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Abstract We introduce here a new “neoclassical” electromagnetic (EM) theory in
which elementary charges are represented by wave functions and individual EM
fields to account for their EM interactions. We call so defined charges balanced or
“b-charges”. We construct the EM theory of b-charges (BEM) based on a relativistic
field Lagrangian and show that: (i) the elementary EM fields satisfy the Maxwell
equations; (ii) the Newton equations with the Lorentz forces hold approximately
when b-charges are well separated and move with non-relativistic velocities. When
the BEM theory is applied to atomic scales it yields a hydrogen atom model with a
frequency spectrum matching the Schrodinger model with desired accuracy. An im-
portant feature of the theory is a mechanism of elementary EM energy absorption
established for retarded potentials.

Keywords Electromagnetic theory · Lagrangian · Wave-corpuscle · Elementary
absorption

1 Introduction

It is well recognized that the classical electromagnetic (CEM) theory formulated in
the form of Maxwell-Lorentz equations provides an excellent description of elec-
tromagnetic phenomena at the macroscopic length scales. It is also well known that
CEM theory is inadequate in explaining electromagnetic (EM) phenomena at the
atomic scales including spectroscopic data of the hydrogen atom (HA). We develop
here a “neo-classical” EM theory which accounts for all classical EM phenomena
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at the macroscopic scales as well at least some EM phenomena at the atomic scale
including the HA spectral lines. When attempting to change the CEM theory we
want: (i) to stay on the solid ground of the Lagrangian mechanics and the relativ-
ity principle; (ii) to recover in this new EM theory all well established experimental
facts described by the CEM theory. Before we proceed with the new developments,
let us briefly recall the CEM theory fundamentals. The EM field associated with a
prescribed current in vacuum is described by the Maxwell equations

1

c
∂tB + ∇ × E = 0, ∇ · B = 0, (1)

1

c
∂tE − ∇ × B = −4π

c
J, ∇ · E = 4πρ, (2)

where E, B, ρ(t, x), J(t, x) are respectively the electric field, the magnetic induction,
prescribed charge and current densities. In particular, for point charges

ρ =
N∑

�=1

q�δ(x − r�(t)), J =
N∑

�=1

q�δ(x − r�(t))v�(t), (3)

where q� is the value of the �-th point charge, r� and v�(t) = dr�

dt
are respectively

its position and velocity, and δ is the Dirac delta-function. For a given EM field the
motion of every point charge in the EM field is determined by

d

dt
[m�v�(t)] = q�

[
E(t, r�(t)) + 1

c
v�(t) × B(t, r�(t))

]
, (4)

where m� is the �-th point charge mass and the right hand side of (4) is the Lorentz
force. The CEM theory treats three types of problems: (i) studies of EM fields for
prescribed charge and current densities; (ii) the motion of charges in a prescribed
external field; (iii) interaction of charges and their EM fields. The classical Maxwell-
Lorentz system though very successful in describing many EM phenomena has well
known problems. One of those is the lack of an “elementary process of absorption”
pointed out by A. Einstein in [6]: “According to the prevailing theory an oscillating
ion produces an outwardly propagated spherical wave. The opposite process does
not exist as an elementary process. It is true that the inwardly propagated spherical
wave is mathematically possible; however its approximate realization requires an
enormous amount of emitting elementary structures. Thus, the elementary process of
light radiation as such does not possess the character of reversibility. Here, I believe,
our wave theory is off the mark.”

The proposed here EM theory is based on a new concept for elementary charge
which we call a balanced charge or b-charge, and we refer to the theory as to BEM
theory. One of its key elements is a concept of an elementary EM field assigned
to every b-charge in contrast with a single EM field in the CEM theory. A single
b-charge is described by a pair (ψ,Aμ), where ψ is its wave function and Aμ =
(ϕ,A) is its 4-vector elementary potential. So, a b-charge is a field (ψ,Aμ) over
4-dimensional space-time continuum, in which the wave function ψ describes the
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charge distribution and the elementary potential Aμ mediates its EM interactions with
all other b-charges. Importantly, (i) all internal forces of a b-charge are exclusively
of non-electromagnetic origin; (ii) every b-charge is a source of its elementary EM
field which represents force exerted by this charge on any other b-charge but not
upon itself. The later allows to view a single b-charge as truly elementary one with
respect to the electromagnetic interactions. The proposed here theory does have an
elementary process of absorption, we call it “negative radiation”.

