1,427 research outputs found

    Size-resolved aerosol and cloud condensation nuclei (CCN) properties in the remote marine South China Sea - Part 1: Observations and source classification

    Get PDF
    Abstract. Ship-based measurements of aerosol and cloud condensation nuclei (CCN) properties are presented for 2 weeks of observations in remote marine regions of the South China Sea/East Sea during the southwestern monsoon (SWM) season. Smoke from extensive biomass burning throughout the Maritime Continent advected into this region during the SWM, where it was mixed with anthropogenic continental pollution and emissions from heavy shipping activities. Eight aerosol types were identified using a k-means cluster analysis with data from a size-resolved CCN characterization system. Interpretation of the clusters was supplemented by additional onboard aerosol and meteorological measurements, satellite, and model products for the region. A typical bimodal marine boundary layer background aerosol population was identified and observed mixing with accumulation mode aerosol from other sources, primarily smoke from fires in Borneo and Sumatra. Hygroscopicity was assessed using the κ parameter and was found to average 0.40 for samples dominated by aged accumulation mode smoke; 0.65 for accumulation mode marine aerosol; 0.60 in an anthropogenic aerosol plume; and 0.22 during a short period that was characterized by elevated levels of volatile organic compounds not associated with biomass burning impacts. As a special subset of the background marine aerosol, clean air masses substantially scrubbed of particles were observed following heavy precipitation or the passage of squall lines, with changes in observed aerosol properties occurring on the order of minutes. Average CN number concentrations, size distributions, and κ values are reported for each population type, along with CCN number concentrations for particles that activated at supersaturations between 0.14 and 0.85 %

    Propulsion in a viscoelastic fluid

    Full text link
    Flagella beating in complex fluids are significantly influenced by viscoelastic stresses. Relevant examples include the ciliary transport of respiratory airway mucus and the motion of spermatozoa in the mucus-filled female reproductive tract. We consider the simplest model of such propulsion and transport in a complex fluid, a waving sheet of small amplitude free to move in a polymeric fluid with a single relaxation time. We show that, compared to self-propulsion in a Newtonian fluid occurring at a velocity U_N, the sheet swims (or transports fluid) with velocity U / U_N = [1+De^2 (eta_s)/(eta) ]/[1+De^2], where eta_s is the viscosity of the Newtonian solvent, eta is the zero-shear-rate viscosity of the polymeric fluid, and De is the Deborah number for the wave motion, product of the wave frequency by the fluid relaxation time. Similar expressions are derived for the rate of work of the sheet and the mechanical efficiency of the motion. These results are shown to be independent of the particular nonlinear constitutive equations chosen for the fluid, and are valid for both waves of tangential and normal motion. The generalization to more than one relaxation time is also provided. In stark contrast with the Newtonian case, these calculations suggest that transport and locomotion in a non-Newtonian fluid can be conveniently tuned without having to modify the waving gait of the sheet but instead by passively modulating the material properties of the liquid.Comment: 21 pages, 1 figur

    Pulmonary Metaphor Design and Anesthesia Simulation Testing

    Get PDF
    Medical decision making is a crucial process to successfully treat a critical medical emergency. During an unexpected medical event, astronauts, like anesthesiologists, must react quickly in a complex environment. Tools, such as the pulmonary metaphor display, were created to aid the medical caregiver\u27s decision making process. The pulmonary metaphor display is designed to help the caregiver collect and integrate pulmonary data to provide a more accurate, quicker diagnosis and treatment. The following outline anesthesiology simulation study will provide the data to prove that the pulmonary metaphor display is beneficial to medical decision making

    Restoring Ureagenesis in Hepatocytes by CRISPR/Cas9-mediated Genomic Addition to Arginase-deficient Induced Pluripotent Stem Cells.

    Get PDF
    Urea cycle disorders are incurable enzymopathies that affect nitrogen metabolism and typically lead to hyperammonemia. Arginase deficiency results from a mutation in Arg1, the enzyme regulating the final step of ureagenesis and typically results in developmental disabilities, seizures, spastic diplegia, and sometimes death. Current medical treatments for urea cycle disorders are only marginally effective, and for proximal disorders, liver transplantation is effective but limited by graft availability. Advances in human induced pluripotent stem cell research has allowed for the genetic modification of stem cells for potential cellular replacement therapies. In this study, we demonstrate a universally-applicable CRISPR/Cas9-based strategy utilizing exon 1 of the hypoxanthine-guanine phosphoribosyltransferase locus to genetically modify and restore arginase activity, and thus ureagenesis, in genetically distinct patient-specific human induced pluripotent stem cells and hepatocyte-like derivatives. Successful strategies restoring gene function in patient-specific human induced pluripotent stem cells may advance applications of genetically modified cell therapy to treat urea cycle and other inborn errors of metabolism

    The molecular characterisation of Cryptosporidium species in relinquished dogs in Great Britain: a novel zoonotic risk?

