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We have fabricated a Cooper-pair transistor (CPT) with parameters such that for appropriate voltage
biases, it behaves essentially like a single Cooper-pair box (SCB). The effective capacitance of a SCB can
be defined as the derivative of the induced charge with respect to gate voltage and has two parts, the
geometric capacitance, Cgeom, and the quantum capacitance CQ. The latter is due to the level anticrossing
caused by the Josephson coupling and is dual to the Josephson inductance. It depends parametrically on
the gate voltage and its magnitude may be substantially larger than Cgeom. We have detected CQ in our
CPT, by measuring the in phase and quadrature rf signal reflected from a resonant circuit in which the CPT
is embedded. CQ can be used as the basis of a charge qubit readout by placing a Cooper-pair box in such a
resonant circuit.
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FIG. 1. (a) The Cooper-pair box and (b) its equivalent as a
parametric capacitor. (c) Schematic of the rf-SET. A monochro-
matic radio-frequency signal Vin, added to a dc voltage bias VSD,
is reflected from a tank circuit containing the SET.
The quantum-mechanical properties of the single
Cooper-pair box (SCB) [1,2]—an artificial two-level sys-
tem—have been investigated thoroughly during the last
few years due to the potential for SCB’s to serve as
quantum bits (qubits) [3–7]. An important property of
SCB qubits is the existence of an optimal point, where
the first derivative of the energy bands with respect to gate
voltage vanishes, and the system is insensitive to low-
frequency charge fluctuations [5,7]. Dephasing times are
maximum at this point, making it the natural opera-
tion point for single-qubit quantum rotations. Since the
eigenstates at the optimal point are orthogonal to charge
eigenstates, however, one must move away from the
optimal point for readout schemes based upon charge
measurement.

A recent experiment used the polarizability of an SCB
coupled to a microwave resonator to perform cavity-QED
measurements [8]. Such a circuit can also perform a quan-
tum nondemolition measurement of the qubit state at the
optimal point. In this Letter, we study a type of polar-
izability that can be described as an effective capacitance
and is related to the second derivative, or curvature, of the
energy bands with respect to gate voltage. This quantum
capacitance was first discussed in the context of small
Josephson junctions [9–11] and is dual to the Josephson
inductance. Recently, a controllable coupling scheme
based upon this parametric capacitance [12] has been
proposed, as well as a superconducting phase detector [13].

Both the single-electron transistor (SET) [14,15] and its
superconducting version, also known as the Cooper-pair
transistor (CPT) [16], are closely related to the SCB. These
devices are the basis of very sensitive electrometers that are
used to readout charge qubits [6,7,17]. Previous work
concentrated on the dissipative response and backaction
of SET’s and CPT’s when used as electrometers [18–21].
Here, we show that an appropriately designed CPT can also
exhibit a reactive response due to quantum capacitance.
This capacitance can be measured using a radio-frequency
resonant circuit.
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To see how quantum capacitance arises, we first consider
the single Cooper-pair box as depicted in Fig. 1(a). The box
has a Josephson energy EJ, charging energy EC �
e2=2C�, and total capacitance C� � CJ � Cg. The effec-
tive capacitance can be defined as the first derivative of the
injected charge with respect to voltage, Ceff � @hQgi=@Vg,
where the brackets denote a quantum expectation value.
From electrostatics, one has Qg � Cg�Vg � Visland�, and
Visland � �CgVg � 2en�=C�, so that

hQgi �
CgCJ
C�

Vg � 2ehni
Cg
C�

; (1)

where n is the number of Cooper pairs that have tunneled
onto the island. For each energy band k of the SCB, hni
depends on the normalized gate charge ng � CgVg=e. One
finds that

Ckeff �
CgCJ
C�

�
C2
g

e2

@2Ek
@n2

g
� Cgeom � C

k
Q (2)
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FIG. 2 (color online). (a) Phase shifts around eVSD � 2EC.
Cooper-pair tunneling between the indicated charge states is
degenerate across junction 1 (2) along the dotted lines with
positive (negative) slope. The right y axis is in units of reduced
bias, v � eVSD=EC. (b) Diagram of the charge states involved in
the JQP processes for gate charge 0< ng < 1. The solid lines
with arrows represent tunneling of quasiparticles and the double
lines Cooper pairs. The upper right triangle represents transitions
occurring along the negative-slope dotted line in (a), and the
bottom left triangle those along the positive-slope line. (c) Phase
shifts vs gate charge for VSD � 222 �V (lower points) and
VSD � 145 �V (upper points, offset 5 degrees for clarity). The
solid lines are the theoretical expectations using Eq. (5) and the
two-level approximation, the values of EJ found from spectros-
copy, and T � 130 mK.
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where Cgeom is the geometric capacitance of two capacitors
in series, and CkQ � ��C

