1,032 research outputs found
Recommended from our members
O-3, NOY, AND NOX/NOY IN THE UPPER TROPOSPHERE OF THE EQUATORIAL PACIFIC
Recommended from our members
Ozone depletion events observed in the high latitude surface layer during the TOPSE aircraft program
During the Tropospheric Ozone Production about the Spring Equinox (TOPSE) aircraft program, ozone depletion events (ODEs) in the high latitude surface layer were investigated using lidar and in situ instruments. Flight legs of 100 km or longer distance were flown 32 times at 30 m altitude over a variety of regions north of 58° between early February and late May 2000. ODEs were found on each flight over the Arctic Ocean but their occurrence was rare at more southern latitudes. However, large area events with depletion to over 2 km altitude in one case were found as far south as Baffin Bay and Hudson Bay and as late as 22 May. There is good evidence that these more southern events did not form in situ but were the result of export of ozone‐depleted air from the surface layer of the Arctic Ocean. Surprisingly, relatively intact transport of ODEs occurred over distances of 900–2000 km and in some cases over rough terrain. Accumulation of constituents in the frozen surface over the dark winter period cannot be a strong prerequisite of ozone depletion since latitudes south of the Arctic Ocean would also experience a long dark period. Some process unique to the Arctic Ocean surface or its coastal regions remains unidentified for the release of ozone‐depleting halogens. There was no correspondence between coarse surface features such as solid ice/snow, open leads, or polynyas with the occurrence of or intensity of ozone depletion over the Arctic or subarctic regions. Depletion events also occurred in the absence of long‐range transport of relatively fresh “pollution” within the high latitude surface layer, at least in spring 2000. Direct measurements of halogen radicals were not made. However, the flights do provide detailed information on the vertical structure of the surface layer and, during the constant 30 m altitude legs, measurements of a variety of constituents including hydroxyl and peroxy radicals. A summary of the behavior of these constituents is made. The measurements were consistent with a source of formaldehyde from the snow/ice surface. Median NOx in the surface layer was 15 pptv or less, suggesting that surface emissions were substantially converted to reservoir constituents by 30 m altitude and that ozone production rates were small (0.15–1.5 ppbv/d) at this altitude. Peroxyacetylnitrate (PAN) was by far the major constituent of NOy in the surface layer independent of the ozone mixing ratio
Recommended from our members
Emissions of organic carbon and methane from petroleum and dairy operations in California's San Joaquin Valley
Petroleum and dairy operations are prominent sources of gas-phase organic compounds in California's San Joaquin Valley. It is essential to understand the emissions and air quality impacts of these relatively understudied sources, especially for oil/gas operations in light of increasing US production. Ground site measurements in Bakersfield and regional aircraft measurements of reactive gas-phase organic compounds and methane were part of the CalNex (California Research at the Nexus of Air Quality and Climate Change) project to determine the sources contributing to regional gas-phase organic carbon emissions. Using a combination of near-source and downwind data, we assess the composition and magnitude of emissions, and provide average source profiles. To examine the spatial distribution of emissions in the San Joaquin Valley, we developed a statistical modeling method using ground-based data and the FLEXPART-WRF transport and meteorological model. We present evidence for large sources of paraffinic hydrocarbons from petroleum operations and oxygenated compounds from dairy (and other cattle) operations. In addition to the small straight-chain alkanes typically associated with petroleum operations, we observed a wide range of branched and cyclic alkanes, most of which have limited previous in situ measurements or characterization in petroleum operation emissions. Observed dairy emissions were dominated by ethanol, methanol, acetic acid, and methane. Dairy operations were responsible for the vast majority of methane emissions in the San Joaquin Valley; observations of methane were well correlated with non-vehicular ethanol, and multiple assessments of the spatial distribution of emissions in the San Joaquin Valley highlight the dominance of dairy operations for methane emissions. The petroleum operations source profile was developed using the composition of non-methane hydrocarbons in unrefined natural gas associated with crude oil. The observed source profile is consistent with fugitive emissions of condensate during storage or processing of associated gas following extraction and methane separation. Aircraft observations of concentration hotspots near oil wells and dairies are consistent with the statistical source footprint determined via our FLEXPART-WRF-based modeling method and ground-based data. We quantitatively compared our observations at Bakersfield to the California Air Resources Board emission inventory and find consistency for relative emission rates of reactive organic gases between the aforementioned sources and motor vehicles in the region. We estimate that petroleum and dairy operations each comprised 22% of anthropogenic non-methane organic carbon at Bakersfield and were each responsible for 8-13% of potential precursors to ozone. Yet, their direct impacts as potential secondary organic aerosol (SOA) precursors were estimated to be minor for the source profiles observed in the San Joaquin Valley
Vertical Field Effect Transistor based on Graphene-WS2 Heterostructures for flexible and transparent electronics
The celebrated electronic properties of graphene have opened way for
materials just one-atom-thick to be used in the post-silicon electronic era. An
important milestone was the creation of heterostructures based on graphene and
other two-dimensional (2D) crystals, which can be assembled in 3D stacks with
atomic layer precision. These layered structures have already led to a range of
fascinating physical phenomena, and also have been used in demonstrating a
prototype field effect tunnelling transistor - a candidate for post-CMOS
technology. The range of possible materials which could be incorporated into
such stacks is very large. Indeed, there are many other materials where layers
are linked by weak van der Waals forces, which can be exfoliated and combined
together to create novel highly-tailored heterostructures. Here we describe a
new generation of field effect vertical tunnelling transistors where 2D