    Get PDF
    Surveillance was conducted to investigate the occurrence of protozoan parasites of the genus Cryptosporidium in dogs newly admitted to a dog rehoming charity in London, Great Britain. Voided faecal samples were collected from all new admissions between 2011 and 2012 during six separate 4-week sampling periods. Information on host signalment, including age, breed and reason for submission and faecal consistency, was collected. Polymerase Chain Reaction (PCR) targeting the 18S ribosomal RNA gene, confirmed by sequencing, was conducted on the faecal samples to detect Cryptosporidium genomic DNA and determine Cryptosporidium identity. In total, 677 dogs were included in the study. The prevalence of Cryptosporidium-positive faecal samples was 4.6% (31/676). There were positive samples in all of the six sampling periods. Cryptosporidium canis (n = 28), C. parvum (n = 2) and C. andersoni (n = 1) were identified. Sixty KDa glycoprotein (gp60) gene amplicon sequencing of the C. parvum samples identified genotypes IIaA17G1R1 and IIaA15G2R1 for the first time from a dog. There were no significant associations between signalment data and Cryptosporidium status. While this was a study of one rehoming shelter, the presence of the potentially zoonotic C. parvum and C. canis in dogs highlights a public health concern. Further research is needed to better understand the epidemiology and potential impacts of Cryptosporidium infection in dogs

    Saturn's Seasonal Variability from Four Decades of Ground-Based Mid-Infrared Observations

    Full text link
    A multi-decade record of ground-based mid-infrared (7-25 μ\mum) images of Saturn is used to explore seasonal and non-seasonal variability in thermal emission over more than a Saturnian year (1984-2022). Thermal emission measured by 3-m and 8-m-class observatories compares favourably with synthetic images based on both Cassini-derived temperature records and the predictions of radiative climate models. 8-m class facilities are capable of resolving thermal contrasts on the scale of Saturn's belts, zones, polar hexagon, and polar cyclones, superimposed onto large-scale seasonal asymmetries. Seasonal changes in brightness temperatures of 30\sim30 K in the stratosphere and 10\sim10 K in the upper troposphere are observed, as the northern and southern polar stratospheric vortices (NPSV and SPSV) form in spring and dissipate in autumn. The timings of the first appearance of the warm polar vortices is successfully reproduced by radiative climate models, confirming them to be radiative phenomena, albeit entrained within sharp boundaries influenced by dynamics. Axisymmetric thermal bands (4-5 per hemisphere) display temperature gradients that are strongly correlated with Saturn's zonal winds, indicating winds that decay in strength with altitude, and implying meridional circulation cells forming the system of cool zones and warm belts. Saturn's thermal structure is largely repeatable from year to year (via comparison of infrared images in 1989 and 2018), with the exception of low-latitudes. Here we find evidence of inter-annual variations because the equatorial banding at 7.9 μ\mum is inconsistent with a 15\sim15-year period for Saturn's equatorial stratospheric oscillation, i.e., it is not strictly semi-annual. Finally, observations between 2017-2022 extend the legacy of the Cassini mission, revealing the continued warming of the NPSV during northern summer. [Abr.]Comment: 25 pages, 15 figures, accepted for publication in Icaru

    Cassini VIMS observations of H3+ emission on the nightside of Jupiter

    Get PDF
    We present the first detailed analysis of H3+ nightside emission from Jupiter, using Visual and Infrared Mapping Spectrometer (VIMS) data from the Cassini flyby in 2000–2001, producing the first Jovian maps of nightside H3+ emission, temperature, and column density. Using these, we identify and characterize regions of H3+ nightside emission, compared against past observations of H3+ emission on the dayside. We focus our investigation on the region previously described as “mid-to-low latitude emission,” the source for which has been controversial. We find that the brightest of this emission is generated at Jovigraphic latitudes similar to the most equatorward extent of the main auroral emission but concentrated at longitudes eastward of this emission. The emission is produced by enhanced H3+ density, with temperatures dropping away in this region. This emission has a loose association with the predicted location of diffuse aurora produced by pitch angle scattering in the north, but not in the south. This emission also lays in the path of subrotating winds flowing from the aurora, suggesting a transport origin. Some differences are seen between dayside and nightside subauroral emissions, with dayside emission extending more equatorward, perhaps caused by the lack of sunlight ionization on the nightside, and unmeasured changes in temperature. Ionospheric temperatures are hotter in the polar region (~1100–1500 K), dropping away toward the equator (as low as 750 K), broadly similar to values on the dayside, highlighting the dominance of auroral effects in the polar region. No equatorial emission is observed, suggesting that very little particle precipitation occurs away from the polar regions
    corecore