2
g=e2��@2Ek=@n2

g� is the quantum
capacitance. In the two-level approximation, which is valid
for � � EJ=4EC � 1, the ground and first excited state

energies are given by E� � �2EC
�������������������������������
�1� ng�

2 � �2
q

. These

produce the quantum capacitances

C�Q � 	
C2
g

C�
�2
�1� ng�2 � �2��3=2: (3)

The magnitude of CQ is maximum at the charge degener-
acy,

C�Q�ng � 1� � 	
2e2

EJ

C2
g

C2
�

: (4)

We note that although CQ grows with decreasing EJ, the
region of ng where it is observable becomes vanishingly
small. The value of e2=h is approximately 40 fF GHz, so a
charge qubit (SCB) with EJ=h � 10 GHz and Cg � CJ
would have a quantum capacitance at the charge degener-
acy of 2 fF, which is higher than the typical junction
capacitance (CJ � 1 fF) of a charge qubit.

For finite temperatures, a Boltzmann-weighted average
of the injected charge must be considered, giving the
effective capacitance

Ceff �
CgCJ
C�

�
C2
g

e2

@
@ng

�
@Ek
@ng

�
T
: (5)

We now turn to the CPT, which consists of a metallic
island connected to two leads by small capacitance tunnel
junctions [see Fig. 1(c)]. An external gate controls the
potential of the island through the gate-induced charge
on the island, ng � CgVg=e. If EJ=4EC � 1, an appre-
ciable direct quasiparticle (QP) current occurs only when
eVSD > 4�. For smaller bias voltages, a gate-dependent
subgap current is possible due to sequences of Cooper-pair
tunneling combined with QP tunneling. These processes
are known as Josephson-quasiparticle (JQP) cycles [22–
26]. Recent research has focused upon describing the noise
and backaction effects of such JQP processes—when they
carry a substantial current [20,21]. For a JQP process to
carry a substantial current, however, the QP tunneling rates
must be relatively fast. We have constructed a CPT where
these rates are very slow in a certain region of voltage bias
VSD. This region of VSD is centered at eVSD � 2EC, at the
intersections of lines in the VSD-ng plane where Cooper-
pair tunneling across one junction is resonant (see Fig. 2).
This intersection is known as the double JQP (DJQP) point.

Charge transport in this region of VSD consists of QP
tunneling events that move the system between two
Josephson-coupled charge manifolds [21]. E.g., for ng 2

0; 1�, the QP transitions link the 0$ 2 and �1$ 1
manifolds [see Fig. 2(b)]. The QP tunneling rate �QP

depends on dE, the energy gain of the tunnel event. It is
large only when dE exceeds 2� [27]. At the DJQP point,
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dE � 3EC, and hence QP tunneling is suppressed if EC <
2�=3 [22,26], which is the case for the CPT considered
here, EC ’ �=2. The measured dc current at the DJQP
point is less than �1 pA, which indicates a QP tunneling
rate �4 MHz. Because the QP rates are very slow com-
pared to the Cooper-pair tunneling rate (� 3 GHz) and the
intramanifold relaxation rate (� 1 GHz, see below), this
CPT behaves essentially like a SCB, where Cooper pairs
tunnel coherently across one junction while the other junc-
tion acts as a gate capacitance. This picture is interrupted at
long time scales by incoherent QP tunnel events.

This description breaks down in a small region around
zero bias, where the eigenstates are those of definite phase
across the CPT. For eVSD � EC, CQ becomes sensitive to
low-frequency fluctuations of the phase. Consequently, we
do not observe CQ around zero bias, which could also be
due to poisoning by nonequilibrium QP’s.

We fabricated a CPT using e-beam lithography and
standard double-angle shadow evaporation of aluminum
onto an oxidized silicon substrate. The sample was placed
7-2
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at the mixing chamber of a dilution refrigerator with a base
temperature of 20 mK. All dc control lines were filtered
by a combination of low-pass and stainless steel powder
filters. The measured normal resistance of the SET was
Rn � 120 k� which implies a Josephson energy EJ �
12 �eV (EJ=h � 2:9 GHz) per junction using the
Ambegaokar-Baratoff relation [28]. EC � 111 �eV, and
� � 215 �eV, were determined from the DC-IV curves .