An idea to introduce an extended charge instead of the point one is not new, and the
most known models for it are the Abraham rigid charge model and the Lorentz rela-
tivistically covariant model. These models are studied and advanced in many papers,
see [9, Sect. 16], [10, 13], [14, Sect. 2, 6], [16, 17, 22]. In contrast to those models,
here and in [1, 2] we do not prescribe to an elementary charge a certain geometry,
and do not prescribe Newtonian dynamics for its center, but instead the elementary
charge has a wave function governed by a nonlinear Klein-Gordon or a nonlinear
Schrödinger equation in the relativistic and nonrelativistic cases respectively. An idea
to eliminate self-interaction is also, of course, not new. The latest to our best knowl-
edge attempt to have this feature in the electrodynamics is due J. Wheeler and R.
Feynman [20, 21], but the EM theory proposed here is very different from it.

The BEM theory is constructed based on a relativistic Lagrangian with the follow-
ing properties: (i) b-charges interact only through their elementary EM fields; (ii) the
field equations for the elementary EM fields are exactly the Maxwell equations with
proper currents; (iii) a free charge moves uniformly preserving up to the Lorentz
contraction its shape; (iv) the Newton equations with the Lorentz forces hold approx-
imately when charges are well separated and move with non-relativistic velocities.
Since an overwhelming number of EM phenomena are explained within the CEM
theory by the Maxwell equations and the Lorentz forces the BEM theory is equally
successful in explaining the same phenomena.

A system of N elementary charges in the BEM theory is modeled by N pairs
(ψ�,A�μ), 1 ≤ � ≤ N . The classical (total) EM field Aμ = (ϕ,A) is recovered in this
theory as the sum of all elementary EM fields, namely

ϕ =
N∑

�=1

ϕ�, A =
N∑

�=1

A�, (5)

but, importantly, this total field is not an independent entity. Notice then that since
in the BEM theory there is no EM self-interaction the action on �-th charge by EM
fields of other charges is described by a field A

μ
�=� = (ϕ�=�,A �=�) which is the total

field (ϕ,A) “balanced” by the removal from it the self-interaction, namely

ϕ�=� =
∑

�′ �=�

ϕ�′
, A �=� =

∑

�′ �=�

A�. (6)

Use of EM fields similar to ones in (6) is, of course, not a discovery and they can be
found in many textbooks, but the BEM theory goes further and consistently removes
the elementary EM self-actions for the CEM Lagrangian and consequently the ele-
mentary self-energies from the classical EM energy-momentum tensor. Only with this
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removal of the elementary self-actions from the classical EM Lagrangian one gets the
field equations in the form of the elementary Maxwell equations ∂μF �μν = 4π

c J �ν for
the elementary EM fields F�μν with the elementary conserved 4-currents J �ν . In the
BEM theory the EM energy is the energy of EM interaction of pairs of b-charges and
consequently it is naturally partitioned between the pairs of charges. We show that for
every pair of b-charges their EM interaction energy satisfies an elementary energy-
momentum conservation law governed by the relevant Lorentz force densities.

We also show that the CEM theory is a limit of the BEM theory at the macro-
scopic scale, but the differences between the CEM and BEM theories become more
pronounced for systems with fewer b-charges. The BEM theory predictions can sig-
nificantly deviate from those of the CEM theory in the following situations: (i) there
are just a few b-charges which are in close proximity; (ii) there is a large but highly
coherent system of b-charges similar to those collective, coherent systems (supercon-
ducting ring, laser and more) described by C. Mead in [11, p. 5].

