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We investigate the harmonically trapped interacting Bose gas in a quasi-two-dimensional geometry using the
classical field method. The system exhibits quasi-long-range order and nonclassical rotational inertia at tem-
peratures below the Berezinskii-Kosterlitz-Thouless crossover to the superfluid state. In particular, we compute
the scissors-mode oscillation frequencies and find that the irrotational mode changes its frequency as the
temperature is swept across the crossover thus providing microscopic evidence for the emergence of
superfluidity.
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I. INTRODUCTION

Superfluids are peculiar states of matter in which, at the
cost of losing part of their individuality, particles gain the
ability of cooperative lossless motion �1�. The occurrence of
superfluidity can be attributed to the formation of certain
nonlocal correlations within the system. For two-dimensional
�2D� systems, Mermin and Wagner showed that Heisenberg
models can be neither ferromagnetic nor antiferromagnetic at
finite temperatures �2�. Hohenberg further ruled out the ex-
istence of long-range ordering in 2D Bose and Fermi systems
�3�. These rigorous results imply that Bose-Einstein conden-
sation �BEC� does not exist at any finite temperature in uni-
form, interacting 2D systems in the thermodynamic limit,
since spontaneous long-range ordering is prevented by long-
wavelength fluctuations. Hence one might expect that con-
ventional superfluidity would not occur in 2D systems.

Nevertheless, a different path to superfluid behavior is
possible in 2D systems. At low temperatures quasi-long-
range correlations may form with an associated power-law
decay that eventually reaches zero instead of extending
throughout the system. It was theoretically shown by Berez-
inskii �4� and by Kosterlitz and Thouless �5� �BKT� that in
2D a transition to a superfluid state may occur at finite tem-
peratures. Qualitatively the physics of such a low-
temperature 2D system is conveniently described using the
notion of vortex-antivortex pairs �VAPs�. At temperatures be-
low the BKT transition, long-wavelength fluctuations destroy
true long-range order and yield spontaneous creation and an-
nihilation of bound VAPs at the boundaries of the local do-
mains of the resulting “quasicondensate” �6�. These locally
coherent blocks contribute to the power-law decay of the
two-point correlation function resulting in a superfluid re-
sponse of the system. On increasing the temperature, fluctua-
tions increase and VAPs unbind at the BKT transition. The
breaking of VAPs results in the proliferation of free vortices
and an exponentially decaying correlation length, and hence
the system loses its superfluid properties. This was further
quantified by Nelson and Kosterlitz who predicted a univer-

sal jump in the superfluid density at the critical point, which
may be used to empirically detect the BKT transition �7�.

In a trapped ultracold Bose gas the situation is rather com-
plicated due to the inhomogeneity arising from the confining
potential. Bagnato and Kleppner showed that a trapped, ideal
Bose gas undergoes BEC at finite temperatures �8�, implying
that in principle a trapped, interacting Bose gas may exist in
a coherent BEC phase and/or in a BKT-type phase. The low
temperature structure of a real 2D Bose gas in a trap has
therefore attracted a fair amount of theoretical discussion in
recent literature and it has been debated whether the super-
fluid transition in such systems is of BEC-type or BKT-type
�9–20�.

Experimentally, the superfluid BKT transition in a bulk
was first realized in liquid helium thin films by Bishop and
Reppy �21�. Resnick et al. reported an observation of the
transition in superconducting Josephson junction arrays �22�,
followed by Safonov et al. who measured a kink in the three-
body loss rate in spin-polarized hydrogen �23�. These experi-
ments relied on indirect methods of observation whereas in
the trapped atomic gases VAPs and their dynamics can be
directly imaged. The quasi-2D regime in trapped quantum
degenerate gases has been approached experimentally by us-
ing tight axial confinement with the aid of optical potentials
and through centrifugal expansion in rapidly rotated conden-
sates �24–28�. However, probing the details of the quasicon-
densation transition has only recently become experimentally
accessible �29–32�.

Indeed, Dalibard and co-workers observed phase defects
in the interference patterns of multiple quasi-2D gases
trapped in the valleys of an optical lattice �28�. These phase
defects were evidently caused by unbound free vortices
�16,28�. Further observations on spatial phase correlations in
the system provided evidence for the crossover between the
BKT quasicondensate and normal state �29,30�. While the
observed correlations were shown to be consistent with the
BKT quasicondensation picture, the question whether the
system is superfluid or not still remained. Recently, an ob-
servation of the BKT crossover has been achieved in a 2D
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lattice of Josephson-coupled BECs �31� and in a single 2D
dipole trap �32�.