Our CPT was configured as a radio-frequency SET (rf-
SET) [29], which is based upon reflection of a monocro-
matic radio-frequency signal from a tank (LC) circuit
containing the SET [see Fig. 1(c)]. The tank circuit de-
scribed here had a resonant frequency of 342 MHz using a
inductance LT � 490 nH, which implies a tank circuit
capacitance CT � 440 fF coming from the stray capaci-
tance of the bonding pad connecting the inductor to the
chip. The CPT has a reactive response due to its effective
capacitance. Like that of the SCB, it is related to second
derivatives of the energy bands. In this case, the derivatives
are with respect to the source-drain voltage VSD, and one
must tune both VSD and ng to sit at a Cooper-pair charge
degeneracy. One finds a form similar to Eq. (3) but with
C� � CJ1 � CJ2 � Cg. For a symmetric transistor (CJ1 �

CJ2) and Cg � CJ1 the expression is identical to Eq. (3),
but with 1� ng replaced by 1� ng � v=4, where v �
eVSD=EC.

The reflection coefficient for the circuit of Fig. 1(c) is
given by � � Vout=Vin � �Z� Z0�=�Z� Z0�, with

Z � i!LT � �i!C� R
�1
SET�

�1; (6)

where C � CT � Ceff is the total capacitance, and Z0 ’
50 �. Ceff is the effective capacitance of the CPT, which
depends on both VSD and ng. If RSET � L=Z0C ’ 23 k�
for our circuit, the phase of � near resonance is only
affected by changes in C. It will be convenient to fix the
total capacitance (and hence phase) relative to some par-
ticular value of VSD and ng, where CQ � 0. We write C �
C0 � CQ. We define the detuning parameter � �
1�!=!0, with !0 � 1=

������������
LTC0

p
and ! � 1=

����������
LTC
p

. For
2Q�� 1, one finds � � �1� i4Q�, where the quality
factor Q �

������������
LT=C

p
=Z0 � 21 for our circuit, and � �

CQ=2C0. Then the phase of the reflected signal is

� � tan�1��2QCQ=C0�: (7)

For our measurements, an rf excitation of �119 dBm
(Vin ’ 0:2 �V) was reflected from the tank circuit. The in-
phase and quadrature signals from the mixer were low-pass
filtered using a cutoff frequency of 10 kHz. For each value
of VSD, Vg was ramped at 237 Hz and 1024 repetitions of
the signal were acquired and averaged taking a few sec-
onds. Below eVSD � 4EC only a small modulation of the
magnitude of the reflected rf excitation was observed,
corresponding to RSET > 1 M�. This value of RSET is
much too large to produce the phase shifts observed at
these biases as described above. In Fig. 2(a) we show the
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phase shift of the reflected signal as a function of VSD and
ng. The phase shifts fall along the Cooper-pair degenera-
cies and are concentrated in characteristic ‘‘X’’ patterns
around the DJQP points with a maxima at the center. The
X’s are cut off for eVSD <EC and for eVSD * 3EC. This
pattern can be understood by considering the QP tunneling
rates involved in the JQP cycles and illustrated in Fig. 2(b).
For gate charge ng 2 
0; 1�, the charge states 0 and 2 are
degenerate along the negative-slope dotted line, v �
�4�ng � 1�, in the right half of Fig. 2(a). The charge states
�1 and 1 are degenerate along the positive-slope line, v �
4ng. The QP rates depend on dE. For a QP transition from
charge state n to n� 1, dEn!n�1=EC � 	2�n� ng� �
1� v=2. The relevant rates are those along the Cooper-
pair degeneracies. Between eVSD � EC and eVSD � 3EC,
the QP transitions, e.g., 2! 1 and 1! 0, involve an
energy gain dE < 2�, and hence these rates are small
[22,26]. Nevertheless, away from the DJQP point, the
system spends some fraction of time in a nondegenerate
charge state, which reduces the observed phase shift. One
observes a maximum phase shift precisely at the DJQP,
since both the 0$ 2 and �1$ 1 manifolds are at their
Cooper-pair charge degeneracies, despite the QP transi-
tions that move the system slowly from one manifold to the
other. For eVSD <EC, the QP transition 1! 0, along the
0$ 2 Cooper-pair degeneracy, involves an energy cost;
therefore, this rate is thermally suppressed, and the system
gets stuck in the nondegenerate state 1. For eVSD * 3EC,
since EC ’ �=2, the QP transition 2! 1, along the 0$ 2
degeneracy, has an energy gain greater than 2� and be-
comes exponentially larger. Again, the system is trapped in
the nondegenerate state 1. A similar argument applies to
QP transition rates along the �1$ 1 degeneracy.

