59 research outputs found

    What is the evidence for interactions between filaggrin null mutations and environmental exposures in the aetiology of atopic dermatitis? A systematic review

    Get PDF
    Background Epidemiological studies indicate that gene–environment interactions play a role in atopic dermatitis (AD). Objectives To review the evidence for gene–environment interactions in AD aetiology, focusing on filaggrin (FLG) loss-of-function mutations. Methods A systematic search from inception to September 2018 in Embase, MEDLINE and BIOSIS was performed. Search terms included all synonyms for AD and filaggrin/FLG; any genetic or epidemiological study design using any statistical methods were included. Quality assessment using criteria modified from guidance (ROBINS-I and Human Genome Epidemiology Network) for nonrandomized and genetic studies was completed, including consideration of power. Heterogeneity of study design and analyses precluded the use of meta-analysis. Results Of 1817 papers identified, 12 studies fulfilled the inclusion criteria required and performed formal interaction testing. There was some evidence for FLG–environment interactions in six of the studies (P-value for interaction ≀ 005), including early-life cat ownership, older siblings, water hardness, phthalate exposure, higher urinary phthalate metabolite levels (which all increased AD risk additional to FLG null genotype) and prolonged breastfeeding (which decreased AD risk in the context of FLG null genotype). Major limitations of published studies were the low numbers of individuals (ranging from five to 94) with AD and FLG loss-of-function mutations and exposure to specific environmental factors, and variation in exposure definitions. Conclusions Evidence on FLG–environment interactions in AD aetiology is limited. However, many of the studies lacked large enough sample sizes to assess these interactions fully. Further research is needed with larger sample sizes and clearly defined exposure assessment

    Coral Colonisation of an Artificial Reef in a Turbid Nearshore Environment, Dampier Harbour, Western Australia

    Get PDF
    A 0.6 hectare artificial reef of local rock and recycled concrete sleepers was constructed in December 2006 at Parker Point in the industrial port of Dampier, western Australia, with the aim of providing an environmental offset for a nearshore coral community lost to land reclamation. Corals successfully colonised the artificial reef, despite the relatively harsh environmental conditions at the site (annual water temperature range 18-32°C, intermittent high turbidity, frequent cyclones, frequent nearby ship movements). Coral settlement to the artificial reef was examined by terracotta tile deployments, and later stages of coral community development were examined by in-situ visual surveys within fixed 25 x 25 cm quadrats on the rock and concrete substrates. Mean coral density on the tiles varied from 113 ± 17 SE to 909 ± 85 SE per m2 over five deployments, whereas mean coral density in the quadrats was only 6.0 ± 1.0 SE per m2 at eight months post construction, increasing to 24.0 ± 2.1 SE per m2 at 62 months post construction. Coral taxa colonising the artificial reef were a subset of those on the surrounding natural reef, but occurred in different proportions-Pseudosiderastrea tayami, Mycedium elephantotus and Leptastrea purpurea being disproportionately abundant on the artificial reef. Coral cover increased rapidly in the later stages of the study, reaching 2.3 ± 0.7 SE % at 62 months post construction. This study indicates that simple materials of opportunity can provide a suitable substrate for coral recruitment in Dampier Harbour, and that natural colonisation at the study site remains sufficient to initiate a coral community on artificial substrate despite ongoing natural and anthropogenic perturbations. © 2013 Blakeway et al

    What is the evidence for interactions between filaggrin null mutations and environmental exposures in the aetiology of atopic dermatitis? A systematic review.

    Get PDF
    BACKGROUND: Epidemiological studies indicate that gene-environment interactions play a role in atopic dermatitis (AD). OBJECTIVES: To review the evidence for gene-environment interactions in AD aetiology, focusing on filaggrin (FLG) loss-of-function mutations. METHODS: A systematic search from inception to September 2018 in Embase, MEDLINE and BIOSIS was performed. Search terms included all synonyms for AD and filaggrin/FLG; any genetic or epidemiological study design using any statistical methods were included. Quality assessment using criteria modified from guidance (ROBINS-I and Human Genome Epidemiology Network) for nonrandomized and genetic studies was completed, including consideration of power. Heterogeneity of study design and analyses precluded the use of meta-analysis. RESULTS: Of 1817 papers identified, 12 studies fulfilled the inclusion criteria required and performed formal interaction testing. There was some evidence for FLG-environment interactions in six of the studies (P-value for interaction ≀ 0·05), including early-life cat ownership, older siblings, water hardness, phthalate exposure, higher urinary phthalate metabolite levels (which all increased AD risk additional to FLG null genotype) and prolonged breastfeeding (which decreased AD risk in the context of FLG null genotype). Major limitations of published studies were the low numbers of individuals (ranging from five to 94) with AD and FLG loss-of-function mutations and exposure to specific environmental factors, and variation in exposure definitions. CONCLUSIONS: Evidence on FLG-environment interactions in AD aetiology is limited. However, many of the studies lacked large enough sample sizes to assess these interactions fully. Further research is needed with larger sample sizes and clearly defined exposure assessment. Linked Comment: Park and Seo. Br J Dermatol 2020; 183:411

