135 research outputs found

    Electrodynamics of balanced charges

    Get PDF
    In this work we modify the wave-corpuscle mechanics for elementary charges introduced by us recently. This modification is designed to better describe electromagnetic (EM) phenomena at atomic scales. It includes a modification of the concept of the classical EM field and a new model for the elementary charge which we call a balanced charge (b-charge). A b-charge does not interact with itself electromagnetically, and every b-charge possesses its own elementary EM field. The EM energy is naturally partitioned as the interaction energy between pairs of different b-charges. We construct EM theory of b-charges (BEM) based on a relativistic Lagrangian with the following properties: (i) b-charges interact only through their elementary EM potentials and fields; (ii) the field equations for the elementary EM fields are exactly the Maxwell equations with proper currents; (iii) a free charge moves uniformly preserving up to the Lorentz contraction its shape; (iv) the Newton equations with the Lorentz forces hold approximately when charges are well separated and move with non-relativistic velocities. The BEM theory can be characterized as neoclassical one which covers the macroscopic as well as the atomic spatial scales, it describes EM phenomena at atomic scale differently than the classical EM theory. It yields in macroscopic regimes the Newton equations with Lorentz forces for centers of well separated charges moving with nonrelativistic velocities. Applied to atomic scales it yields a hydrogen atom model with a frequency spectrum matching the same for the Schrodinger model with any desired accuracy.Comment: Manuscript was edited to improve the exposition and to remove noticed typo

    Gauge Theories with Cayley-Klein SO(2;j)SO(2;j) and SO(3;j)SO(3;j) Gauge Groups

    Get PDF
    Gauge theories with the orthogonal Cayley-Klein gauge groups SO(2;j)SO(2;j) and SO(3;j)SO(3;{\bf j}) are regarded. For nilpotent values of the contraction parameters j{\bf j} these groups are isomorphic to the non-semisimple Euclid, Newton, Galilei groups and corresponding matter spaces are fiber spaces with degenerate metrics. It is shown that the contracted gauge field theories describe the same set of fields and particle mass as SO(2),SO(3)SO(2), SO(3) gauge theories, if Lagrangians in the base and in the fibers all are taken into account. Such theories based on non-semisimple contracted group provide more simple field interactions as compared with the initial ones.Comment: 14 pages, 5 figure

    Quantized Roentgen Effect in Bose-Einstein Condensates

    Full text link
    A classical dielectric moving in a charged capacitor can create a magnetic field (Roentgen effect). A quantum dielectric, however, will not produce a magnetization, except at vortices. The magnetic field outside the quantum dielectric appears as the field of quantized monopoles

    Theory of quantum radiation observed as sonoluminescence

    Get PDF
    Sonoluminescence is explained in terms of quantum radiation by moving interfaces between media of different polarizability. In a stationary dielectric the zero-point fluctuations of the electromagnetic field excite virtual two-photon states which become real under perturbation due to motion of the dielectric. The sonoluminescent bubble is modelled as an optically empty cavity in a homogeneous dielectric. The problem of the photon emission by a cavity of time-dependent radius is handled in a Hamiltonian formalism which is dealt with perturbatively up to first order in the velocity of the bubble surface over the speed of light. A parameter-dependence of the zero-order Hamiltonian in addition to the first-order perturbation calls for a new perturbative method combining standard perturbation theory with an adiabatic approximation. In this way the transition amplitude from the vacuum into a two-photon state is obtained, and expressions for the single-photon spectrum and the total energy radiated during one flash are given both in full and in the short-wavelengths approximation when the bubble is larger than the wavelengths of the emitted light. It is shown analytically that the spectral density has the same frequency-dependence as black-body radiation; this is purely an effect of correlated quantum fluctuations at zero temperature. The present theory clarifies a number of hitherto unsolved problems and suggests explanations for several more. Possible experiments that discriminate this from other theories of sonoluminescence are proposed.Comment: Latex file, 28 pages, postscript file with 3 figs. attache

    General Relativity in Electrical Engineering

    Get PDF
    In electrical engineering metamaterials have been developed that offer unprecedented control over electromagnetic fields. Here we show that general relativity lends the theoretical tools for designing devices made of such versatile materials. Given a desired device function, the theory describes the electromagnetic properties that turn this function into fact. We consider media that facilitate space-time transformations and include negative refraction. Our theory unifies the concepts operating behind the scenes of perfect invisibility devices, perfect lenses, the optical Aharonov-Bohm effect and electromagnetic analogs of the event horizon, and may lead to further applications