In Fig. 2(c) we show the phase shift versus gate charge
for eVSD � 2EC, i.e., crossing the DJQP, and for eVSD �
1:35EC. We can fit the measured phase shifts using the two-
level approximation and Eq. (5), and get good agreement
using the values of EJ found from the spectroscopic mea-
surements discussed below, if we allow for a nonzero
temperature. A second free parameter is an overall con-
stant, which is reduced from the value 2Q in Eq. (7) due to
imperfections of our microwave circuitry, e.g., a less than
ideal directivity of the directional coupler used in our
setup. This constant is further reduced away from the
DJQP point due to the relative time spent in the nondegen-
erate manifold. The extracted temperature is T � 130 mK,
which is higher than the bath temperature T ’ 20 mK. This
could be due to self-heating from the small �1 pA current
produced by the JQP cycles [30]. Another factor contrib-
uting to the elevated temperature could be noise from the
cold amplifier, which can be reduced by using a cold
microwave circulator.

We can make a more direct measurement of EJ for each
junction by applying microwaves to the gate of the tran-
sistor. Resonant microwave radiation induces transitions to
the excited state, which has a capacitance of the opposite
7-3
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FIG. 3. Microwave spectroscopy for VSD � 170 �V and gate
charge ng tuned to the Cooper-pair resonance of junction 1
(upper data) and junction 2 (lower data). The lower data set
has been offset�1 degrees for clarity. The solid lines are fits to a
Lorentzian and produce frequencies 3.0 MHz for junction 1, and
2.8 MHz for junction 2, and a FWHM of 0.9 MHz for both.
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sign. Figure 3 shows the effects of microwaves on the
phase shift when the transistor is tuned in VSD and ng to
be at the Cooper-pair degeneracy for the individual junc-
tions. The data are fit to Lorentzians, and the resulting
values EJ=h � 3:0 GHz for junction 1, and EJ=h �
2:8 GHz for junction 2 agree well with the estimate
2.9 GHz derived from the normal state resistance using
the Ambegaokar-Baratoff relation. The full width at half
maximum (FWHM) of both fits is 0.9 GHz. It is due to
lifetime broadening and indicates a relaxation time T1 �
1:1 ns, which is consistent with our previous measure-
ments on charge qubits [7], given that this transistor is
more strongly coupled to its environment.

A suitable device for studying the quantum capacitance
in detail would consist of a SCB placed in a rf tank circuit.
An electrometer based upon such a rf SCB device could go
beyond the so-called shot noise limit, which is due to the
source-drain current in the transistor [17,19]. Moreover,
the rf SCB would form an integrated charge qubit and
readout device. While this has been done using microwave
resonators to reach the cavity-QED, strong-coupling limit
[8], we suggest that it is not necessary to go to such an
extreme quantum limit simply for qubit readout. Instead,
one can use lower-frequency lumped circuits that utilize
the quantum capacitance, i.e., the response of the SCB to
classical electromagnetic fields. Using lower-frequency
resonators may further shield the qubit from the high-
frequency fluctuations of the electromagnetic environment.

In conclusion, we have observed the quantum contribu-
tion to the effective capacitance of a Cooper-pair transistor
by measuring the gate-dependent phase shift of a resonant
circuit in which the transistor is embedded. The measured
phase shifts are in good agreement with a theory that takes
20680
into account a finite temperature and the combined tunnel-
ing of Cooper pairs and quasiparticles.
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[13] L. Roschier, M. Sillanpää, and P. Hakonen, Phys. Rev. B
71, 024530 (2005).

[14] T. A. Fulton and G. J. Dolan, Phys. Rev. Lett. 59, 109
(1987).

[15] K. K. Likharev, IEEE Trans. Magn. 23, 1142 (1987).
[16] A. B. Zorin, Phys. Rev. Lett. 76, 4408 (1996).
[17] A. Aassime et al., Appl. Phys. Lett. 79, 4031 (2001).
[18] A. Aassime et al., Phys. Rev. Lett. 86, 3376 (2001).
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