The interplay between interactions and inhomogeneous
effects arising from the trapping potential have made theo-
retical predictions for the low temperature phases of dilute,
atomic Bose gas difficult. The main point we address in this
paper is the question of superfluidity in this system at low
temperatures. There is not a single observable that categori-
cally defines superfluidity and we present results of micro-
scopic calculations for a variety of observables, including
off-diagonal long-range order �condensate�, fluctuations,
scissor mode dynamics, and presence of vortices. From the
combined analysis of these quantities we are able to infer a
crossover temperature, Tsf, below which the system exhibits
superfluidity.

The paper is organized as follows: In Sec. II we discuss
various measurables useful in examining the superfluid prop-
erties of our system. Our computational approach is ex-
plained in Sec. III, and the results are presented in Sec. IV
followed by the concluding remarks in Sec. V.

II. EVIDENCE OF SUPERFLUIDITY

A substance which has the ability to flow without dissipa-
tion is superfluid. Although the difference between a super-
fluid and a classical fluid may seem intuitively clear, it is
difficult, if not impossible, to find a single universal defini-
tion for superfluidity against which any material could be
tested. Indeed, the complete description of superfluidity is
not a single feature but a complex of phenomena �33�. In an
interacting 3D atomic gas, the formation of BEC is essen-
tially equivalent to the emergence of a macroscopic wave
function, which inherently exhibits long-range order
throughout the system. Furthermore, the system attains finite
superfluid fraction at the BEC transition. The situation is
more subtle in 2D where the condensation process is plagued
by long-wavelength phase fluctuations. In the following, we
introduce measurables relevant for providing evidence of su-
perfluidity in a quasi-two-dimensional sample of trapped ul-
tracold atoms and apply these definitions to discuss the su-
perfluidity of quasicondensates.

A. Role of quantized vortices

Quantized vortices are the hallmark of superfluids. The
flow vs�r , t�=� /m���r , t� of a superfluid described by a
macroscopic wave function with a phase ��r , t� obeys the
condition of irrotationality, ��vs�r , t�=0, and the Onsager-
Feynman quantization of circulation,

� vs�r,t� · dl = �2��/m , �1�

where � is an integer and m is the mass of an atom. There-
fore rotation ���0� is only possible around the phase singu-
larity at the core of a quantized vortex where the superfluid
density vanishes. If normal fluid is present, it occupies the
volume in the vortex core. The quantized vortices can there-
fore be seen to play a twofold role in superfluid systems. On
the one hand their coherent role is vital in enabling superflu-

ids to rotate, while on the other hand they can be viewed as
�topological� defects that are a source of incoherence causing
a reduction in the superfluid fraction.

It is worth noting that the observation of a vortex alone is
not a sufficient criterion from which superfluidity may be
deduced. For instance, while a persistent vortex in a zero
temperature condensate is readily accepted as proof of super-
fluidity, in a 2D system near BKT crossover an observation
of a transient isolated vortex would be more likely to signify
unbinding of VAPs and hence loss of superfluidity. Therefore
special care must be taken in the treatment of a situation
where both spontaneously �thermally activated� and actively
�by external rotation� created vortices may exist simulta-
neously. A particularly vivid example of a classical vortex
which has many of the characteristics of a superfluid vortex
has been realized in a recent experiment in which the 2�
vortex phase winding was imprinted into a nonsuperfluid
cloud of atoms and was observed to persist for extended
times due to the cancellation of spins in the diffusion process
�34�.

B. Off-diagonal long-range order

Consider a system described by the usual one-body re-
duced density matrix

��r,r�� = ��̂†�r��̂�r��� , �2�

where �̂�r� is the second quantized bosonic field operator
and the brackets denote quantum mechanical ensemble aver-
aging. If � has a macroscopic eigenvalue N0=O�N� where N
is the number of particles in the system, it is said to possess
Bose-Einstein condensation in the state determined by the
corresponding eigenvector, also known as the macroscopic
condensate wave function.