    Optics of Nonuniformly Moving Media

    Full text link
    A moving dielectric appears to light as an effective gravitational field. At low flow velocities the dielectric acts on light in the same way as a magnetic field acts on a charged matter wave. We develop in detail the geometrical optics of moving dispersionless media. We derive a Hamiltonian and a Lagrangian to describe ray propagation. We elucidate how the gravitational and the magnetic model of light propagation are related to each other. Finally, we study light propagation around a vortex flow. The vortex shows an optical Aharonov--Bohm effect at large distances from the core, and, at shorter ranges, the vortex may resemble an optical black hole.Comment: Physical Review A (submitted

    Shape-induced force fields in optical trapping

    Get PDF
    Advances in optical tweezers, coupled with the proliferation of two-photon polymerization systems, mean that it is now becoming routine to fabricate and trap non-spherical particles. The shaping of both light beams and particles allows fine control over the flow of momentum from the optical to mechanical regimes. However, understanding and predicting the behaviour of such systems is highly complex in comparison with the traditional optically trapped microsphere. In this Article, we present a conceptually new and simple approach based on the nature of the optical force density. We illustrate the method through the design and fabrication of a shaped particle capable of acting as a passive force clamp, and we demonstrate its use as an optically trapped probe for imaging surface topography. Further applications of the design rules highlighted here may lead to new sensors for probing biomolecule mechanics, as well as to the development of optically actuated micromachines

    Plasmonic nanoparticle monomers and dimers: From nano-antennas to chiral metamaterials

    Full text link
    We review the basic physics behind light interaction with plasmonic nanoparticles. The theoretical foundations of light scattering on one metallic particle (a plasmonic monomer) and two interacting particles (a plasmonic dimer) are systematically investigated. Expressions for effective particle susceptibility (polarizability) are derived, and applications of these results to plasmonic nanoantennas are outlined. In the long-wavelength limit, the effective macroscopic parameters of an array of plasmonic dimers are calculated. These parameters are attributable to an effective medium corresponding to a dilute arrangement of nanoparticles, i.e., a metamaterial where plasmonic monomers or dimers have the function of "meta-atoms". It is shown that planar dimers consisting of rod-like particles generally possess elliptical dichroism and function as atoms for planar chiral metamaterials. The fabricational simplicity of the proposed rod-dimer geometry can be used in the design of more cost-effective chiral metamaterials in the optical domain.Comment: submitted to Appl. Phys.

    A significant proportion of classic Hodgkin lymphoma recurrences represents clonally unrelated second primary lymphoma

    Get PDF
    Despite high cure rates in classic Hodgkin lymphoma (cHL), relapses are observed. Whether relapsed cHL represents second primary lymphoma or an underlying T-cell lymphoma (TCL) mimicking cHL is under-investigated. To analyze the nature of cHL recurrences, in-depth clonality testing of immunoglobulin (IG) and T-cell receptor (TR) rearrangements was performed in paired cHL diagnosis and recurrences of 60 patients, supported by targeted mutation analysis of lymphoma-associated genes. Clonal IG rearrangements were detected by next-generation sequencing (NGS) in 69/120 (58%) diagnosis and recurrence samples. The clonal relationship could be established in 34 cases, identifying clonally related relapsed cHL in 24/34 patients (71%). Clonally unrelated cHL was observed in 10/34 patients (29%) as determined by IG-NGS clonality assessment, and confirmed by the identification of predominantly mutually exclusive gene mutations in the paired cHL samples. In recurrences of &gt;2 years, ~60% of cHL patients for which the clonal relationship could be established showed a second primary cHL. Clonal TR gene rearrangements were identified in 14/125 samples (11%), and TCL-associated gene mutations were detected in 7/14 samples. Retrospective pathology review with integration of the molecular findings were consistent with an underlying TCL in 5 patients aged &gt;50 years. This study shows that cHL recurrences, especially after 2 years, sometimes represent a new primary cHL or TCL mimicking cHL, as uncovered by NGS-based IG/TR clonality testing and gene mutation analysis. Given the significant therapeutic consequences, molecular testing of a presumed relapse in cHL is crucial for subsequent appropriate treatment strategies adapted to the specific lymphoma presentation.</p
    • …
    corecore