tungsten disulphide serves as an atomically thin barrier between two layers of
either mechanically exfoliated or CVD-grown graphene. Our devices have
unprecedented current modulation exceeding one million at room temperature and
can also operate on transparent and flexible substrates
Limitations and potentials of dual-purpose cow herds in Central Coastal Veracruz, Mexico
Feed chemical and kinetic composition and animal performance information was used to evaluate productivity limitations and potentials of dual-purpose member herds of the Genesis farmer organization of central coastal Veracruz, Mexico. The Cornell Net Carbohydrate and Protein System model (Version 6.0) was systematically applied to specific groups of cows in structured simulations to establish probable input–output relationships for typical management, and to estimate probable outcomes from alternative management based on forage-based dietary improvements. Key herd vulnerabilities were pinpointed: chronic energy deficits among dry cows of all ages in late gestation and impeded growth for immature cows. Regardless of the forage season of calving, most cows, if not all, incur energy deficits in the final trimester of gestation; thus reducing the pool of tissue energy and constraining milking performance. Under typical management, cows are smaller and underweight for their age, which limits feed intake capacity, milk production and the probability of early postpartum return to ovarian cyclicity. The substitution of good-quality harvested forage for grazing increased predicted yields by about one-third over typical scenarios for underweight cows. When diets from first parturition properly supported growth and tissue repletion, milk production in second and third lactations was predicted to improve about 60%. Judiciously supplemented diets based on good quality grass and legume forages from first calving were predicted to further increase productivity by about 80% across a three-lactation cow lifetime. These dual-purpose herd owners have large incentives to increase sales income by implementing nutritional strategies like those considered in this study
Extragalactic Radio Continuum Surveys and the Transformation of Radio Astronomy
Next-generation radio surveys are about to transform radio astronomy by
discovering and studying tens of millions of previously unknown radio sources.
These surveys will provide new insights to understand the evolution of
galaxies, measuring the evolution of the cosmic star formation rate, and
rivalling traditional techniques in the measurement of fundamental cosmological
parameters. By observing a new volume of observational parameter space, they
are also likely to discover unexpected new phenomena. This review traces the
evolution of extragalactic radio continuum surveys from the earliest days of
radio astronomy to the present, and identifies the challenges that must be
overcome to achieve this transformational change.Comment: To be published in Nature Astronomy 18 Sept 201
Intrinsic activity in the fly brain gates visual information during behavioral choices
The small insect brain is often described as an input/output system that executes reflex-like behaviors. It can also initiate neural activity and behaviors intrinsically, seen as spontaneous behaviors, different arousal states and sleep. However, less is known about how intrinsic activity in neural circuits affects sensory information processing in the insect brain and variability in behavior. Here, by simultaneously monitoring Drosophila's behavioral choices and brain activity in a flight simulator system, we identify intrinsic activity that is associated with the act of selecting between visual stimuli. We recorded neural output (multiunit action potentials and local field potentials) in the left and right optic lobes of a tethered flying Drosophila, while its attempts to follow visual motion (yaw torque) were measured by a torque meter. We show that when facing competing motion stimuli on its left and right, Drosophila typically generate large torque responses that flip from side to side. The delayed onset (0.1-1 s) and spontaneous switch-like dynamics of these responses, and the fact that the flies sometimes oppose the stimuli by flying straight, make this behavior different from the classic steering reflexes. Drosophila, thus, seem to choose one stimulus at a time and attempt to rotate toward its direction. With this behavior, the neural output of the optic lobes alternates; being augmented on the side chosen for body rotation and suppressed on the opposite side, even though the visual input to the fly eyes stays the same. Thus, the flow of information from the fly eyes is gated intrinsically. Such modulation can be noise-induced or intentional; with one possibility being that the fly brain highlights chosen information while ignoring the irrelevant, similar to what we know to occur in higher animals
Positive and negative well-being and objectively measured sedentary behaviour in older adults: evidence from three cohorts
Background:
Sedentary behaviour is related to poorer health independently of time spent in moderate to vigorous physical activity. The aim of this study was to investigate whether wellbeing or symptoms of anxiety or depression predict sedentary behaviour in older adults.
Method:
Participants were drawn from the Lothian Birth Cohort 1936 (LBC1936) (n = 271), and the West of Scotland Twenty-07 1950s (n = 309) and 1930s (n = 118) cohorts. Sedentary outcomes, sedentary time, and number of sit-to-stand transitions, were measured with a three-dimensional accelerometer (activPAL activity monitor) worn for 7 days. In the Twenty-07 cohorts, symptoms of anxiety and depression were assessed in 2008 and sedentary outcomes were assessed ~ 8 years later in 2015 and 2016. In the LBC1936 cohort, wellbeing and symptoms of anxiety and depression were assessed concurrently with sedentary behaviour in 2015 and 2016. We tested for an association between wellbeing, anxiety or depression and the sedentary outcomes using multivariate regression analysis.
Results:
We observed no association between wellbeing or symptoms of anxiety and the sedentary outcomes. Symptoms of depression were positively associated with sedentary time in the LBC1936 and Twenty-07 1950s cohort, and negatively associated with number of sit-to-stand transitions in the LBC1936. Meta-analytic estimates of the association between depressive symptoms and sedentary time or number of sit-to-stand transitions, adjusted for age, sex, BMI, long-standing illness, and education, were β = 0.11 (95% CI = 0.03, 0.18) and β = − 0.11 (95% CI = − 0.19, −0.03) respectively.
Conclusion:
Our findings indicate that depressive symptoms are positively associated with sedentary behavior. Future studies should investigate the causal direction of this association
- …