .11728E-C .1476E-C .18527E-C .18378E-C	235806- 259316- 259316- 282826- 306326- 3329826- 353356- 3768888 3768896+	Construction C	
 23216E-02 55696E-02 86484E-02 11464E-01 13941E-01 16292E-01 206045E-01 	.233455-01 .256965-01 .2869475-01 .303985-01 .327485-01 .374515-01 .374515-01	288899556 288899556 2888995603 2888995603 2888995603 2888995603 2888995603 28885603 28885603 2885603 288856003 288856003 288856003 288856003 288856003 288856003 288856003 288856003 2888560000000000000000000000000000000000	
<pre>.19913E-02 .52508E-02 .83509E-02 .11197E-01 .13706E-01 .16057E-01 .16057E-01 .16057E-01 .100577E-01 .100577E-01</pre>	23110E-01 25461E-01 27812E-01 30163E-01 32513E-01 34866E-01 37216E-01	· 2888999999 • 2888999999 • 288899999 • 28889999 • 28889999 • 28889999 • 2888999 • 28889999 • 2888999 • 2888996 • 03 • 288896 • 03 • 2888996 • 03 • 288896 • 03 • 2888996 • 03 • 288896 • 03 • 28886 • 03 • 28886 • 03 • 288866 • 03 • 288666 • 03 • 288866 • 03 • 288666 • 03 • 03 • 03 • 03 • 03 • 03 • 03 • 03	
.16603E-02 .49304E-02 .80510E-02 .10927E-01 .13470E-01 .13470E-01 .18172E-01	228756-01 252266-01 275766-01 299286-01 322786-01 346286-01 369816-01 369816-01	2288895 203 2288895 203 2288895 203 2288895 203 2288895 203 2288895 203 2288895 203 2288895 203 203 203 203 203 203 203 203 203 203	
.13289E-02 .46086E-02 .77483E-02 .10653E-01 .13233E-01 .17938E-01 .17938E-01	226396-01 273426-01 273426-01 296926-01 320446-01 367476-01 367476-01 367476-01	288895 28895 288895 288895 288895 288895 288895 288895 288895 288895 288895 288895 288895 288895 288895 28885 28885 28885 28885 28885 28885 28885 28885 28885 28885 28885 28885 28885 28865 28895 2895 2	
.997006-03 .428526-03 .744356-02 .103756-01 .103756-01 .123926-01 .177026-01	224046-01 247566-01 271066-01 318096-01 341996-01 3451996-01 345096-01	28889555995 28889559595 28889559595 288895595 288895595 288895595 288895595 288895595 2888955 288955 289555 289555 289555 289555 289555 289555 289555 2895555 2895555 2895555 2895555 2895555 28955555 28955555 2895555555 28955555555 2895555555555	•••••••
66483E-03 39606E-02 71363E-02 10095E-01 12747E-01 17467E-01	2222695-01 245266-01 268716-01 292276-01 339746-01 339246-01 339246-01 338866+03	288899 28899 28999 289999 289999 289999 289999 289999 289999 289999 289999 28999900 289990000000000	
33248E-03 36350E-02 68269E-02 98115E-02 12498E-01 17232E-01 17232E-01	219345-01 219345-01 266365-01 289875-01 313405-01 3356965-01 336905-01 336905-01	288899 288899 288899 288899 288899 288899 288899 288899 288899 288899 28999 289999 2899 289999 289999 28999 28999 289999 2899999 289999 289999 289999 28999900 289990 289990 2899900000000	
RMI 33080E-02 65154E-02 95250E-02 12245E-01 12245E-01 12245E-01	216995-01 -246995-01 -264016-01 -287525-01 -311025-01 -334555-01 -358055-01 -358055-01	· · · · · · · · · · · · · · · · · · ·	

ORIGINAL PAGE IS OF POOR QUALITY

• M • 1 15+14- M1 •••

÷

_

		<pre>.18371E+05 .16895E+05 .16895E+05 .16895E+05 .11259E+05 .11558E+05 .11994E+05 .121954E+05 .12175E+05 .121755E+05 .121755E+05 .121755E+05</pre>
••••••••		18461E+05 17088E+05 14705E+05 11611E+05 11519E+05 11519E+05 11519E+05 11519E+05 12195E+05 12175E+05 12175E+05 12175E+05 12175E+05 12175E+05
		.185416+05 .172726+05 .149876+05 .119576+05 .1108756+05 .119696+05 .1218676+05 .1218676+05 .121736+05 .121756+05 .121756+05 .121756+05
••••••••		.18610E+05 .17446E+05 .15259E+05 .12290E+05 .1276E+05 .11768E+05 .12142E+05 .12142E+05 .12175E+05 .12175E+05 .12175E+05 .12175E+05
•••••••		•186698+05 •176098+05 •15528+05 •15528+05 •126698+05 •114008+05 •117468+05 •117468+05 •121688+05 •121588+05 •121758+05 •121758+05 •121758+05
		.18716E+05 .17762E+05 .12576E+05 .125931E+05 .10557E+05 .11316E+05 .11719E+05 .11719E+05 .12155E+05 .12155E+05 .12175E+05 .12175E+05 .12175E+05
••••••		<pre>.187546+05 .179056+05 .179056+05 .132396+05 .132396+05 .113046+05 .113046+05 .119086+05 .121746+05 .121756+05 .121756+05 .121756+05 .121756+05</pre>
		<pre>"187815+05" "187815+05" "186335+05" "135395+05" "135395+05" "135395+05" "135395+05" "12131555+05" "1213555+05" "121755+05" "121755+05"</pre>
		18796E+05 18796E+05 18159E+05 16159E+05 10529E+05 11176E+05 11176E+05 112176E+05 12111E+05 12175E+05 12175E+05 12175E+05 12175E+05
		.18802E+05 .18270E+05 .18270E+05 .1614E+05 .10898E+05 .11112E+05 .12155E+05 .12175E+05 .12175E+05 .12175E+05 .12175E+05 .12175E+05 .12175E+05 .12175E+05

ORIGINAL PAGE IS OF POOR QUALITY .15000E-02 SS .15000E-02 .15000E-02 .15000E-02 .15000E-02

THE FOLLOWING SPOINT VALUES DESIGNATE THE S-COORDINATE LOCATIONS WHERE THE SOLUTIONS ARE OBTAINED DURING THE S-MARCH. Your print station must agree with one or more of the spoint locations; ie, you can print omly at solution stations If the case completes with a normal stop and no output is printed, your print input is in Error. The error can be Noted by comparing proval and printval with spoint.

