156 research outputs found

    Radio-frequency operation of a double-island single-electron transistor

    Full text link
    We present results on a double-island single-electron transistor (DISET) operated at radio-frequency (rf) for fast and highly sensitive detection of charge motion in the solid state. Using an intuitive definition for the charge sensitivity, we compare a DISET to a conventional single-electron transistor (SET). We find that a DISET can be more sensitive than a SET for identical, minimum device resistances in the Coulomb blockade regime. This is of particular importance for rf operation where ideal impedance matching to 50 Ohm transmission lines is only possible for a limited range of device resistances. We report a charge sensitivity of 5.6E-6 e/sqrt(Hz) for a rf-DISET, together with a demonstration of single-shot detection of small (<=0.1e) charge signals on microsecond timescales.Comment: 6 pages, 6 figure

    Observation of quantum capacitance in the Cooper-pair transistor

    Get PDF
    We have fabricated a Cooper-pair transistor (CPT) with parameters such that for appropriate voltage biases, the sub-gap charge transport takes place via slow tunneling of quasiparticles that link two Josephson-coupled charge manifolds. In between the quasiparticle tunneling events, the CPT behaves essentially like a single Cooper-pair box (SCB). The effective capacitance of a SCB can be defined as the derivative of the induced charge with respect to gate voltage. This capacitance has two parts, the geometric capacitance, C_geom, and the quantum capacitance C_Q. The latter is due to the level anti-crossing caused by the Josephson coupling. It depends parametrically on the gate voltage and is dual to the Josephson inductance. Furthermore, it's magnitude may be substantially larger than C_geom. We have been able to detect C_Q in our CPT, by measuring the in-phase and quadrature rf-signal reflected from a resonant circuit in which the CPT is embedded. C_Q can be used as the basis of a charge qubit readout by placing a Cooper-pair box in such a resonant circuit.Comment: 3 figure

    Comparative Modelling of the Spectra of Cool Giants

    Get PDF
    Our ability to extract information from the spectra of stars depends on reliable models of stellar atmospheres and appropriate techniques for spectral synthesis. Various model codes and strategies for the analysis of stellar spectra are available today. We aim to compare the results of deriving stellar parameters using different atmosphere models and different analysis strategies. The focus is set on high-resolution spectroscopy of cool giant stars. Spectra representing four cool giant stars were made available to various groups and individuals working in the area of spectral synthesis, asking them to derive stellar parameters from the data provided. The results were discussed at a workshop in Vienna in 2010. Most of the major codes currently used in the astronomical community for analyses of stellar spectra were included in this experiment. We present the results from the different groups, as well as an additional experiment comparing the synthetic spectra produced by various codes for a given set of stellar parameters. Similarities and differences of the results are discussed. Several valid approaches to analyze a given spectrum of a star result in quite a wide range of solutions. The main causes for the differences in parameters derived by different groups seem to lie in the physical input data and in the details of the analysis method. This clearly shows how far from a definitive abundance analysis we still are.Comment: accepted for publication in A&A. This version includes also the online tables. Reference spectra will later be available via the CD

    Noise performance of the radio-frequency single-electron transistor

    Get PDF
    We have analyzed a radio-frequency single-electron-transistor (RF-SET) circuit that includes a high-electron-mobility-transistor (HEMT)amplifier, coupled to the single-electron-transistor (SET) via an impedance transformer. We consider how power is transferred between different components of the circuit, model noise components, and analyze the operating conditions of practical importance. The results are compared with experimental data on SETs. Good agreement is obtained between our noise model and the experimental results. Our analysis shows, also, that the biggest improvement to the present RF-SETs will be achieved by increasing the charging energy and by lowering the HEMT amplifier noise contribution.Peer reviewe

    Multiple Current States of Two Phase-Coupled Superconducting Rings

    Full text link
    The states of two phase-coupled superconducting rings have been investigated. Multiple current states have been revealed in the dependence of the critical current on the magnetic field. The performed calculations of the critical currents and energy states in a magnetic field have made it possible to interpret the experiment as the measurement of energy states into which the system comes with different probabilities because of the equilibrium and non-equilibrium noises upon the transition from the resistive state to the superconducting state during the measurement of the critical currentComment: 5 pages, 5 figure

    Josephson charge-phase qubit with radio frequency readout: coupling and decoherence

    Full text link
    The charge-phase Josephson qubit based on a superconducting single charge transistor inserted in a low-inductance superconducting loop is considered. The loop is inductively coupled to a radio-frequency driven tank circuit enabling the readout of the qubit states by measuring the effective Josephson inductance of the transistor. The effect of qubit dephasing and relaxation due to electric and magnetic control lines as well as the measuring system is evaluated. Recommendations for operation of the qubit in magic points producing minimum decoherence are given.Comment: 11 pages incl. 6 fig

    Numerical analysis of the radio-frequency single-electron transistor operation

    Full text link
    We have analyzed numerically the response and noise-limited charge sensitivity of a radio-frequency single-electron transistor (RF-SET) in a non-superconducting state using the orthodox theory. In particular, we have studied the performance dependence on the quality factor Q of the tank circuit for Q both below and above the value corresponding to the impedance matching between the coaxial cable and SET.Comment: 14 page

    Constraining the thermally pulsing asymptotic giant branch phase with resolved stellar populations in the Small Magellanic Cloud

    Get PDF
    The thermally pulsing asymptotic giant branch (TP-AGB) experienced by low-and intermediate-mass stars is one of the most uncertain phases of stellar evolution and the models need to be calibrated with the aid of observations. To this purpose, we couple high-quality observations of resolved stars in the Small Magellanic Cloud (SMC) with detailed stellar population synthesis simulations computed with the TRILEGAL code. The strength of our approach relies on the detailed spatially resolved star formation history of the SMC, derived from the deep near-infrared photometry of the VISTA survey of the Magellanic Clouds, as well as on the capability to quickly and accurately explore a wide variety of parameters and effects with the COLIBRI code for the TP-AGB evolution. Adopting a well-characterized set of observations - star counts and luminosity functions - we set up a calibration cycle along which we iteratively change a few key parameters of the TP-AGB models until we eventually reach a good fit to the observations. Our work leads to identify two best-fitting models that mainly differ in the efficiencies of the third dredge-up and mass-loss in TP-AGB stars with initial masses larger than about 3 M-circle dot. On the basis of these calibrated models, we provide a full characterization of the TP-AGB stellar population in the SMC in terms of stellar parameters (initial masses, C/O ratios, carbon excess, mass-loss rates). Extensive tables of isochrones including these improved models are publicly available
    • …
    corecore