20,478 research outputs found
Analytical electron microscopy of biogenic and inorganic carbonates
In the terrestrial sedimentary environment, the mineralogically predominant carbonates are calcite-type minerals (rhombohedral carbonates) and aragonite-type minerals (orthorhombic carbonates). Most common minerals precipitating either inorganically or biogenically are high magnesium calcite and aragonite. High magnesium calcite (with magnesium carbonate substituting for more than 7 mole percent of the calcium carbonate) is stable only at temperatures greater than 700 C or thereabouts, and aragonite is stable only at pressures exceeding several kilobars of confining pressure. Therefore, these carbonates are expected to undergo chemical stabilization in the diagenetic environment to ultimately form stable calcite and dolomite. Because of the strong organic control of carbonate deposition in organisms during biomineralization, the microchemistry and microstructure of invertebrate skeletal material is much different than that present in inorganic carbonate cements. The style of preservation of microstructural features in skeletal material is therefore often quite distinctive when compared to that of inorganic carbonate even though wholesale recrystallization of the sediment has taken place. Microstructural and microchemical comparisons are made between high magnesium calcite echinoderm skeletal material and modern inorganic high magnesium calcite inorganic cements, using analytical electron microscopy and related techniques. Similar comparisons are made between analogous materials which have undergone stabilization in the diagenetic environment. Similar analysis schemes may prove useful in distinguishing between biogenic and inorganic carbonates in returned Martian carbonate samples
Recommended from our members
Latitudinal, vertical, and seasonal variations of C-1-C-4 alkyl nitrates in the troposphere over the Pacific Ocean during PEM-Tropics A and B: Oceanic and continental sources
We present concentration distributions of C1‐C4 alkyl nitrates observed during the NASA airborne campaigns Pacific Exploratory Mission (PEM) ‐Tropics A (September–October 1996) and PEM‐Tropics B (March–April 1999). The total geographic range for PEM‐Tropics A was 45°N–72°S latitude and 153°E–75°W longitude, and for PEM‐Tropics B was 40°N–36°S latitude and 149°E–75°W longitude. The maximum altitude for these missions was 12 km. These experiments provide the most extensive set of tropospheric measurements collected to date over the tropical Pacific Ocean. We observed high methyl nitrate (MeONO2, CH3ONO2) mixing ratios (approximately 50 pptv) at low altitudes in a latitude band between 8°N to 13°S stretching across the equatorial Pacific, illustrating the oceanic source of MeONO2. This source may be associated with the high‐nutrient, low‐chlorophyll character of equatorial Pacific waters. We discuss MeONO2 and ethyl nitrate (EtONO2, C2H5ONO2), whose abundance is dominated by equatorial oceanic sources, 2‐Propyl nitrate (2‐PrONO2, 2‐C3H7ONO2), which has significant oceanic and northern hemispheric (NH) sources associated with urban/industrial hydrocarbon emissions, and 2‐butyl nitrate (2‐BuONO2 2‐C4H8ONO2), which has mostly NH sources. PEM‐Tropics A and B resulted in remarkably similar equatorial mixing ratios. The excellent correlations between MeONO2 and the other alkyl nitrates in this region produced comparable correlation slopes between the two expeditions. By contrast, NH air masses influenced by urban/industrial emissions typically exhibited much lower MeONO2:EtONO2, MeONO2:2‐PrONO2, and MeONO2:2‐BuONO2 ratios. These relationships can be useful as a diagnostic of air mass origin. North of 10°N, the springtime PEM‐Tropics B mixing ratios of C2‐C4 alkyl nitrates were many‐fold higher at low‐mid altitudes than for late summer PEM‐Tropics A, consistent with strong continental outflow of NMHC precursors during spring
Stratospheric feedback from continued increases in tropospheric methane
Tropospheric concentrations of methane have increased steadily over the past ten years at an average rate of 16.5 ppbv per year, to a value in January 1988 of 1.69 ppmv. Measurements of CH sub 4 concentrations in air bubbles trapped in ice cores have shown concentrations of about 0.7 ppmv 200 years ago, with little further change for thousands of years before that. Interpolation earlier into this century suggests a concentration of about 1.1 to 1.2 ppmv in the 1940's. The only important pathway believed to be important for transfer of air from the troposphere to the stratosphere in through the tropical tropopause which is cold enough to reduce the mixing ratio of H sub 2 O in that air to about 3 ppmv. The only other major pathway for the delivery of H to the stratosphere is through the simultaneous injection of gaseous CH sub 4 in the same rising air. The formation of clouds in the stratosphere is dependent upon very low temperatures, and generally upon the amount of water vapor available. The possibility of a positive feedback exists, especially in well-oxidized methane air, that clouds are easier to form than earlier. This could mean enhancement of PSCs in both Antarctic and Arctic locations. Additional H sub 2 O in the stratosphere can also add to some of the greenhouse calculations