1 .15000E-01 1 .30000E-01 1 .45000E-01
.13500E-0 .28500E-0 .43500E-0
.12000E-01 .27000E-01 .42000E-01
.10500E-01 .25500E-01 .40500E-01
.90000E-02 .24000E-01 .39000E-01
.75000E-02 .22500E-01 .375 00 E-01
.60000E-02 .21000E-01 .36000E-01 .15000E-02
.45000E-02 .19500E-01 .34500E-01 .49500E-01
.30000E-02 .18000E-01 .33000E-01 .48000E-01
SPDINT .15000E-02 .16500E-01 .31500E-01 .46500E-01

7 - - -

NUMBER - RRS	30								
0. .742005-02	.76200E-03	.15240E-02	.22860E-02	.30480E-02	.38100E-02	*45720E-02	• 53340E-02	•60960E-02	.68580E-02
.15240E-01	.16002E-01	.16764E-01	.17526E-01	.182886-01	.19050E-01	.19812E-01	•22860E-01	.34290F-01	.49530F-01
.	.0	••	1						
ZZS									
41910E-02	41605E-02	41453E-02	40843E-02	39624E-02	381006-02	-•36576E-02	34900E-02	33223E-02	- .31 090E-02
-•28575E-02	26213E-02	23470E-02	20726E-02	17678E-02	14630E-02	10973E-02	76200E-03 -	41148E-03	- - 60960E-04
•38100E-03	.82296E-03	.12954E-02	•17678E-02	.22860E-02	28575E-02	•33833E-02	57150E-02	.14288E-01	•24765E -01
•••	•••	•							
DRSDZS									
24984E+02	33348E+02	•20000E+02	83 324E+01	55560E+01	.50000E+01	.47625E+01	.45452E+01	.39996E+01	 327886+01
.31251E+01	 29853E+01 	•27775E+01	.26314E+01	.25000E+01	.22728E+01	-21740E+01	. 22222E+01	•21739E+01	.192316+01
.17241E+01	I6667E+01	16130E+01	.15385E+01	.13986E+01	.13889E+01	.13333E+01	.13277E+01	.14000E+01	<pre>.14546E+01</pre>
••	•0	••							ł
PRINT STAT	IONS DESIGNA	TED IN SNAM1	INPUT AND GE	NERATED IN	SETUP				
PROVAL									
.49500E-01	.30000E-01								
.15000E-02	.30000E-02	.45000E-02	.60000E-02	.75000E-02	.90000E-02	.105006-01	.12000E-01	.13500E-01	.150006-01
.16500E-01	.18000E-01	.19500E-01	.21000E-01	.225006-01	.24000E-01	.255005-01	.27000F-01	.285005-01	. 300005-01

SNAM3

.33000E-01 .31500E-01

ETA	U/UE	T/TE	>	FZ	17	хL
0.2500000000000000000000000000000000000	0. 216480E+00 401831E+00 55554E+00 681867E+00 955554E+00 953595E+00 967027E+00 967027E+00 967027E+00 100000E+01 100000E+00 10000E+00 100000E+00 100000E+00 100000E+00 1000	<pre>999615E+00 9997660E+00 9997795E+00 9999791E+00 9999831E+00 9999831E+00 9999831E+00 9999258+00 999945E+00 999945E+00 100000E+01 10000E+01 10000E+01 10000E+01 100000E+01 100000E+01 10000E+01 10000E+0</pre>	0. 270599E-01 204349E+00 224147E+00 224147E+00 378949E+00 378949E+00 1281515E+00 12815158E+00 1281573E+01 145590E+01 145596E+01 145273E+01 744273E+01 747778E+01 747778E+01 747778E+01 747778E+01 747778E+01 747778E+01 747778E+01 747778E+01 747778E+01 747778E+01 747778E+01 747	.9281756+00 .8036526+00 .68034886+00 .5600716+00 .5600716+00 .2536086+00 .12731576+00 .12731576+00 .12731576+00 .12731576+00 .12731576+00 .12731576+00 .12731576+00 .12731576+00 .12731576+00 .2842176+13 .21316366+13 .21316665666566+13 .2131666566+13 .21316665666566+13 .2131666566+13 .21316665666566+13 .21316665666566+13 .21316665666566+13 .213166656665666566+13 .2131666566656665666566+13 .2131666566656666666666666666666666666666	.1801255-03 .1772865-03 .1772865-03 .1772865-03 .1637095-03 .1510705-03 .1510705-03 .1510705-03 .1510705-03 .1510765-03 .1510545-13 .2842175-13 .2842175-13 .2842175-13 .2842175-13 .2842175-13 .2842175-13	.100012E .100012E .100012E .100012E .100007E .100007E .100007E .1000006 .1000003E .1000003E .1000000 .1000000 .1000000 .1000000 .1000000 .1000000 .1000000 .1000000 .1000000 .1000000 .1000000 .1000000 .10000000 .10000000 .10000000 .10000000 .1000000000 .100000000 .100000000 .10000000000
CUNVERGEV JELT						

SIMILAR SOLUTION REQUIRED TO INITIATE MARCHING PROCEDURE

PROFILE VALUES

132

. .188020E+05 qS0 =-.144357E+02

PE

. 289000E+03
. 312933E-01

UE =0. TE XBE = .500000E+00 RE

MUE = 196497E-04 XAL =0.

INITIAL STATION PARAMETFRS

441 **MARKAN AN ANNAL K.A.** 14

,

* * * * S L I N
IN S.I. U
WTITIES ARE
OUTPUT QUI
****DIMENSIONAL

16049E-02	27790E+03		TTWIX	.940E+00 .942E+00
R17	PTR = .3		VORTREY	0. .496E+01
209860E+01	306256E - 04		12	133E-01 286E-01
•11	VISREF.		F7	.482E+00 .481E+00
10923E+02 52799E+08	72695E+04		A/ME	0. .111E+00
Pl = .3: Rey = .1:	UREF1'		PT/PTR	.174E-02 .175E-02
116505E+02 203000E+02	16049E-02		CRDCCD	•185E-10 -•546E+01
RT1 = 43 Xma = 22	RREF1		ΤΤ/ΤΤ Ε	.100E+01 .998E+00
289000E+03 850714E+02	573823E+03		T/TE	•1196+01 •1186+01
IENSIONAL	ISIONAL • TREF• •	:LE	U/UE	0. .121E+00
<pre>VALUES-DI™ .700000E+07 .172695E+04</pre>	ALUES-DIMEN .213551E+05	3495 PROFI	Y/YE	0. .745E-01
FREE STREAM PT1 = U1 =	REFERENCE V Pref=	•	ETA	0. .250E+00