    Panel 4 : Report of the Microbiology Panel

    Get PDF
    Objective. To perform a comprehensive review of the literature from July 2011 until June 2015 on the virology and bacteriology of otitis media in children. Data Sources. PubMed database of the National Library of Medicine. Review Methods. Two subpanels comprising experts in the virology and bacteriology of otitis media were created. Each panel reviewed the relevant literature in the fields of virology and bacteriology and generated draft reviews. These initial reviews were distributed to all panel members prior to meeting together at the Post-symposium Research Conference of the 18th International Symposium on Recent Advances in Otitis Media, National Harbor, Maryland, in June 2015. A final draft was created, circulated, and approved by all panel members. Conclusions. Excellent progress has been made in the past 4 years in advancing our understanding of the microbiology of otitis media. Numerous advances were made in basic laboratory studies, in animal models of otitis media, in better understanding the epidemiology of disease, and in clinical practice. Implications for Practice. (1) Many viruses cause acute otitis media without bacterial coinfection, and such cases do not require antibiotic treatment. (2) When respiratory syncytial virus, metapneumovirus, and influenza virus peak in the community, practitioners can expect to see an increase in clinical otitis media cases. (3) Biomarkers that predict which children with upper respiratory tract infections will develop otitis media may be available in the future. (4) Compounds that target newly identified bacterial virulence determinants may be available as future treatment options for children with otitis media.Peer reviewe

    A multilevel intervention to increase physical activity and improve healthy eating and physical literacy among young children (ages 3-5) attending early childcare centres: the Healthy Start-Départ Santé cluster randomised controlled trial study protocol

    Get PDF
    Abstract: Background: Childhood obesity is a growing concern for public health. Given a majority of children in many countries spend approximately 30 h per week in early childcare centers, this environment represents a promising setting for implementing strategies to foster healthy behaviours for preventing and controlling childhood obesity. Healthy Start-Départ Santé was designed to promote physical activity, physical literacy, and healthy eating among preschoolers. The objectives of this study are to assess the effectiveness of the Healthy Start-Départ Santé intervention in improving physical activity levels, physical literacy, and healthy eating among preschoolers attending early childcare centers. Methods/Design: This study follows a cluster randomized controlled trial design in which the childcare centers are randomly assigned to receive the intervention or serve as usual care controls. The Healthy Start-Départ Santé intervention is comprised of interlinked components aiming to enable families and educators to integrate physical activity and healthy eating in the daily lives of young children by influencing factors at the intrapersonal, interpersonal, organizational, community, physical environment and policy levels. The intervention period, spanning 6-8 months, is preceded and followed by data collections. Participants are recruited from 61 childcare centers in two Canadian provinces, New Brunswick and Saskatchewan. Centers eligible for this study have to prepare and provide meals for lunch and have at least 20 children between the ages of 3 and 5. Centers are excluded if they have previously received a physical activity or nutrition promoting intervention. Eligible centers are stratified by province, geographical location (urban or rural) and language (English or French), then recruited and randomized using a one to one protocol for each stratum. Data collection is ongoing. The primary study outcomes are assessed using accelerometers (physical activity levels), the Test of Gross Motor Development-II (physical literacy), and digital photography-assisted weighted plate waste (food intake). Discussion: The multifaceted approach of Healthy Start-Départ Santé positions it well to improve the physical literacy and both dietary and physical activity behaviors of children attending early childcare centers. The results of this study will be of relevance given the overwhelming prevalence of overweight and obesity in children worldwide. Trial registration: NCT02375490 (ClinicalTrials.gov registry)

    Summer spawning of Porites lutea from north-western Australia

    No full text
    Most coral species off Australia's west coast spawn in the austral autumn (March-April), with a few species also spawning in the southern spring or early summer (November-December). This is the reverse timing to spawning recorded off Australia's east coast. Porites lutea, a gonochoric broadcast spawner that is common on Australia's west coast, is shown here to spawn in the months of November or December, as it does on Australia's east coast. Spawning occurred between 2 and 5 nights after full moon, with the majority of spawning activity on night 3. Gametes developed over three to four months with rapid development in the last two weeks before spawning. Zooxanthellae were typically observed in mature oocytes, only a week before spawning so their presence may provide a useful indicator of imminent spawning

    Accreditation in general practice

    No full text
    • 

    corecore