2 Relativistic Theory

2.1 Lagrangian, Field Equations, Currents and Energy-momentum Tensors

Let us consider a system of elementary charges (ψ�,A�μ), 1 ≤ � ≤ N . It is a key
element of the construction that the �-th charge potential A�μ and its EM field
F�μν = ∂μA�ν − ∂νA�μ completely account for its action upon all other charges
�′ �= �. Consequently, the action upon �-th charge by all other charges is described by
�-th exterior potential A

�μ
�= and its EM field F

�μν
�= defined by

A
�μ
�= =

∑

�′ �=�

A�′μ, A
�μ
�= = (

ϕ��=,A��=
)
, F

�μν
�= =

∑

�′ �=�

F �′μν. (7)

We also introduce the total potential Aμ and the corresponding total EM field F μν

by the following formulas

Aμ =
N∑

�=1

A�μ, F μν =
N∑

�=1

F�μν. (8)

We furnish then the system of N b-charges with the following Lagrangian

L
({

ψ�,ψ�
;μ

}
,
{
ψ�∗,ψ�∗

;μ
}
,A�μ

) =
N∑

�=1

L�
(
ψ�,ψ�

;μ,ψ�∗,ψ�∗
;μ

) + LBEM, (9)

where ψ∗ is complex conjugate to ψ , the EM part of the Lagrangian is

LBEM = − 1

16π

∑

{�,�′:�′ �=�}
F�μνF �′

μν = − 1

16π

N∑

�=1

F�μνF ��=μν. (10)
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The EM part LBEM of the Lagrangian L is obtained by the removal from the classical
EM Lagrangian LCEM all self-interaction contributions of the elementary EM fields.
The “bare” charge Lagrangians L� are nonlinear Klein-Gordon Lagrangians defined
by exactly same expressions as in [1, 2], namely

L�
(
ψ�,ψ�

;μ,ψ�∗,ψ�∗
;μ

) = χ2

2m�

{
ψ�∗

;μψ�;μ − κ�2ψ�∗ψ� − G�(ψ�∗ψ�)
}
, (11)

where (i) G� is a nonlinear self-interaction function of the �-th charge described be-
low; (ii) m� > 0 is the charge mass parameter; (iii) q� is the value of the charge;

(iv) χ > 0 is a parameter similar to the Planck constant � = h
2π

and κ� = m�c
χ

,

ω� = m�c2

χ
, (v) the covariant derivatives are defined by the formulas ψ�

;μ = ∂μψ� +
iq�

χc A
�μ
�= ψ�. The Euler-Lagrange field equations for the above Lagrangian L are (i)

elementary Klein-Gordon equations

− 1

c2
∂̃�
t ∂̃�

t ψ� + ∇̃�2ψ� − G�′(ψ�∗ψ�)ψ� − κ2
0ψ� = 0, � = 1, . . . ,N, (12)

where

∇̃� = ∇ − iq�

χc
A��=, ∂̃�

t = ∂t + iq�

χ
ϕ��=,

together with the conjugate equation for ψ∗� and (ii) the Maxwell equations for the
elementary EM fields with the corresponding elementary currents

∂μF �μν = 4π

c
J �ν, � = 1, . . . ,N, (13)

where J �ν = (cρ�,J�) is the �-th elementary current presented as follows:

ρ� = − q�

m�c2

(
χ Im

∂tψ
�

ψ�
+ q�ϕ��=

)
|ψ�|2,

J� = q�

m�

(
χ Im

∇ψ�

ψ�
− q�

c
A��=

)
|ψ�|2.

(14)

One can see from the elementary wave equation (12) that the �-th charge is driven
by its exterior potential A�ν�= indicating that there is no EM self-interaction. The sum-
mation of the Maxwell equations (13) for the elementary EM fields readily implies
that the total EM field F μν defined by (7) also satisfies the Maxwell equations with
the total currents being the sum of all the elementary currents as in the CEM theory.
One can interpret the total EM field F μν as one acting upon a (N + 1)-th test charge
which is so small that its action onto the system of N charges can be neglected.