ETA	Y/YE	U/UE	T/TE	TT/TTE	CROCCO	PT/PTR	M/ME	F Z	12	VORTREY	TIMIX
••	••	0.	119E +01	.1005+01	.1855-10	.1746-02	•0	.482E+00	1336-01	.0	. 9405400
250E+00	.745E-01	.121E+00	118E+01	• 998E+00	546E+01	.175E-02	.111E+00	.481E+00	286F-01	.4966+01	9425400
• 500E+00	.148E+00	.240E+00	.118E+01	•997E+00	717E+01	.1785-02	.2226+00	475F+00	432F-01	1995402	0446400
•750E+00	• 2 2 2 E + 0 0	• 358E+00	•116E+01	.998E+00	533E+01	.183E-02	.332F+00	.461E+00	5656-01	4435402	0485400
.100E+01	.294E+00	.471E+00	.115E+01	.999E+00	501E+00	.190E-02	-440F+00	-438F+00	6745-01	.7675402	0526400
<pre>.125E+01</pre>	 365E+00 	•577E+00	•113E+01	•100E+01	•635E+01	.1996-02	.5436+00	404E+00	749F-01	.114F+03	. 958F+00
<pre>.150E+01</pre>	•435E+00	.673E+CO	.111E+01	.100E+01	•139E+02	.210E-02	•639E+00	• 359E+00	781E-01	.1506+03	- 964E+00
175E+01	• 503E+00	.757E+00	•1045+01	.101E+01	208E+02	.221E-02	•724E+00	.306E+00	7685-01	-1-80F+03	. 9706+00
.2006+01	• 5 7 1.E + 0 0	826E+00	.107E+01	.101E+01	257E+02	.232E-02	•798E+00	• 250E+00	714E-01	.1976+03	- 9765+00
•225E+01	•637E+00	.881E+00	.105E+01	.101E+01	 280E+02 	.2426-02	• 858E+00	•193E+00	6285-01	.1996+03	. 981E+00
•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	-	
•	•	•	•	•	•	•	•				
•400E+01	•108E+01	.998E+00	•100E+01	.100F+01	•574E+01	.2685-02	.997E+00	.623E-02	6625-02	2126402	0005400
•425E+01	•114E+01	00+3666 °	.100E+01	1005+01.	.383E+01	.2696-02	.998E+00	.293E-02	400F-02	0.	. 999F+00
•450E+01	120E+01	.100E+01	100E +01	.100F+01	•259E+01	.269E-02	• 999E+00	.1285-02	730F-02		.1006+01
•475E+01	126E+01	100E+01	.100E+01	.100E+01	.185E+01	.2695-02	.100E+01	.520E-03	127E-02		.100E+01
• 500E+01	<pre>.133E+01</pre>	100E+01	•100E+01	.100E+01	<pre>.143E+01</pre>	.269E-02	.100E+01	.195E-03	665E-03	.0	.1006+01
• 525E+01	.139E+01	.100E+01	.100E+01	.100F+01	120E+01	.269E-02	.100E+01	•676E-04	333E-03	•••	.100E+01
• 550E +01	•145E+01	• 100E+01	•100E+01	.100E+01	.109E+01	.269E-02	.100E+01	.2166-04	1586-03	••	.100E+01
10+3474.	10+3151.	• 100E+01	.100E+01	.100f+01	.104E+01	.269E-02	100E+01	.630E-05	717E-04	••	• 100E+01
• 600E+01	•157E+01	·100E+01	·100E+01	.100E+01	.102E+01	.269E-02	.100E+01	.1685-05	308E-04	••	.100E+01
•625E+01	•163E+01	•100E+01	•100E+01	.100F+01	.101E+01	•269E-02	•100E+01	.407E-06	1266-04	••	.100F+01

APPENDIX D

ORIGINAL PAGE IS OF POOR QUALITY

133

.

.

1E-03 4E+01 7E-02	
.7681 .1015	
YE UTAU TRFCT Ymp P20 DMEGA RVWAL	
30304E-02 .71088E-02 0 .99962E+00 .99760E+00 .19874E+03 .15627E+04	
Z SHK R SHK I T FR I T R I T W / T T I T W / T T I F R O U SE R R O U SE V W SO SE	
 586826-02 208786-04 208786-04 268276-03 308686-02 367416-02 3677416-02 895546+03 895546+02 724696+02 	* * * * * * 1 * * 1 *
	* NO I
CFW OSD NSTE NUE NUE SVANG	:¢***** \LCULAT ↓DIT=
38981E-02 1389516-01 .2596556+01 .29136E-03 .88531E-04 .32911E+01 .28615E+02 .49302E-02	+++++++++++ LE ENTROPY CA X≡ 5 h
0000000 01605 01605 011457 011457 11467 11467 114000 11400000000	******* VARIBI ITMA
.84412E+02 .47197E+65 .12175E+05 .24272E+03 .24127E-01 .24127E-03 .69362E+03 .75534E+00	.30815E-04 *******
<u>.</u>	•
А В В В В В В В В В В В В В	ERROR
.49500E-01 .19720E-04 .37893E-01 .30003E-01 .25399E-03 .38139E+00 0 .7781E+03	5
	i∎ - o∡
S S S S S S S S S S S S S S S S S S S	