The concept of long-range order is often encountered in
the context of superfluidity. In a homogeneous Bose-Einstein
condensed system, true long-range order exists in the sense
that

lim
�r−r��→�

��r,r�� = const, �3�

whereas in the normal state the off-diagonal correlations de-
cay exponentially with the spatial separation

��r,r�� 	 e−�r−r��/	0, �4�

where 	0 characterizes the length scale over which the cor-
relations decay. Although the existence of Bose-Einstein con-
densation does not a priori imply the system to be superfluid,
the existence of off-diagonal order in the system can be con-
sidered as a prerequisite for superfluidity. In the case of finite
systems, such as trapped atomic gases, Eq. �3� generalizes by
understanding that the boundary of the system is mapped to
infinity.

C. Algebraic long-range order

Two-dimensional systems lacking true long-range order
may attain superfluidity through the Berezinskii-Kosterlitz-
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Thouless mechanism. In this case the correlations decay al-
gebraically with distance,

��r,r�� 	 
 	0

�r − r��
�


, �5�

and are characterized by the exponent, 
�T�=nsf�dB
2 , where

nsf is the 2D superfluid density, and �dB is the thermal de
Broglie wavelength. For temperatures below the BKT tran-
sition temperature �TBKT� the first-order approximation to the
critical exponent is 
�T�= 1

4T /TBKT, corresponding to the
universal jump at T=TBKT in the superfluid density �7�.

D. Higher-order coherence

Further insight into the state of the system is obtained by
studying the higher-order coherence properties of the system
�35�. The second-order coherence function

g�2��r� =
��̂†�r��̂†�r��̂�r��̂�r��

��̂†�r��̂�r��2
, �6�

yields information about the local coherence of the Bose

field, �̂, and in general for pth order coherence gc
�n��r�=1 for

n� p, while for the corresponding thermal state gt
�n��r�=n!.

By decomposing the field into “coherent” �� and “incoher-

ent” ��̂� parts, �̂=+ �̂, Eq. �6� becomes

g�2��r� =
���4 + 4��2nth + 2nth

2 �
���2 + nth�2 , �7�

where nth���̂†�̂�. In a similar fashion

g�3��r� =
���6 + 9nth��4 + 18nth

2 ��2 + 6nth
3 �

���2 + nth�3 , �8�

which essentially measures the probability of three-particle
coincidences. The total three-body recombination rate

� = − K3 g�3��r�ntot�r�3d3r , �9�

where K3 is the rate constant and ntot�r�= ��̂†�r��̂�r�� is the
total density, is an experimentally measurable quantity yield-
ing overall information of the third-order coherence proper-
ties of the system. While it has been used experimentally to
infer the quasicondensation transition point in helium thin
films �23�, obtaining similar information in trapped 2D gases
is more problematic since the local gas density increases as
the transition is crossed from the normal to quasicondensed
state and this partially compensates for the corresponding
decrease in g�3��r�.

E. Nonclassical rotational inertia

The moment of inertia, I�T�, of a superfluid about a cho-
sen axis is reduced from its classical value, Icl=mN�r2�, due
to the irrotational motion of superfluid matter. The tempera-
ture dependent superfluid fraction

Nsf

Ntot
= 1 −

I�T�
Icl

, �10�

where Ntot is the total particle number, is a quantity of special
interest. A finite value of this macroscopic measurable may
be used as evidence of superfluidity. Microscopically, this
information about superfluidity is encoded in the elementary
excitation spectrum of the system. The collective scissors
mode oscillation has been employed to prove that the occur-
rence of BEC in 3D implies superfluidity �36–39�. Essen-
tially, the scissors mode may be viewed as an oscillation of
an ellipsoidal cloud of atoms about its semiaxis in the plane.
In the collisionless regime, a gas in a normal state has two
prominent undamped scissors mode eigenfrequencies

�� = ��x � �y� , �11�

where �x and �y are the planar trapping frequencies. In Eq.
�11� �+ corresponds to an irrotational quadrupole oscillation
and �− is related to a classical rotational motion. If a super-
fluid component is present, it oscillates at an additional char-
acteristic frequency

�sf = ��x
2 + �y

2, �12�

whose existence thus provides a clear sign for superfluidity
of the system in the collisionless regime. It is to be noted,
however, that in the hydrodynamic limit �− becomes over-
damped and both the remaining thermal mode, �+, and the
superfluid scissors mode, �sf, attain the same value. In such a
situation, the damping rate of this mode may in principle be
used to reveal superfluid response, although this may prove
to be difficult to achieve in practice.