The identification of gamma ray induced EAS
Some of the penetrating particles in gamma-induced EAS from Cygnus X-3 observed by a single layer of flash-bulbs under 880 g cm/2 concrete, may be punched through photons rather than muons. An analysis of the shielded flash-tube response detected from EAS is presented. The penetration of the electro-magnetic component through 20 cm of Pb is observed at core distances approx. 10 m
Solar performance evaluation test program of the 9.5-ft-diam. electroformed nickel concentrator S/N 1 at Table Mountain, California
Optical and calorimetric tests of nickel mirrors for use as power source for thermionic generator
MAGNITUDE ESTIMATION: AN APPLICATION TO FARMERS' RISK-INCOME PREFERENCES
Magnitude estimation, a technique developed by psychology for obtaining ratio scaled values, was used to derive risk-income preferences of ninety-one central Indiana farmers. Both variability-income and bankruptcy-income measures were developed and related to farmers' socio-economic attributes. Wealth and education had limited effects compared with off-farm employment, percent debt and expected levels of income, percent debt and net worth growth. Magnitude estimation provided reliable estimates of preferences. Farmers gave greater importance to the bankruptcy-income measure of risk-income preferences, but only a small portion of the variation of either measure could be explained.Farm Management, Risk and Uncertainty,
On the origin of H_2CO abundance enhancements in low-mass protostars
High angular resolution H_2CO 218 GHz line observations have been carried out toward the low-mass protostars IRAS 16293-2422 and L1448-C using the Owens Valley Millimeter Array at ~2" resolution. Simultaneous 1.37 mm continuum data reveal extended emission which is compared with that predicted by model envelopes constrained from single-dish data. For L1448-C the model density structure works well down to the 400 AU scale to which the interferometer is sensitive. For IRAS 16293-2422 , a known proto-binary object, the interferometer observations indicate that the binary has cleared much of the material in the inner part of the envelope, out to the binary separation of ~800 AU. For both sources there is excess unresolved compact emission centered on the sources, most likely due to accretion disks ≾200 AU in size with masses of ≳0.02 M_☉ (L1448-C) and ≳0.1 M_☉ (IRAS 16293-2422). The H_2CO data for both sources are dominated by emission from gas close to the positions of the continuum peaks. The morphology and velocity structure of the H_2CO array data have been used to investigate whether the abundance enhancements inferred from single-dish modelling are due to thermal evaporation of ices or due to liberation of the ice mantles by shocks in the inner envelope. For IRAS 16293-2422 the H_2CO interferometer observations indicate the presence of rotation roughly perpendicular to the large scale CO outflow. The H_2CO distribution differs from that of C^(18)O, with C^(18)O emission peaking near MM1 and H_2CO stronger near MM2. For L1448-C, the region of enhanced H_2CO emission extends over a much larger scale >1" than the radius of 50-100 K (0."6-0".15) where thermal evaporation can occur. The red-blue asymmetry of the emission is consistent with the outflow; however the velocities are significantly lower. The H_2CO 3_(22)-2_(21)/3_(03)-2_(02) flux ratio derived from the interferometer data is significantly higher than that found from single-dish observations for both objects, suggesting that the compact emission arises from warmer gas. Detailed radiative transfer modeling shows, however, that the ratio is affected by abundance gradients and optical depth in the 3_(03)-2_(02) line. It is concluded that a constant H_2CO abundance throughout the envelope cannot fit the interferometer data of the two H_2CO lines simultaneously on the longest and shortest baselines. A scenario in which the H_2CO abundance drops in the cold dense part of the envelope where CO is frozen out but is undepleted in the outermost region provides good fits to the single-dish and interferometer data on short baselines for both sources. Emission on the longer baselines is best reproduced if the H_2CO abundance is increased by about an order of magnitude from ~ 10^(-10) to ~ 10^(-9) in the inner parts of the envelope due to thermal evaporation when the temperature exceeds ~50 K. The presence of additional H_2CO abundance jumps in the innermost hot core region or in the disk cannot be firmly established, however, with the present sensitivity and resolution. Other scenarios, including weak outflow-envelope interactions and photon heating of the envelope, are discussed and predictions for future generation interferometers are presented, illustrating their potential in distinguishing these competing scenarios
- …