÷

* *

134

2

ŝ

÷

-

APPENDIX D

LINIX		9756400	00000000	0012424	* 434E+00	- 941E+00	• 948E+00	• 956E+00	.964F+00	.971E+00	- 478F+00		•	•	•	.9995+00	. 999F +00	1005401	1001001	1043001.	• 100E+01	•100E+01	.100E+01	.100E+01	· 100 E +01	.100E+01		c n 3		c		E+01	t- 02			
VORTREY		.532F+01	.2146403	6 2 2 4 0 2 4 0 2		•840F+02	 125E+03 	<pre>.167E+03</pre>	• 201E+03	•221E+03	.222E+03		•	•	•	 109E+02 	.792E+01	.5535+01	1012126.		•	•••	•	••	•••	•	06207 .			5			A IJ/3/	-	•	
12	2845-01	507E-01	710F-01	8706-01			-•T0PF+00	106E+00	100E+00		777E-01		•	•	•	740E-02	443E-02	254E-02	1395-02	7245-02			1/UE-03	767E-04	329E-04	1346-04	E-02 VE	F-02 UTAU	TDEC	F+00 YMP	E+00 020	E402 0MC	6407 DHE6	RVWA		
ΕZ	.489E+0C	.487E+00	.480E+00	-465E+00	4406400		00+1+0++	• 358E+00	• 304E+0C	 246E+00 	190E+00	•		•	•	• 543E-02	•278E-02	•121E-02	•489E-03	.1835-03	-6315-04			• 284E-05	.155E-05 .376E-06	• • • • • • • • • •	70302"- =	- 73057		199962	JF= . 99813		1 20241	• 0•		
M/ME	.0	.109E+00	•219E+00	•329E+00	.437F+00	- 5405400		• 0 9 / E + 0 0	• /23E+00	• 797E+00	•857E+00	•	•	•	• • • • •	00+2244	• 998E+00	• 999E+00	.100E+01	.100E+01	-100F+01	1005401		10+3001*	.100F+01	TA10AT.	E-02 ZSHK	E+04 RSHK	E+03 ITRO	E-02 TW/T1	F-02 RFTRU	E+03 RUISE	E+03 DSMXC	E+02 VH		
PT/PTR	•174E-02 (.175E-02	 179E-02 	.186E-02	.196E-02	-209E-02	223E-02		20-36:20	• 204E-02	• 209E-02	•	•				• 30 4E-02	• 309E-02	• 309E-02	.309E-02	.3096-02	. 309F-02	. 300E-02		.309E-02		* 56633	45493	45387	43593	54857	 .17580 	15151	3 = .72579		
CROCCO	.185E-10	•127E+02	• 207E+02	• 237E+02	•218E+02	 156E+02 	-6435401	3555401		101102	*T0+2+0T*	•	•		.5605401			• 20UE + 01	.185E+01	.143E+01	.120E+01	.109E+01	.1045+01	1025401	.1016+01		1E-02 CFW	2E+00 02D	4E+01 HD	8E-03 NSTE	9E-04 NSTW	9E+01 NUE	7E+02 NUN	5E-02 SWAN		
TT/TTE	•100E+01	- 495E+00 -	• 442E+00 -	- 990E+00	- 00+3166*	- 00+3+66*	- 997E+00	-1005+01	1005401	1015401	10131010	•	•	•	.100F+01	1005401		10.3001.	•100E+01	.100E+01	.100E+01	.100E+01	.100E+01	1005+01	.100E+01		DS 3898	DS =8503	DS = .1868	AST= .2693	TA = .7718	M = .3489	0 = .3545	4500		
T/TE	•126E+01	.123E+01		• 10+3121•	• 1145 +01	.116E +01	•114E+01	.111F+01	-109F+01	-1065+01		•	•	•	100E+01	-100E+01	1005401		= I UUE + 0 L	•100E+01	•100E+01	.100E+01	•100E+01	•100F+01	.100E+01		01E+02 DPE	14E+05 01E	77E+05 DUE	5/E+03 DLT	CBE-01 THE	95E+03 FOR	20E+00 TAU	31E-04 CFE	93E-04	
U/UĘ	0.	-244F+00	3436400	00132000		•583E+00	•678E+00	.762E+00	.830E+00	.885F+00		•	•	•	•998E+00	- 999E+00	.100F+01	10001001	1013001	• • • • • • • • • • • • • • • • • • •	• TOPE+01	.100E+01	.100E+01	.100E+01	.100E+01		: HE • • 914			677		- 1 85	188 .	нт ж ,169 Ров – 181	797° - 197	
7.YE	0. . 771 E-01	.1536+00	.22AE+00	3025400		• 3 / 4 E + 00	•446+00	<pre>.513E+00</pre>	•580E+00	•646E+00		•	•	•	<pre>.108E+01</pre>	.114E+01	.1206+01	1265401	1225401	1010001	1043661.	•145E+01	•151E+01	I57E+01	.163E+01						7701-00 KE			04/6+03 MU		
ETA	0. -250F+00	• 500E+00	.750F+00	-100F+01	1966401	T013071	•100E+01	<pre>.175E+01</pre>	•200E+01	•225E+01	•		•	•	.400E+01	.425E+01	.450E+01	.475F+01	-500F+01	-525F401			• > r > t + 0 I	•600E+01	•625E+01	07 -		RMT = .37	7	AFTA - 17	YAI - 11	74L	DEDELT- 31	NOTTER= .31		VUID VADTALE

.0495 PROFILE

SELECTED ň

TEST CASE ND. 5

THE LISTING FOR TEST CASE ND. 5 INCLUDES THE FOLLOWING: (1) VARDIM DATA; (2) \$NAM1 AND \$NAM2 INPUT; (3) INITIAL STATION SOLUTION; (4) REFEFENCE VALUES; (5) PROFILE AND WALL PRINTS AT S=.6385 M.

0 5 1. •10800E+00 .12058E-01 NAUXPRO= NITMAX = XMA VIS2C1 IENTRO IYINT XT5 I •11033E+03 .20000E+01 .78006E+00 I 66 .10000E-03 0 TL NGTH VI SIC2 I PRNT CONV DETAI GLAR X74 -.12754E+01
.14582E-05
.72000E+00 2 • 99500E+00 2 0 -.50000E+01 IPRO -VELEDG -. XK VISICI PR KTCOD X13 NUMB1 2 .10000E-01 2 .16800E-01 -101 •28696E+03 • • PRNTINC = CONVE . . 8 . . . XT2 KODPRT KODVIS *VARDIM/VGBLP(JK=103,JL=1,JM= 99,JN= 2,JI=1,JH=101) *VARDIM/TABLE(JJ=100,JH=101) *VARDIM/VAPENT(JL=1) *VARDIM/TURBLNT(JL=1,JK=103) *VARDIM/TURBLNT(J1=1,JK=103) *VARDIM/MESH(JK=103) *VARDIM/SIMILAP(JK=103) *VARDIM/SOLVE(JK=103) IF IGAS R IIHd .10000E+09 .40000E+00 .95000E+00 .60000E+02 .37700E+03 .14000E+01 0 m • • PROINC KODE ITMAX SMXTR XEND TT1 G WAVE XT1 PRT 10000E+01 1 .34500E+07 2 *26000E+02 30000E-03 KODUNIT-KODAMP VIS2C2 IEND1 FT S NAMI IGEOM PT1 IBODY PRTAR SST XT6

THIS COMPLETES THE OUTPUT OF \$NAM1 WITH THE EXCEPTION OF PROVAL AND PRNTVAL. THESE VALUES ARE PRINTED JUST PRIOR TO THE Initial station print.