The scissors mode excitations of the system are directly
related to the reduced moment of inertia �36–39�

I�T�
Icl

= ��x
2 − �y

2�2
 Q���/�2d�

 Q����2d�

, �13�

where Q��� is the Fourier transform of the time-dependent
quadrupole moment Q�t�=�xyntot�r , t�dr. Substitution of Eq.
�13� in Eq. �10� yields a formula for the superfluid fraction in
terms of the scissors mode excitations. We emphasize that
the presence of a superfluid scissors mode, �sf, implies non-
classical rotational inertia, I� Icl, finite superfluid fraction,
Nsf /Ntot, and hence superfluidity.

III. METHODS

We employ the method of classical fields as detailed in
Refs. �40–43�. Essentially, this amounts to propagating the
projected Gross-Pitaevskii equation

i��t = −
�2

2m
�2 + Vext + gP���2� , �14�

in time for the field, �r , t�, restricted in the subspace deter-
mined by an energy cutoff in the harmonic oscillator basis
states. The projector, P, serves to constrain the evolution of
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the field within the subspace of highly occupied states. Each
simulation corresponds to the evolution of a single trajectory
through the phase space and therefore, in order to construct
thermodynamic observables, one should ensemble average
over many different but equivalent trajectories. However,
when considering equilibrium quantities, we may assume the
system to be ergodic and replace such ensemble averages by
time-averages over the instantaneous field configurations
taken from a single trajectory. The field, �r , t�, is normal-
ized to the number of particles, Ncl, described by the re-
stricted basis. The total number of particles, Ntot=Ncl+Nth, is
obtained by using the semiclassical Hartree-Fock approxima-
tion for the Nth above cutoff particles as in Refs. �16,44� and
as described below. The in-plane phase function, ��x ,y , t�, of
the complex field, �r , t�, allows for an explicit detection of
the locations of vortices and antivortices. The classical field
is completely described by the conserved total energy, Ecl, an
energy cutoff for the restricted basis, Ecut, the dimensionless
nonlinearity constant, C=gNcl /��xax

3, and the harmonic trap
frequencies, �x, �y, and �z. Here the spatial length scale is
ax=�� /2m�x. From these simulations we can also compute
the equilibrium temperature, T, and chemical potential, �, as
described in Refs. �45,46�.

A. Semiclassical approximation

An inherent feature in our numerical method requires that
the total particle number, Ntot, must be computed a post-
eriori. This is done within the self-consistent Hartree-Fock
approximation by computing the particles not included in the
simulated field, , from the semiclassical density. The form
of the semiclassical integral reflects the quasi-2D nature of
the trap. For the temperatures considered here, kBT	��z
and therefore several of the lowest axial oscillator states, nz
= �0,1 ,2 , . . .�, contribute significantly to the total number of
particles. However, the temperature is too low for the equi-
partition theorem to apply and therefore these axial levels
need to be treated discretely in the semiclassical integral. The
Hartree-Fock energy for this system is given by

EHF
nz �K,x,y� = K + Vext�x,y,0� + �nz + 1/2���z

+ 2�
m

gnz,m
nth

m�x,y� + 2gnz,0
���x,y���2,

�15�

with K the kinetic energy. The thermal densities are given by

nth
nz�x,y� =

m

2��2
Kmin

� 1

e�EHF
nz �K,x,y�−��/kBT − 1

dK , �16�

where

Kmin = max�0, Ecut − Vext�x,y,0� − ��z/2� , �17�

and � is the chemical potential. The interaction term in Eq.
�15� contains the multilevel coupling constant

gn,m = g ��n�z��2��m�z��2dz , �18�

which accounts for the interactions between the particles in
different axial levels. We have denoted �x ,y ,z�

=�x ,y��0�z� and �n�z� are the normalized harmonic oscil-
lator eigenstates. Finally, the number of above cutoff par-
ticles

Nth = �
nz

 nth
nz�x,y� dxdy , �19�

is obtained by integrating over the 2D densities and summing
the contributions from different axial energy levels. To ob-
tain data points for a fixed number of particles Ntot for a
range of temperatures, we estimate the cutoff energy Ecut,
total number of particles Ncl, and energy Ecl of the classical
region of the system according to the prescription of Ref.
�47�. We then simulate this within the projected
Gross-Pitaevskii equation and calculate the temperature and
total number of thermal particles using the procedure de-
scribed above. We use this knowledge to make any necessary
adjustment to the initial guesses to end up with a target Ntot.

