35 research outputs found

    Integration of metabolite with transcript and enzyme activity profiling during diurnal cycles in Arabidopsis rosettes

    Get PDF
    ABSTRACT: BACKGROUND: Genome-wide transcript profiling and analyses of enzyme activities from central carbon and nitrogen metabolism has shown that transcript levels undergo marked and rapid changes during diurnal cycles and after transfer to darkness, whereas changes of enzyme activities are smaller and delayed. In the starchless pgm mutant, where sugars are depleted every night, there are accentuated diurnal changes of transcript levels. Enzyme activities do not show larger diurnal changes; instead they shift towards the levels found in wild-type after several days of darkness. These results indicate that enzyme activities change slowly, integrating the changes of transcript levels over several diurnal cycles. RESULTS: To generalize this conclusion, 137 metabolites were profiled using GC-MS and LC-MS. Amplitudes of the diurnal changes of metabolites in pgm were (with the exception of sugars) similar or smaller than in wild-type. The average levels shifted towards those found after several days of darkness in wild-type. Examples include increased levels of many amino acids due to protein degradation, decreased levels of many fatty acids, increased tocopherol and decreased myo-inositol. Many metabolite-transcript correlations were found and the proportion of transcripts correlated with sugars increased dramatically in the starchless pgm mutant. CONCLUSION: Rapid diurnal changes of transcripts are integrated over time to generate quasi-stable changes across large sectors of metabolism. The slow response of enzyme activities and metabolites implies that correlations between metabolites and transcripts are due to regulation of gene expression by metabolites, rather than metabolites being changed as a consequence of a change in gene expression

    Global transcript levels respond to small changes of the carbon status during progressive exhaustion of carbohydrates in Arabidopsis rosettes

    Get PDF
    The balance between the supply and utilization of carbon (C) changes continually. It has been proposed that plants respond in an acclimatory manner, modifying C utilization to minimize harmful periods of C depletion. This hypothesis predicts that signaling events are initiated by small changes in C status. We analyzed the global transcriptional response to a gradual depletion of C during the night and an extension of the night, where C becomes severely limiting from 4 h onward. The response was interpreted using published datasets for sugar, light, and circadian responses. Hundreds of C-responsive genes respond during the night and others very early in the extended night. Pathway analysis reveals that biosynthesis and cellular growth genes are repressed during the night and genes involved in catabolism are induced during the first hours of the extended night. The C response is amplified by an antagonistic interaction with the clock. Light signaling is attenuated during the 24-h light/dark cycle. A model was developed that uses the response of 22K genes during a circadian cycle and their responses to C and light to predict global transcriptional responses during diurnal cycles of wild-type and starchless pgm mutant plants and an extended night in wild-type plants. By identifying sets of genes that respond at different speeds and times during C depletion, our extended dataset and model aid the analysis of candidates for C signaling. This is illustrated for AKIN10 and four bZIP transcription factors, and sets of genes involved in trehalose signaling, protein turnover, and starch breakdown

    Sugars and circadian regulation make major contributions to the global regulation of diurnal gene expression in Arabidopsis

    Get PDF
    The diurnal cycle strongly influences many plant metabolic and physiological processes. Arabidopsis thaliana rosettes were harvested six times during 12-h-light/12-h-dark treatments to investigate changes in gene expression using ATH1 arrays. Diagnostic gene sets were identified from published or in-house expression profiles of the response to light, sugar, nitrogen, and water deficit in seedlings and 4 h of darkness or illumination at ambient or compensation point [CO2]. Many sugar-responsive genes showed large diurnal expression changes, whose timing matched that of the diurnal changes of sugars. A set of circadian-regulated genes also showed large diurnal changes in expression. Comparison of published results from a free-running cycle with the diurnal changes in Columbia-0 (Col-0) and the starchless phosphoglucomutase (pgm) mutant indicated that sugars modify the expression of up to half of the clock-regulated genes. Principle component analysis identified genes that make large contributions to diurnal changes and confirmed that sugar and circadian regulation are the major inputs in Col-0 but that sugars dominate the response in pgm. Most of the changes in pgm are triggered by low sugar levels during the night rather than high levels in the light, highlighting the importance of responses to low sugar in diurnal gene regulation. We identified a set of candidate regulatory genes that show robust responses to alterations in sugar levels and change markedly during the diurnal cycle

    A Naturally Associated Rhizobacterium of Arabidopsis thaliana Induces a Starvation-Like Transcriptional Response while Promoting Growth

    Get PDF
    Plant growth promotion by rhizobacteria is a known phenomenon but the underlying mechanisms are poorly understood. We searched for plant growth-promoting rhizobacteria that are naturally associated with Arabidopsis thaliana to investigate the molecular mechanisms that are involved in plant growth-promotion. We isolated a Pseudomonas bacterium (Pseudomonas sp. G62) from roots of field-grown Arabidopsis plants that has not been described previously and analyzed its effect on plant growth, gene expression and the level of sugars and amino acids in the host plant. Inoculation with Pseudomonas sp. G62 promoted plant growth under various growth conditions. Microarray analysis revealed rapid changes in transcript levels of genes annotated to energy-, sugar- and cell wall metabolism in plants 6 h after root inoculation with P. sp. G62. The expression of several of these genes remained stable over weeks, but appeared differentially regulated in roots and shoots. The global gene expression profile observed after inoculation with P. sp. G62 showed a striking resemblance with previously described carbohydrate starvation experiments, although plants were not depleted from soluble sugars, and even showed a slight increase of the sucrose level in roots 5 weeks after inoculation. We suggest that the starvation-like transcriptional phenotype - while steady state sucrose levels are not reduced - is induced by a yet unknown signal from the bacterium that simulates sugar starvation. We discuss the potential effects of the sugar starvation signal on plant growth promotion

    Anal Biochem

    No full text
    To gain insights into complex biological processes, such as transcription and replication, the analysis of protein-DNA interactions and the determination of their sequence requirements are of central importance. In this study, we probed protein microarray technology and ultraviolet crosslinking combined with mass spectrometry (MS) for their practicability to study protein–DNA interactions. We chose as a model system the well-characterized interaction of bacterial replication initiator DnaA with its cognate binding site, the DnaA box. Interactions of DnaA domain 4 with a high-affinity DnaA box (R4) and with a low-affinity DnaA box (R3) were compared. A mutant DnaA domain 4, A440V, was included in the study. DnaA domain 4, wt, spotted onto FAST slides, revealed a strong signal only with a Cy5-labeled, double-stranded, 21-mer oligonucleotide containing DnaA box R4. No signals were obtained when applying the mutant protein. Ultraviolet crosslinking combined with nanoLC/MALDI-TOF MS located the site of interaction to a peptide spanning amino acids 433– 442 of Escherichia coli DnaA. This fragment contains six residues that were identified as being involved in DNA binding by recently published crystal structure and nuclear magnetic resonance (NMR) analysis. In the future, the technologies applied in this study will become important tools for studying protein–DNA interactions
    corecore