Original page is of poor quality

and here

7

. **1** ...

the second

.38784E+00 .45137F+00	•51489E+00	.57205E+00	•63853E+00	•73152E-01	.12113E+00	.17627E+00	.23884E+00	.30170E+00	.36490E+00	.42827E+00	•49172E+00	.54887E+00	•61534E+00	•17145E-01	.10135E-01	155455-01
6E+00	3E+00	00+30	3E+00	8E-01	3E+00	3E+00	96+00	00+30	5E+00	2E+00	7E+00	2E+00	45+00	8E-01	0E-01	05-01

APPENDIX D

.92552E-01
.14161E+00
.19713E+00
.26069E+00
.32427E+00 .15545E-01 .26746E-01 .36424E-01 .43282F-01 .47829E-01 .5221E-01 .5221E-01 ~20498E-01 10106-01 14530E-01 ~25628E-01 ~35610E-01 ~35610E-01 ~42696E-01 ~521459E-01 ~521459E-01 ~521459E-01 .72764E-01 .13843E+00 .18444E+00 .24799E+00 .3751E+00 .3751E+00 .3751E+00 .55935E+00 .55935E+00 \$5498E-01
11796E+00
16375E+00
222634E+00
28910E+00
341557E+00
41557E+00
53617E+00
53617E+00
60599E+00 .24613E-01 .10083E-01 .13564E-01 .24485E-01 .24485E-01 .42114E-01 .42114E-01 .42092E-01 .51993E-01 .62798E-01 .13683E+00 .17808E+00 .24161E+00 .30521E+00 .3368721E+00 .43231E+00 .49582E+00 .49582E+00 .55300E+00 47497E-01
111636E+00
15745E+00
282807E+00
28280F+00
49726F+00
49726F+00
47267E+00
55982E+00
55982E+00 .29947E-01 .10083E-01 .12674E-01 .23342E-01 .33857E-01 .41677E-01 .41677E-01 .51740E-01 .51740E-01 .50368E-01
.13604E+00
.17175E+00
.23526E+00
.29885E+00
.29885E+00
.42595E+00
.42595E+00
.42595E+00
.48947E+00
.48947E+00
.54665E+00
.54665E+00
.61013E+00 .38481E-01 .11557E+00 .15118E+00 .27651E+00 .27651E+00 .27651E+00 .40632E+00 .46632E+00 .46632E+00 .52347E+00 .58694E+00 •37286E-01 •10083E-01 •11912E-01 •22199E-01 •46248E-01 •46278E-01 •46278E-01 •51612E-01 .29971E-01 .11531E+00 .14486E+00 .27021E+00 .27021E+00 .33554E+00 .33554E+00 .33554E+00 .51712E+00 .58135E+00 .36585E-01
.13579E+00
.16538E+60
.22891E+00
.29248E+00
.41958E+00
.41958E+00
.48311E+00
.48311E+00
.54029E+00
.54028E+00
.5408E+00
. .46430E-01 .10083E-01 .11253E-01 .21056E-01 .31980E-01 .49478E-01 .49478E-01 .51435E-01 ~23303E-01 *12723E+00 *15906E+00 *28613E+00 *28613E+00 *28613E+00 *41324E+00 *41324E+00 *41324E+00 *53394E+00 *53394E+00<*53394E+00</pre> 21336E-01
10678E+00
13856E+00
20132E+00
20132E+00
20132E+00
392695E+00
392695E+00
45265E+00
45265E+00
51077E+00
51077E+00 .590555E-01
.103115-01
.10744E-01
.10744E-01
.309895E-01
.3939525-01
.453395-01
.512735-01
.525554F-01 .130296-01 .118616+00 .152726+00 .279786+00 .279786+00 .470426+00 .470426+00 .527596+00 •12701E-01 •98246E-01 •13223E+00 •13505E+00 •25766E+00 •33205E+00 •33306E+00 •44729E+00 •50442E+00 •56789E+00 •66294E-01 11101F-01 10363F-01 10363F-01 .29971E-01 .38761F-01 .48844E-01 .51078F-01 .5202F-01 43266E-02
10986E+00
14636E+00
20984E+00
27342E+00
3336400
433657E+00
446407E+00
52124E+00
58473E+00
58473E+00 .69595E-01 .12625E-01 .10235E-01 .17703E-01 .28932E-01 .43949E-01 .4348E-01 .51036E-01 .51056E-01 100 .10107E+00 .14318E+00 .20350E+00 .26706E+00 .333062E+00 .333062E+00 .33162E+00 .33162E+00 .3316400 .5719E+00 .57840E+00 .57840E+00 .57840E+00 A1205E-01 -12271E+00 -18255E+00 -24511E+00 -37122E+00 -43459E+00 -43459E+00 -43459E+00 -43459E+00 -43459E+00 -55522E+00 -55522E+00 -8MI 69851E-01 14527E-01 14527E-01 16612E-01 .27865E-01 .37865E-01 .37865E-01 .48210E-01 .50920E-01 NUMBER L S O.

SNAN2

137

. . .

		3476E+07 5410E+07 2408E+06 3092E+05 9133E+05 9133E+05 0321E+05 608E+06 9637E+04 9637E+04 9637E+04 9637E+06 3340E-02 3428E-02 3428E-02 3428E-02 3428E-02 3428E-02
		993E +07 306E +07 786F +06 5374E +05 305E +05 734E +04 7334E +04 7334E +04 7334E +04 7334E +04 7327E +04 7327E +04 7327E +04 7327E +02 1902E -02 1902E
••••••••••	••••••••••••	
	•••••••••••	7
		 .343688 .1783886 .1783976 .230976 .23096 .3352076 .63352076
.	00000000000	<pre>4431E+07 8099E+07 4813E+06 48136+06 48136+06 49752E+05 4752E+05 47752E+05 47754 47759E+06 7569E+04 7569E+04 7569E+04 7569E+00 3708E-02 3523E-02 3700E-02 3700E-02</pre>
••••••••••••••••••••••••••••••••••••••	•••••••••••	0 0
		017 .33449 016 .758419 016 .758419 016 .758419 016 .84455 016 .8532449 01 .1147204 01 .1147204 002 .63349 002 .63368 002 .63349 002 .63368 002 .63688 002 .636888 002 .636888 002 .636888 002 .636888 002 .636888 002 .636888 002 .636888 002 .636888 002 .6368888 002 .6368888 002 .63688888888 002 .63688888888888888888888888888888888888
		 34 34 63 15 16 16
88666666666		4469E+07 7434E+07 0756E+07 2169E+06 1647E+05 0997E+05 0997E+05 0997E+05 1640E+06 4461E+06 4461E+06 3431E-02 3431E-02 3556E-02 35566E-02 35566E-02 35566E-02
		701 7
		07 .3447 07 .3447 06 .1310 06 .1482 05 .11482 05 .11482 04 .6818 04 .6818 04 .6818 04 .6818 05 .4348 06 .4348 002 .63178 002 .63178 002 .63355 002 .63355
3	90000000000000000000000000000000000000	PE • 34470 • 344706 • 1985796 • 1985796 • 1985796 • 1985796 • 1881236 • 188126 • 188126 • 188126 • 188126 • 188126 • 18826 • 18866 • 188666 • 188666 • 188666 • 188666 • 1886666 • 1886666 • 1886666 • 18866666 • 18866666 • 188666666 • 18866666666666666666666666666666666666

ORIGINAL PAGE 13 OF POOR QUALITY

APPENDIX D

1

.