B. Collective excitations

In principle we could construct an approximation to the
full Green’s function from our time-dependent classical field
simulations allowing us to extract the collective excitation
frequencies and their damping rates for the system. It would
be, however, a formidable task. Furthermore, an identifica-
tion of near-degenerate modes would become cumbersome.
Instead, we concentrate on a specific class of excitations—
the so-called scissors modes—which may be selectively ex-
cited and consequently their oscillation frequency can be in-
dividually measured from our dynamical simulations.

In order to accurately compute the scissors-mode collec-
tive oscillation frequencies, an ensemble averaging over
many equivalent trajectories is required. Therefore we first
prepare a large set of initial field configurations by time-
sampling a single equilibrium simulation. These instanta-
neous field configurations are then rotated 11° in the x-y
plane with respect to the semiaxis of the anisotropic trapping
potential. To facilitate lossless rotation of the state, we must
first project the classical field into a larger eigenbasis in order
to account for the increase in the energy after rotation due to
the anisotropic trapping geometry. Subsequently the seed
states thus prepared are propagated in time and the quadru-
pole moment, Qi�t�, is measured. The above procedure is
repeated for S=150–200 microstates for each temperature
point. The scissors mode frequencies are then obtained from
the Fourier transformation of the ensemble averaged quadru-

pole signal Q̃�t�=�i=1
S Qi�t� /S, from which also the damping

rates of those modes can be estimated.

C. Computational parameters

In order to allow practical comparison with future experi-
ments, we choose experimentally realistic system parameters
which allow us to study the scissors-mode collective oscilla-
tion frequencies. The strength of particle interactions is de-
termined by a constant, g=4��2a /m, and the harmonic con-
fining potential, Vext=m��x

2x2+�y
2y2+�z

2z2� /2 is char-
acterized by the Cartesian frequencies ��x ,�y ,�z�
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=2��10,20,4000� Hz. The trap is chosen to be anisotropic
in the x-y-plane in order to lift the degeneracy between the
quadrupole and scissors modes. However, the planar aniso-
tropy is kept moderate, in contrast to Ref. �29�, in order to
separate the frequency of the superfluid scissors mode from
both of the two classical modes. We consider Ntot=105 87Rb
atoms interacting with the s-wave scattering length a
=5.3 nm.

D. Radial averaging

Several results we present are generated by performing an
average along elliptical trajectories in the 2D plane about the
trap center. This is done in order to utilize the full informa-
tion contained in the simulated fields. Since our system does
not possess cylindrical symmetry �in order to facilitate com-
putation of scissors modes�, we perform this averaging by
considering elliptical shells of constant �2D� trap potential
energy and average over all spatial points falling on such
strips. In what follows, r0 denotes the distance from origin to
such an ellipse along the weakly trapped x axis of the trap.

IV. RESULTS

In this section we present our numerical results and analy-
sis for the superfluid indicators described above. Taking the
compendium of results described below, we claim that the
quasicondensate studied here is superfluid. All measurables
extracted from our simulations point to a crossover tempera-
ture Tsf at which our system attains superfluidity.

A. Fluctuations and vortices

In order to lay down the qualitative features of the system
we have plotted instantaneous 2D classical field densities,
�dB

2 ��x ,y��2, in Figs. 1�a� and 1�b�, and the corresponding
phases ��x ,y�, Figs. 1�c� and 1�d�. The temperatures are T
=114 nK for Figs. 1�a� and 1�c� and T=151 nK for Figs.
1�b� and 1�d�.

At low temperatures the density and phase are relatively
uniform, while at high temperatures both exhibit strong
fluctuations and vortices and antivortices are nucleated. This
observation is in striking contrast to the usual situation in 3D

and highlights the main qualitative difference between 2D
and 3D systems.

