19 research outputs found

    Calculation of the microcanonical temperature for the classical Bose field

    Full text link
    The ergodic hypothesis asserts that a classical mechanical system will in time visit every available configuration in phase space. Thus, for an ergodic system, an ensemble average of a thermodynamic quantity can equally well be calculated by a time average over a sufficiently long period of dynamical evolution. In this paper we describe in detail how to calculate the temperature and chemical potential from the dynamics of a microcanonical classical field, using the particular example of the classical modes of a Bose-condensed gas. The accurate determination of these thermodynamics quantities is essential in measuring the shift of the critical temperature of a Bose gas due to non-perturbative many-body effects.Comment: revtex4, 10 pages, 1 figure. v2: updated to published version. Fuller discussion of numerical results, correction of some minor error

    Dynamics and statistical mechanics of ultra-cold Bose gases using c-field techniques

    Full text link
    We review phase space techniques based on the Wigner representation that provide an approximate description of dilute ultra-cold Bose gases. In this approach the quantum field evolution can be represented using equations of motion of a similar form to the Gross-Pitaevskii equation but with stochastic modifications that include quantum effects in a controlled degree of approximation. These techniques provide a practical quantitative description of both equilibrium and dynamical properties of Bose gas systems. We develop versions of the formalism appropriate at zero temperature, where quantum fluctuations can be important, and at finite temperature where thermal fluctuations dominate. The numerical techniques necessary for implementing the formalism are discussed in detail, together with methods for extracting observables of interest. Numerous applications to a wide range of phenomena are presented.Comment: 110 pages, 32 figures. Updated to address referee comments. To appear in Advances in Physic

    Calorimetry of Bose-Einstein condensates

    Full text link
    We outline a practical scheme for measuring the thermodynamic properties of a Bose-Einstein condensate as a function of internal energy. We propose using Bragg scattering and controlled trap manipulations to impart a precise amount of energy to a near zero temperature condensate. After thermalisation the temperature can be measured using standard techniques to determine the state equation T(U,N,ω)T(U,N,\omega). Our analysis accounts for interaction effects and the excitation of constants of motion which restrict the energy available for thermalisation.Comment: 6 pages, 1 figure. Updated to published versio

    Quantum depletion of collapsing Bose-Einstein condensates

    Get PDF
    We perform the first numerical three-dimensional studies of quantum field effects in the Bosenova experiment on collapsing condensates by E. Donley et al. [Nature 415, 39 (2002)] using the exact experimental geometry. In a stochastic truncated Wigner simulation of the collapse, the collapse times are larger than the experimentally measured values. We find that a finite temperature initial state leads to an increased creation rate of uncondensed atoms, but not to a reduction of the collapse time. A comparison of the time-dependent Hartree-Fock-Bogoliubov and Wigner methods for the more tractable spherical trap shows excellent agreement between the uncondensed populations. We conclude that the discrepancy between the experimental and theoretical values of the collapse time cannot be explained by Gaussian quantum fluctuations or finite temperature effects.Comment: 9 pages, 4 figures, replaced with published versio

    Classical Region of a Trapped Bose Gas

    Full text link
    The classical region of a Bose gas consists of all single-particle modes that have a high average occupation and are well-described by a classical field. Highly-occupied modes only occur in massive Bose gases at ultra-cold temperatures, in contrast to the photon case where there are highly-occupied modes at all temperatures. For the Bose gas the number of these modes is dependent on the temperature, the total number of particles and their interaction strength. In this paper we characterize the classical region of a harmonically trapped Bose gas over a wide parameter regime. We use a Hartree-Fock approach to account for the effects of interactions, which we observe to significantly change the classical region as compared to the idealized case. We compare our results to full classical field calculations and show that the Hartree-Fock approach provides a qualitatively accurate description of classical region for the interacting gas.Comment: 6 pages, 5 figures; updated to include new results with interaction

    Numerical method for evolving the dipolar projected Gross-Pitaevskii equation

    Get PDF
    We describe a method for evolving the projected Gross-Pitaevskii equation (PGPE) for an interacting Bose gas in a harmonic oscillator potential, with the inclusion of a long-range dipolar interaction. The central difficulty in solving this equation is the requirement that the field is restricted to a small set of prescribed modes that constitute the low energy c-field region of the system. We present a scheme, using a Hermite-polynomial based spectral representation, that precisely implements this mode restriction and allows an efficient and accurate solution of the dipolar PGPE. We introduce a set of auxiliary oscillator states to perform a Fourier transform necessary to evaluate the dipolar interaction in reciprocal space. We extensively characterize the accuracy of our approach, and derive Ehrenfest equations for the evolution of the angular momentum.Comment: 16 pages, 6 figures. Updated to published versio

    Yang-Yang thermometry and momentum distribution of a trapped one-dimensional Bose gas

    Get PDF
    We describe the use of the exact Yang-Yang solutions for the one-dimensional Bose gas to enable accurate kinetic-energy thermometry based on the root-mean-square width of an experimentally measured momentum distribution. Furthermore, we use the stochastic projected Gross-Pitaevskii theory to provide the first quantitative description of the full momentum distribution measurements of Van Amerongen et al., Phys. Rev. Lett. 100, 090402 (2008). We find the fitted temperatures from the stochastic projected Gross-Pitaevskii approach are in excellent agreement with those determined by Yang-Yang kinetic-energy thermometry.Comment: 5 pages, 3 figures. v2: Updated to published versio

    Superfluidity of an interacting trapped quasi-2D Bose gas

    Get PDF
    We investigate the harmonically trapped interacting Bose gas in a quasi-2D geometry using the classical field method. The system exhibits quasi-long-range order and non-classical rotational inertia at temperatures below the Berezinskii-Kosterlitz-Thouless cross-over to the superfluid state. In particular, we compute the scissors-mode oscillation frequencies and find that the irrotational mode changes its frequency as the temperature is sweeped across the cross-over thus providing microscopic evidence for the emergence of superfluidity.Comment: 9 pages, 7 figure
    corecore