.63581E-02 .63551E-02 .63490E-02 .29962E-02	HE S-MARCH. Stations. Can be	•92552E-01 14161E+00 19713E+00 226069E+00 38784E+00 45137E+00 45137E+00 57205E+00	.10107E+00 .14318E+00 .26350E+00 .26736E+00 .33062E+00 .33419E+00 .37840E+00 .57840E+00
.63581E-02 .63551E-02 .63520E-02 .63490E-02	ED DURING TH At Solution • The Error	<pre>.82604E-01 .14001E+00 .19079E+00 .25434E+00 .31793E+00 .38146E+00 .44501E+00 .44501E+00 .56570E+00 .56570E+00</pre>	<pre>.92552E-01 .192552E-01 .19713E+00 .250713E+00 .32427E+00 .38784E+00 .38784E+00 .38784E+00 .38784E+00 .38784E+00 .57205E+00 .57205E+00</pre>
.63398E-02 .63520E-02 .63520E-02 .63520E-02 .12704E-01	S ARE OBTAIN Print only IS in Error	<pre>. 72764E-01 .13843E+00 .18444E+00 .24799E+00 .31157E+00 .31511E+00 .43865E+00 .43865E+00 .55935E+00 .55935E+00 .55935E+00</pre>	<pre>.82604E-01 .82604E-01 .14001E+00 .25434E+00 .31793E+00 .31793E+00 .317651E+00 .4501E+00 .4501E+00 .4503E+00 .56570E+00</pre>
.63642E-02 .63551E-02 .63490E-02 .63490E-02	THE SOLUTION IE, YOU CAN Print input	<pre> <</br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></pre>	-72764E-01 -13843E+00 -18444E+00 -24799E+00 -24799E+00 -31157E+00 -31511E+00 -37511E+00 -37511E+00 -37512E+00 -55935E+00
.63642E-02 .63581E-02 .63551E-02 .55900E-02	FIONS WHERE T Locations; Kinted, Your	<pre>\$50368E-01 \$13604E+00 \$17175E+00 \$23526E+00 \$23526E+00 \$2362406 \$2362400 \$24665E+00 \$54665E+00 \$556655E+00 \$556655E+00 \$55665E+00 \$556655E+00 \$5566555E+00 \$556655E+00 \$556655E+00 \$5566555E+00 \$5566555E+00 \$5566555E+00 \$556655555555555555555555555555555555</pre>	TUP 62798E-01 .62798E-01 .13683E+00 .17808E+00 .24161E+00 .30521E+00 .30521E+00 .3531E+00 .43231E+00 .55300E+00 .55300E+00
.63429E-02 .73457E-02 .63520E-02 .71110E-02	DINATE LOCA DF THE SPOINT OUTPUT IS PR	<pre>36585E-01 .13579E+00 .13579E+00 .22891E+00 .22891E+00 .22948E+00 .41958E+00 .41958E+00 .41958E+00 .48311E+00 .54029E+00 .54029E+00 .54029E+00 .54029E+00 .54029E+00 .54029E</pre>	ERATED IN SE 503688-01 171758+00 235268+00 235268+00 23624058+00 235268+00 235268+00 235268+00 235268+00 235268+00 235268+00 2425958+00 2546658+00 546658+000 546658+000 546658+000 546658+000 54668+000 54668+000 54668+000 54668+000 54668+000 54668+000 54668+000 54688+0000 54688+0000 54688+0000 54688+00000000000000000000000000000000000
.63398E-02 .53431E-02 .63520E-02 .63490E-02	TE THE S-COOR DNE OR HORE C STOP AND NO NL WITH SPOIN	<pre> 23303E-01 .12723E+00 .15906E+00 .22256E+00 .234911E+00 .34911E+00 .41324E+00 .41324E+00 .47577E+00 .53394E+00 .53394E+00 .59743E+00 .59745 .5974 .597 .597 .597 .597 .597 .597 .597 .597</pre>	NPUT AND GEN 355855-01 135795+00 155385+00 228915+00 228915+00 235046+00 419585+00 419585+00 419585+00 419585+00 604545+00 56045400
.63703E-02 .63551E-02 .63520E-02 .63520E-02	LUES DESIGNAT Agree with (tth a normal al and prntu	<pre>13029E-01 13029E-01 15272E+00 21619E+00 234335E+00 234335E+00 40690E+00 47042E+00 47042E+00 552759E+00 552759E+00</pre>	D IN \$NAM1 I -23303E-01 -12723E+00 -15906F+00 -22556E+00 -22556E+00 -32471E+00 -41324E+00 -41324E+00 -41324E+00 -53394E+00 -53394E+00
.63459E-02 .63612E-02 .17556E-02 .63246E-02	IG SPOINT VAL TATION MUST COMPLETES WI IPARING PROVI	<pre>.86862E-02 .10986E+00 .14636E+00 .20984E+00 .27342E+00 .33697E+00 .33697E+00 .40053E+00 .46407E+00 .46407E+00 .58473E+00 .58473E+00</pre>	NS DESIGNATE •63853E+00 •13029E-01 •11861E+00 •15272E+00 •21619E+00 •234335E+00 •24335E+00 •24355E+00 •2759E+00 •59108E+00
.63459E-02 .63368E-02 .45964E-02 .63520E-02 0.	THE FOLLOWIN Your Print S If The Case Noted by COP	SPDINT .43431E-02 .10107E+00 .14318E+00 .20350E+00 .20350E+00 .39419E+00 .39419E+00 .39419E+00 .57840E+00 .57840E+00	PRINT STATIO PROVE 51 PROVE 600 -136046400 -132666400 -146366400 -146366400 -146366400 -146366400 -233476400 -233476400 -464076400 -464076400 -551246400 -551246400