To further quantify the emergence of vortices and antivor-
tices due to the phase fluctuations, we have measured at each
temperature point the probablility, Pv�r0�, of finding a vortex
or antivortex at radius r0. This is done by locating all phase
singularities in an instantaneous classical field configuration
and averaging over 1000 different microstates. The classical
field area is then divided into ellipsoidal strips of equal width
and the vortex occupation probability is obtained by count-
ing the number of phase singularities detected within each
strip divided by the number of microstates sampled �this is
the radial averaging discussed earlier�. Thus obtained prob-
abilities for a set of temperatures, �Ti�= �168,
158,155,148,143,138,135,131,126,120,115� nK, are
plotted as functions of radial distance, r0, in Fig. 2. The
bullets denote the coherence length, measured as 1 /e radius
of g�0,r0� �defined in Sec. IV C below� and the thicker curve
is for Tsf=155 nK. There is a sudden jump in the vortex
occupation probability at the crossover. In the superfluid
phase there is a vortex-free region at small radii. Vortex pairs
are observed in a narrow band near the edge of the coherent
region of the system, i.e., the spatial region that has a flat
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FIG. 1. �Color online� Density
�a�,�b� and phase �c�,�d� of the
classical field at two different tem-
peratures: �a� and �c� T=114 nK
and �b� and �d� T=151 nK. Vorti-
ces and antivortices are denoted
by + and − signs, respectively.
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FIG. 2. �Color online� Radial vortex occupation probability den-
sity at different temperatures �from left to right� �Ti�
= �168,158,155,148,143,138,135,131,126,120,115� nK. The
thicker line indicates the superfluid crossover at Tsf=155 nK.
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phase in Fig. 1�c�. Thus the system can be divided into three
concentric regions: central coherent and vortex free BEC-
like region, coherent BKT-like region where vortices are
bound, and an incoherent thermal outermost region where
vortices are free.

B. Condensate fraction

We compute the one-body density matrix, Eq. �2�, for the
classical field by assuming ergodicity, which allows us to
replace the ensemble average by a time average. The number
of condensed particles, N0, is obtained by computing the
largest eigenvalue of the density matrix. Figure 3 displays
the condensate fraction as a function of temperature. The
curve is plotted to provide comparison with the pure 2D
ideal gas relation

N0

N
= 1 − 
 T

T0
�2

, �20�

where T0 is the critical temperature calculated for a quasi-2D
ideal gas in our trap geometry containing Ntot=1.2�105 par-
ticles. The vertical line is the temperature Tsf=155 nK, be-
low which this system is superfluid and the markers are the
simulation data. Unlike in the recent experiment of Krüger et
al. �30� we find the interactions to cause only a minor shift in
the critical temperature from the noninteracting boson result.
However, taking into account systematic issues with the ex-
perimental measurement of temperature �as described in
�48�� and noting that the pure 2D ideal-gas critical tempera-
ture �which is used as the reference temperature in Ref. �20��
overestimates the quasi-2D ideal-gas critical temperature, it
seems likely that the actual shift from the ideal-gas critical
temperature may arise from mean-field and finite-size
corrections.

In terms of the definition based on the eigenvalues of the
density matrix, the system may be claimed to show Bose-
Einstein condensation at all temperatures below Tsf. Never-
theless it turns out that the system is best described in terms

of phase fluctuating quasicondensate apart from the very
lowest temperatures.

C. Coherence

Coherence is an essential feature of superfluidity. The
density matrix, Eq. �2�, provides a useful probe for the global
coherence between two spatially separated points in the sys-
tem. In particular it conveys the knowledge of the correlation
length and the information on the possible presence of long-
range order. Figure 4 shows the two-point function,

g�0,r0� =
���0��r0��

����0��2 + nth�0�����r0��2 + nth�r0��
, �21�

for different temperatures. For low temperatures, T�Tsf, and
small radii we witness power-law decay of g�0,r0� in accor-
dance with Eq. �5�, whereas for temperatures, T�Tsf, and/or
near the edge of the coherent region, exponential decay is
observed. The qualitative behavior changes at the crossover
temperature, Tsf, denoted by the thicker line.

The second-order coherence function, Eq. �6�, measures
local coherence in the gas; particularly, for a purely thermal
sample gt

�2��r�=2 and for a completely coherent state
gc

�2��r�=1. In our inhomogeneous system g�2��r� interpolates
between these two values, as shown in Fig. 5, where
g�2��r0� is displayed for different temperatures as functions of
the radial distance from the trap center. At the lowest tem-
peratures, g�2��r0� shows a flat part in accordance with the
presence of a nearly phase coherent BEC. At large enough
radii and for high enough temperatures g�2��r0� approaches
its thermal value. The plateau disappears near the tempera-
ture where the macroscopic wave function vanishes. The
thicker line indicates g�2��r0� for a result with T�Tsf.

