20 research outputs found

    Identification of field caught Anopheles gambiae s.s. and Anopheles arabiensis by TaqMan single nucleotide polymorphism genotyping

    Get PDF
    BACKGROUND: Identification of Anopheles gambiae s.s. and Anopheles arabiensis from field-collected Anopheles gambiae s.l. is often necessary in basic and applied research, and in operational control programmes. The currently accepted method involves use of standard polymerase chain reaction amplification of ribosomal DNA (rDNA) from the 3' 28S to 5' intergenic spacer region of the genome, and visual confirmation of amplicons of predicted size on agarose gels, after electrophoresis. This report describes development and evaluation of an automated, quantitative PCR method based upon TaqMan™ single nucleotide polymorphism (SNP) genotyping. METHODS: Standard PCR, and TaqMan SNP genotyping with newly designed primers and fluorophore-labeled probes hybridizing to sequences of complementary rDNA specific for either An. gambiae s.s. or An. arabiensis, were conducted in three experiments involving field-collected An. gambiae s.l. from western Kenya, and defined laboratory strains. DNA extraction was from a single leg, sonicated for five minutes in buffer in wells of 96-well PCR plates. RESULTS: TaqMan SNP genotyping showed a reaction success rate, sensitivity, and species specificity comparable to that of standard PCR. In an extensive field study, only 29 of 3,041 (0.95%) were determined to be hybrids by TaqMan (i.e., having rDNA sequences from both species), however, all but one were An. arabiensis by standard PCR, suggesting an acceptably low (ca. 1%) error rate for TaqMan genotyping in mistakenly identifying species hybrids. CONCLUSION: TaqMan SNP genotyping proved to be a sensitive and rapid method for identification of An. gambiae s.l. and An. arabiensis, with a high success rate, specific results, and congruence with the standard PCR method

    The ATLAS fast tracKer system

    Get PDF
    The ATLAS Fast TracKer (FTK) was designed to provide full tracking for the ATLAS high-level trigger by using pattern recognition based on Associative Memory (AM) chips and fitting in high-speed field programmable gate arrays. The tracks found by the FTK are based on inputs from all modules of the pixel and silicon microstrip trackers. The as-built FTK system and components are described, as is the online software used to control them while running in the ATLAS data acquisition system. Also described is the simulation of the FTK hardware and the optimization of the AM pattern banks. An optimization for long-lived particles with large impact parameter values is included. A test of the FTK system with the data playback facility that allowed the FTK to be commissioned during the shutdown between Run 2 and Run 3 of the LHC is reported. The resulting tracks from part of the FTK system covering a limited η-ϕ region of the detector are compared with the output from the FTK simulation. It is shown that FTK performance is in good agreement with the simulation. © The ATLAS collaboratio

    Alluvial-eolian interaction in a Cambrian rift margin: the Pedra das Torrinhas and Pedra Pintada formations (Guaritas Group, RS)

    Get PDF
    This work presents a study of selected outcrops from the Pedra das Torrinhas Formation of the Guaritas Group (Cambrian, Camaquã Basin), near the basin bordering Encantadas Fault Zone. The studied succession includes alluvial fan deposits that pass laterally into eolian deposits. Sedimentary facies and architectural element analysis were performed, followed by sedimentary petrography and microscopic porosity analysis, aiming to characterize the porosity of the deposits and its spatial distribution. The main objective was to contribute to a better understanding of the porosity spatial distribution in depositional systems characterized by the interaction between alluvial and eolian processes, with special reference to deposits formed prior to the development of terrestrial plants. Porosity values are related to depositional processes, with higher porosities associated to eolian dune deposits (mean of 8.4%), and lower porosity related to interdunes (mean of 3.4%) and alluvial fans (mean of 4.3%). Architectural elements analysis revealed the spatial relationships of these deposits, a response to the interplay of the eolian and alluvial processes. The integration of porosity data reveals that the interaction of alluvial and eolian processes results in heterogeneous distribution of porosity at the facies association scale. Eolian reworking of alluvial facies increases porosity whereas sheet-flood and other alluvial processes in the interdune areas reduce porosity.<br>O presente trabalho consiste no estudo de afloramentos da Formação Pedra das Torrinhas do Grupo Guaritas (Cambriano, Bacia Camaquã), próximo à Zona de Falha das Encantadas. As sucessões estudadas incluem depósitos de leques aluviais que passam lateralmente para depósitos eólicos. Foram realizadas análises de fácies e de elementos arquiteturais, seguidos de petrografia sedimentar e análise microscópica de porosidade, com o objetivo de caracterizar a porosidade da unidade e sua distribuição espacial. o principal objetivo foi contribuir para uma melhor compreensão da distribuição espacial de porosidade em sistemas deposicionais caracterizados pela interação aluvial-eólica, com atenção especial à sistemas deposicionais pré-vegetação. A porosidade é controlada principalmente pelos processos deposicionais, com os valores maiores associados a depósitos de dunas eólicas (média de 8,4%) e os menores a facies de interdunas (média de 3,4%) e de leques aluviais (média de 4,3%). A análise dos elementos arquiteturais mostra a relação espacial destes depósitos, provocada por interações entre sistemas deposicionais aluviais e eólicos. A integração de dados revela que a interação de processos aluviais e eólicos resultou em uma complexa heterogeneidades na escala de associação de facies. o retrabalhamento eólico de fácies aluviais provocou aumento de porosidade enquanto que a ocorrência de enchentes-em-lençol em áreas de interduna e o aporte de sedimentos aluviais em interdunas inundadas formaram corpos sedimentares com porosidade reduzida
    corecore