ORIGINAL PAGE IS OF POOR QUALITY

SIMILAR SOLUTION REQUIRED TO INITIATE MARCHING PROCEDURE

PROFILE VALUES

ETA	U/UE	T/TE	>	F Z	ΤZ	۲۲
	0.	-100013E+01	•0	•468918E+00	••	• 999963E+00
502715-00	. 7111405-09	-100011E+01	475351F-19	.468918E+00	269108E+05	• 999963E+00
102455E-08	.480428F-09	-100011F+01	246111E-18	4689185+00	.108753E-04	• 999963E+00
T560AF-08	. 823879F-09	.100011F+01	723768E-18	.468918E+00	170540E-04	• 999963E+00
P60112E-08	126191F-08	.100011E+01	169798E-17	.468918E+00	.200572E-04	• 999963E+00
388253F-08	1820595-08	.100011E+01	353424E-17	.468918E+00	.235893E-04	• 999963E+00
5402046-08	253312F-08	.100011E+01	684200E-17	.468918E+00	.308260E-04	• 999963E+00
7340045-08	-3441886-08	100011E+01	126318E-16	.468918E+00	 338376E-04 	• 999963E+00
381176F-08	-460091E-08	1000115+01	225715E-16	.468918E+00	.353746E-04	• 999963E+00
129642E-07	.6079146-08	.100011F+01	394055E-16	• 468918E +00	.356607E-04	• 999963E+00
•	-	•	•	•	•	•
•	•	•	•	•	•	•
•	•	•	•	•	•	•
571945F+01	.100038E+01	.100000E+01	550546E+01	. B10735E-04	.1288465-07	100000E+01
356998E+01	.999929E+00	.100000E+01	735627E+01	250747E-04	333380E-08	.100000E+01
109302E+02	.100027E+01	.100000E+01	971668E+01	.931878E-05	.112791E-08	.100000E+01
139403E+02	.999979E+00	.100000E+01	127272E+02	383535E-05	440228E-09	100000E+01
177795E+02	.100025E+01	.100000E+01	165668E+02	.167551E-05	.186459E-09	.100000E+01
226760E+02	.999993E+00	.100000E+01	214639E+02	758719E-06	828869E-10	.100000E+01
289209E+02	.100024E+01	.100000E+01	277096E+02	.351242E-06	.379526E-10	100000E+01
368857E+02	• 999998E+00	.100000E+01	356753E+02	164868E-06	176691E-10	.100000E+01
470441E+02	.100023E+01	.100000E+01	458348E+02	.780711F-07	.034572E-11	.1000001.
500000E+02	.100000E+01	.100000E+01	587923E+02	••	••	.100000E+01
RGED SELF-S	IMILAR SOLUTION	REQUIRED 1	5ITERATIONS.			

020 =0.

.344704E+07

ш Ь

u ₽ 4

UE = .136191E+02 XBE =0.

MUE = .219000E-04 XAL = .489974E-03

INITIAL STATION PARAMETERS

original page is of poor quality

1.1.1.1.1.1.1.1

3. 11 htt dt 0011 H ->

. . . .

-

are also that the lasts

-

 ۴.
• 318880E+02

.

R1

.3769895+03

:

.344965E+07 .683167E+07

. .

Р1 КЕҮ

.318903E+02 .120580E-01

. .

RT1 Xma

.377000E+03 .389169E+03

FREE STREAM VALUES-DIMENSIGNAL PT1 = .345000E+07 TT1 = U1 = .469260E+01 AA1 =

REFERENCE VALUES-DIMENSIONAL PREF= .702188E+03 TREF=

.6385 PROFILE

•

★★★★DIMENSIONAL DUTPUT QUANTITIES ARE IN S.I. UNITS****

•491321E+04

PTR =

.4289955-10

•469260E+01 VISREF=

.318880E+02 UREF=

•219250E-01 RREF=

APPENDIX D

VISEFF	.1006+01 .1006+01 .1006+01 .1006+01 .1006+01 .1006+01 .1006+01 .1006+01 .1006+01 .1006+01 .1006+01 .1006+01 .1006+03 .1006+03 .1006+03 .1006+03 .1006+03 .1006+03 .1006+03 .1006+01 .1000+000+000+000+000+000+000+000+00+00+0
UDEF	0. 2026+02 2026+02 2026+02 2026+02 2026+02 2026+02 2026+02 2026+02 2026+02 2026+02 2026+02 2026+02 2026+00 2136+00 6646+00 2316+00 2366-01 2066+00 246-01
SULAU	0 1576-05 2596-07 2596-06 5956-06 5956-05 1126-05 1126-05 1126-05 1996-05 1996+02 1956+02 1956+02 1956+02 2016+02 2016+02 2016+02 20216+02 20216+02 20216+02 20226+02000000000000000000000
SULA	0.773 1765-06 .3026-06 .4626-06 .46276-06 .06986-06 .1268-06 .1268-05 .2236-05 .2236-05 .2236-05 .2236-05 .3356+05 .227
3#/#	0. 1466-08 .3336-08 .8756-08 .8756-08 .8756-07 .1266-07 .1266-07 .2396-07 .2396-07 .2396-00 .2396-00 .2356-00 .2356-00 .2386-00 .23
PT/PTR	.1916-02 .19
CRDCCD	.3976-13 .7956-13 .1996-12 .2386-12 .3386-12 .3386-12 .3376-12 .35176-12 .35176-12 .1116-11
TT/TTE	.9116+00 .9116+00 .9116+00 .9116+00 .9116+00 .9116+00 .9116+00 .9116+00 .9116+00 .9116+00 .9116+00 .9116+00 .1006+01 .1006+01 .1006+01 .1006+01 .1006+01
T/TE	.5456+01 .5456+01 .5456+01 .5456+01 .5456+01 .5456+01 .5456+01 .5456+01 .5456+01 .5456+01 .5456+01 .1636+01 .12336+01 .12336+01 .12336+01 .1266+01 .1266+01 .10266+01
U/UE	0.34.26-08 .3776-08 .13776-07 .2046-07 .2046-07 .2046-07 .4106-07 .4106-07 .95576-07 .95576-07 .9526+00 .9526+00 .9526+00 .9596+000 .9596+000 .9596+000 .9596+000 .95966+000 .96000000000000000000000000000000000
Y/YE	0. 731E-10 2855E-09 437E-09 630F-09 877E-09 877E-09 11959E-08 1595E-08 211E-08 531E+00 531E+00 52255+00 8466+000 8466+000 8466+000 8466+000 116516+001
ETA	0. 450E-09 112E-08 259E-08 388E-08 544E-08 544E-08 981E-08 95744-08 1304-07 1394-02 1394-02 1394-02 1394-02 1394-02 1394-02 1394-02 2894-02 2894-02

.865E+03 .866E+03	-02 +01 -01 -04 -01 -05
.902E-03 .934E-09	- 25547E - 25547E - 10000E - 49132E - 0.
• 2026+02 • 2026+02	YE UTAU 0 TRFC1 0 TRFC
.402E+05 .480E+05	<pre>c 0. c 0. d 0. d 0. d 0. suce. second 0. d 0. d 0. d 0. d 0. d 0. d 0. d 0.</pre>
.100E+01 .100E+01	26-02 ZSHA PSHA 1170 1170 1700 2000 2000 2000
.621E-01 .621E-01	NG 0000
.100E+01 .100E+01	19866+02 CFW 1966+01 05D 1076-01 HD 1076-01 HD 1326-03 NST 1926-03 NST 1926+03 NST 19566+03 NUW 19306-03 SWA
.100E+01 .100E+01	PEDS - 163 LEDS - 163 LEDS - 270 LEDS - 270 LEAST - 290 LETA - 290 AUD - 100 FE - 900 FE - 900
.100E+01 .100E+01	83425405 83425405 238455404 558455404 558455404 538455404 538455402 538455403 5415401 794125403 794125405403 794125400564056400566565656565656565656565656
.100E+01 .100E+01	
.161E+01 .192E+01	.63853E+00 .82888E+03 .52858E-01 .61534E+00 .16473E+00 .99666E+01 .20093E+06
.470E+02 .600E+02	S XI XI Z RMI Z S BETA XAL = A Revelte 0 Revelte 0 Noiter=

APPENDIX D

. . . 1

.