In Fig. 6, we have plotted the coherence length as a func-
tion of temperature. The values are obtained by measuring
the 1 /e width of the two-point correlation function. We have
also plotted a function, 	−�T�= �t�p, where t� �Tsf−T� /Tsf
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FIG. 3. �Color online� Condensate fraction as determined by
diagonalization of the one-body density matrix as a function of
temperature. The markers are the data, the black curve is the 2D
ideal gas result, and the vertical line indicates the superfluid cross-
over temperature Tsf.
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FIG. 4. �Color online� Two-point correlation functions g�0,r0�
as a function of spatial distance, r0, from the trap center for a range
of temperatures, �Ti�. The thicker line is for the estimated superfluid
crossover temperature.
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�solid curve� for p=0.25 and T�Tsf. The value for the ex-
ponent, p, may be crudely explained in terms of the Thomas-
Fermi radius RTF�N0

1/4 of an isotropic 2D condensate, since
N0 /Ntot varies linearly with the temperature in the vicinity of
the crossover point, Tsf.

D. Scissors modes

We have computed the scissors mode frequencies accord-
ing to the description in the methods section. The obtained
oscillation frequencies and their relative intensities are dis-
played in Fig. 7. The bullets are the mean oscillation fre-
quencies obtained by fitting double Gaussian functions to the
normalized Fourier spectrum at each temperature, which is
indicated in gray in the background. The horizontal dashed
lines are the analytical predictions Eqs. �11� and �12�. Above
the crossover temperature, Tsf, indicated by the vertical line,

we obtain a signal for two thermal modes whose frequencies
are found to agree with the predictions of Eq. �11�. At tem-
peratures well below the crossover, only one scissors mode
persists with a frequency corresponding to that of a super-
fluid, see Eq. �12�. This is the key feature verifying the
quasicondensate to be a superfluid.

It is interesting to notice that we only observe two differ-
ent scissors modes at all temperatures. The upper “irrota-
tional” mode simply experiences frequency shift across the
crossover associated with the change in superfluid density of
the system. This is to be contrasted with 3D systems where
in general three different scissors modes exist and the super-
fluid scissors mode experiences a downward �as opposed to
the upward shift seen in Fig. 7� frequency shift on increasing
temperature across the crossover �37�.

We have also computed the scissors modes for different
systems of varying particle interaction strengths which could
be experimentally realized using Feshbach resonances. We
have verified that in the strongly interacting systems only a
single scissors mode survives at all temperatures, making it
difficult to distinguish the superfluid and thermal response of
the system from one another.

V. DISCUSSION

In conclusion, we have studied the problem of superfluid-
normal crossover in a real, trapped quasi-2D Bose gas. In
such systems the formation of pure Bose-Einstein condensa-
tion is challenged by the long-wavelength phase fluctuations
and this fact has made the characterization of such systems
difficult both theoretically and experimentally. By perform-
ing classical field simulations for these systems, we have
shown that such quasicondensates are superfluid below the
crossover temperature Tsf. This conclusion is based on obser-
vations of the global coherence properties and scissors mode
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FIG. 5. �Color online� Second-order coherence functions
g�2��r0� as a function of spatial distance r0 from the trap center for a
range of temperatures, �Ti�. The thicker line is for the estimated
superfluid crossover temperature.
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perature. The bullets are the numerical data, the vertical line de-
notes the superfluid crossover temperature, and the black curve is
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FIG. 7. �Color online� Scissors mode frequencies as a function
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state. The normalized Fourier spectrum at each temperature is indi-
cated in gray in the background.

SUPERFLUIDITY OF AN INTERACTING TRAPPED … PHYSICAL REVIEW A 77, 023618 �2008�

023618-7



excitations of the system, which constitute the two major
results of this paper proving superfluidity of quasiconden-
sates. In particular, the emergence of a condensate scissors
mode below the crossover temperature provides unequivocal
microscopic evidence of nonclassical rotational inertia and
thus the superfluidity of the system. We have not found signs
of fragmentation in terms of the eigenvalues of the density
matrix below the crossover temperature. A similar conclu-
sion is obtained from the fact that only a single condensate
peak is observed in momentum space. This indicates that
despite of the prevailing phase fluctuations, the superfluid
state of these systems resembles more closely that of a
single-mode trapped Bose-Einstein condensate than the bulk
Berezinskii-Kosterlitz-Thouless superfluid phase.

Quasi-2D quantum gases are currently under active ex-
perimental investigation. While experiments have verified

aspects of first-order coherence in this system consistent with
the Berezinskii-Kosterlitz-Thouless transition, there has yet
to be any direct evidence of superfluidity. In this paper we
have reported a series of tests that can be realized in an
experiment and should cast light on the formation of super-
fluidity in these systems.
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