The system Lagrangian L defined by (9)–(11) is manifestly Lorentz and gauge
invariant with respect to the gauge transformations of the first kind [12, 19]. The
gauge invariance via the Noether’s theorem allows to introduce as usual elementary
conserved currents which coincide with the currents J �ν defined above, see [1, 2] for
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details. The currents satisfy for every � the conservation law

∂νJ
�ν = 0 or ∂tρ

� + ∇ · J� = 0. (15)

In what follows we also use a vector form of field equations (13) namely the Maxwell
equations for all elementary EM potentials ϕ�, A�

∇ ·
(

1

c
∂tA� + ∇ϕ�

)
= −4πρ�, � = 1, . . . ,N, (16)

∇ × (∇ × A�) + 1

c
∂t

(
1

c
∂tA� + ∇ϕ�

)
= 4πJ�

c
, (17)

where ρ� and J� are defined by (14). Equations (16)–(17) can be written in the form
(1), (2) if we set as usual

E = −∇ϕ − 1

c
∂tA, B = ∇ × A. (18)

If the Lorentz gauge is imposed, (16)–(17) turn into the wave equations for ψ�,A�.
Importantly, as in the wave-corpuscle mechanics (WCM) introduced and studied in
[1, 2], the nonlinearities G� are determined based on the single �-th charge equation
(12), (16), (17) where we set N = 1 and consequently A

�μ
�= = 0. The rest state of the

b-charge is defined to be of the form (as in the WCM, [1, 2])

ψ�(t,x) = e−iω0t ψ̊(|x|), A�(t,x) = 0, ϕ�(t,x) = ϕ̊(|x|) (19)

where ω0 = m�c2/χ, ψ̊ and ϕ̊ are real-valued radial functions. Substituting the ψ ,
ϕ and A defined by the relations (19) into (12) we obtain the following rest charge
equations:

−∇2ψ̊ + G′(|ψ̊ |2)ψ̊ = 0, −∇2ϕ̊ = 4π |ψ̊ |2. (20)

The quantity ψ̊ is fundamental for our theory and we call it form factor. Equation (20)
establishes an explicit relation between the form factor ψ̊ and the self-interaction non-
linearity G. If the form factor ψ̊(r) is given and it is a nonnegative, monotonically
decaying and sufficiently smooth function of r ≥ 0, we can find from the equilib-
rium equation (20) the self-interaction nonlinearity G which exactly produces this
factor. We pick the form factor ψ̊ considering it as the model parameter and then the
nonlinear self interaction function G is determined based on the charge equilibrium
equation (20). To explicitly integrate the size of the resting b-charge into its model
we introduce a size parameter a > 0 into G = Ga as follows:

G′
a(s) = a−2G′

1(a
3s), where G′(s) = ∂sG(s). (21)

In Sect. 3.1 we give examples of the nonlinearity G and discuss its properties.
Since our theory is relativistic and gauge invariant, it possesses usual conservation

laws. Applying with minor modifications a general method used in [1, 2] one can find
for the Lagrangian L defined by (9)–(11) the energy-momentum tensors (EnMT) and
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corresponding conservation laws in which the Lorentz force densities naturally arise.
A general source of conservation laws in Lagrangian theories is Noether’s theorem,
[7, 13.7], yielding them canonically from Lagrangian symmetries. The elementary
charge and energy-momentum conservation laws hold for every single charge assur-
ing its individuality. The symmetric EnMT T μν of the system Lagrangian L defined
by (10)–(11) is represented by

T μν =
N∑

�=1

T �μν + μν, μν =
∑

�′ �=�

��′μν, (22)

where (i) ��′μν is given by the standard expression for EnMT of EM fields, see [9,
Sect. 12.10]; (ii) the individual EnMT T �μν of the bare �-th charge are defined by
standard expressions for Klein-Gordon EnMT, as in [1, 2] with obvious modifica-
tions. Note that the total symmetric classical EnMT is obtained similarly to μν in
(22) but with the summation over all �, �′ without restriction �′ �= �. This leads to
some differences which are negligible for most of large systems but in some special
cases may become noticeable as we show below.