REFERENCES

- Blottner, F. G.: Computational Techniques for Boundary Layers. Paper for AGARD Lecture Series 73 on Computational Methods for Inviscid and Viscous Two- and Three-Dimensional Flow Fields (Von Kármán Inst.), Feb. 17-22, 1975.
- Bushnell, Dennis M.; Cary, Aubrey M., Jr.; and Harris, Julius E.: Calculation Methods for Compressible Turbulent Boundary Layers - 1976. NASA SP-422, 1977.
- 3. Harris, Julius E.: Numerical Solution of the Equations for Compressible Laminar, Transitional, and Turbulent Boundary Layers and Comparisons With Experimental Data. NASA TR R-368, 1971.
- 4. Price, Joseph M.; and Harris, Julius E.: Computer Program for Solving Compressible Nonsimilar-Boundary-Layer Equations for Laminar, Transitional or Turbulent Flows of a Perfect Gas. NASA TM X-2458, 1972.
- 5. Flügge-Lotz, I.; and Blottner, F. G.: Computation of the Compressible Laminar Boundary-Layer Flow Including Displacement-Thickness Interaction Using Finite-Difference Methods. AFOSR 2206, U.S. Air Force, Jan. 1962.
- 6. Davis, R. T.; and Flügge-Lotz, I.: Laminar Compressible Flow Past Axisymmetric Blunt Bodies (Results of a Second-Order Theory). Tech. Rep. No. 143, (Grants AF-AFOSR-62-242 and AF-AFOSR-235-63), Div. Eng. Mech., Stanford Univ., Dec. 1963.
- 7. Blottner, F. G.: Variable Grid Scheme Applied to Turbulent Boundary Layers. Comput. Methods Appl. Mech. & Eng., vol. 4, no. 2, Sept. 1974, pp. 179-194.
- 8. Harris, Julius Elmore: Numerical Solution of the Compressible Laminar, Transitional, and Turbulent Boundary Layer Equations With Comparisons to Experimental Data. Ph. D. Thesis, Virginia Polytech. Inst., May 1970.
- 9. Dhawan, S.; and Narasimha, R.: Some Properties of Boundary Layer Flow During the Transition From Laminar to Turbulent Motion. J. Fluid Mech., vol. 3, pt. 4, Jan. 1958, pp. 418-436.
- McDonald, Henry; and Camarata, F. J.: An Extended Mixing Length Approach for Computing the Turbulent Boundary Layer Development. Computation of Turbulent Boundary Layers - 1968 AFOSR-IFP-Stanford Conference, Volume 1, Methods, Predictions, Evaluation and Flow Structure, S. J. Kline, M. V. Morkovin, G. Sovran, and D. J. Cockrell, eds., Stanford Univ., c.1969, pp. 83-98.
- 11. Rotta, J. C.: Heat Transfer and Temperature Distribution in Turbulent Boundary Layers at Supersonic and Hypersonic Flow. Recent Developments in Boundary Layer Research, Pt. 1, AGARDograph 97, May 1965, pp. 35-63.
- 12. Probstein, Ronald F.; and Elliott, David: The Transverse Curvature Effect in Compressible Axially Symmetric Laminar Boundary-Layer Flow. J. Aeronaut. Sci., vol. 23, no. 3, Mar. 1956, pp. 208-224, 236.
- 13. Hayes, Wallace D.; and Probstein, Ronald F.: Hypersonic Flow Theory. Academic Press, Inc., 1959, p. 290.

ORIGINAL PAGE 15 OF POOR QUALITY

- 14. Morkovin, Mark V.: Critical Evaluation of Transition From Laminar to Turbulent Shear Layers With Emphasis on Hypersonically Traveling Bodies. AFFDL-TR-68-149, U.S. Air Force, Mar. 1969. (Available from DTIC as AD 686 178.)
- 15. Reshotko, Eli: Boundary-Layer Stability and Transition. Annual Review of Fluid Mechanics, Volume 8, Milton Van Dyke, Walter G. Vincenti, and J. V. Wehausen, eds., Annual Rev., Inc., 1969, pp. 311-349.
- 16. Laminar-Turbulent Transition. AGARD-CP-224, Oct. 1977.

- 17. Dougherty, N. S., Jr.; and Fisher, D. F.: Boundary-Layer Transition on a 10-Degree Cone: Wind Tunnel/Flight Data Correlation. AIAA-80-0154, Jan. 1980.
- 18. Keller, Herbert B.; and Cebeci, Tuncer: Accurate Numerical Methods for Boundary-Layer Flows. II: Two-Dimensional Turbulent Flows. AIAA J., vol. 10, no. 9, Sept. 1972, pp. 1193-1199.
- 19. Shang, J. S.; Hankey, W. L.; and Dwayer, D. L.: Numerical Analysis of Eddy Viscosity Models in Supersonic and Turbulent Boundary Layers. AIAA Paper No. 73-164, Jan. 1973.
- 20. Vatsa, Veer N.; and Goglia, G. L.: Development of an Efficient Numerical Scheme for the Computation of Turbulent Boundary Layer Flows Over Two-Dimensional and Axisymmetric Bodies. Tech. Rept. 76-T16, Oct. 1976.
- 21. Richtmyer, Robert D.: Difference Methods for Initial-Value Problems. Interscience Publ., Inc., 1957.
- 22. Moore, D. R.; and Harkness, J.: Experimental Investigation of the Compressible Turbulent Boundary Layer at Very High Reynolds Numbers, M = 2.8. Rep. No. 0-71000/4R-9, LTV Res. Center, Apr. 1964.
- 23. Winter, K. G.; Rotta, J. C.; and Smith, K. G.: Untersuchungen der turbulenten Grenzschicht an einem taillierten Drehkörper bel Unter- und Überschallströmung, DLR FB 65-52, Nov. 1965.
- 24. Marvin, Joseph G.; and Akin, Clifford M.: Combined Effects of Mass Addition and Nose Bluntness of Boundary-Layer Transition. AIAA Paper No. 69-706, June 1969.
- 25. Calloway, Robert L.; and White, Nancy H.: Measured and Predicted Shock Shapes and Aerodynamic Coefficients for Blunted Cones at Incidence in Helium at Mach 20.3. NASA TP-1395, 1979.
- 26. Stainback, P. C.; Anders, J. B.; Harvey, W. D.; Cary, A. M.; and Harris, J. E.: An Investigation of Boundary-Layer Transition on the Wall of a Mach 5 Nozzle. AIAA Paper No. 74-136, Jan.-Feb. 1974.