The total symmetric EnMT T μν defined by the expression (22) satisfies the con-
servation law ∂μT μν = 0. The energy density w��′

and the Poynting vectors S��′
for

ordered pair ��′ in vector notation are

w��′ = 1

8π
(E� · E�′ + B� · B�′

), S��′ = cE� × B�′

4π
. (23)

The elementary EnMT satisfy the following elementary conservation laws

∂μ(��′μν + �′�μν) = −1

c

(
J �

ξ F �′νξ + J �′
ξ F �νξ

)
(24)

with the right-hand side being the negative of the sum of the corresponding Lorentz
force densities. The vector form of the elementary EM energy conservation (24) can
be easily derived from the classical Poynting theorem. The individual EnMT satisfy
the following elementary conservation laws

∂μT �μν = 1

c
J �

ξ

∑

�′ �=�

F �′νξ = 1

c
J �

ξ F
�νξ
�= . (25)

Observe that the right-hand side of the above equality is the Lorentz force density
and the same expressions with the minus sign arise in the conservations laws (24) for
the EM fields.

2.2 Elementary EM Fields for Prescribed Elementary Currents

To study the properties of the elementary EM fields for balanced changes and the
energy-momentum transfer in the space-time it is instructive to consider a situation
of prescribed currents for b-charges similarly to the same for the case of the CEM
theory. To do that we consider the Maxwell equations (16), (17) for elementary EM
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field for every � and assume that the currents J and densities ρ in the equations are
known (prescribed) functions of (t,x). The solutions to these equations are derived
based on standard well known methods. Importantly, in what follows we consider
only EM fields based on the retarded/causal Green functions. The advanced Green
functions and the fields are important in some EM theories, see [23] and references
therein. It would be interesting to explore their possible role in our theory but such a
study is beyond the scope of this paper.

Let us assume for simplicity all prescribed elementary currents to be in the form
of ideal electric dipoles. Recall that an ideal electric dipole source concentrated at a
point x0 is defined as follows, [18, (7.151), App. 8]:

J(t,x) = ṗ(t)δ(x − x0), ρ(t,x) = −p(t) · ∇δ(x − x0),

where δ(x − x0) is the Dirac delta-function, ṗ(t) = ∂tp(t). In a simpler case when
the dipole function p(t) = p�(t) = pωe−iωt is time harmonic in the radiation zone
ω
c |R| � 1 we use the asymptotic expressions for E(t,x) and B(t,x) for the radiation
field from [9, 9.2], [8, 11.1.4]. As a result for a pair of charges with indices �, �′ we
obtain the following formulas for the interaction energy flux S��′

:

S��′ = cE� × B�′

4π
= [(p̈�(t0) × R̂) · (p̈�′

(t0) × R̂)]R̂
4πc3|R|2 , (26)

where

R = x − x0, R̂ = R/|R|, t0 = t − |R|/c.

Then the corresponding power P ��′
radiated through a sphere of a large radius cen-

tered at the origin is

P ��′ =
∫

|x|=|R|
S��′

dσ = 2

3c3
p̈�(t0) · p̈�′

(t0). (27)

Let us assume now that all the dipole functions p�(t) depend on time t almost pe-
riodically, [5]. Then the representation (27) implies the following formulas for the
time-averaged radiated powers

〈P ��′ + P �′�〉 = 4〈p̈� · p̈�′ 〉
3c3

=
∑

ω∈�p�∩�
p�′

2ω4 Re(p�
ω · p�′∗

ω )

3c3
, (28)

where �p� and �p�′ are respectively the frequency spectra of p�(t) and p�′
(t), 〈·〉

denotes time averaging. It readily follows from (28) that the time-averaged radiated
power of two dipoles 〈P ��′ +P �′�〉 can take any real value: negative, zero or positive.
In particular, the relation (28) implies that if both the �-th and �′-th b-charges are
monochromatic and of different frequencies then the time-averaged radiated power
is exactly zero or in other words there is no radiation. The formulas (28) also readily
imply

〈P ��′ + P �′�〉 = ±2

3c3

∑

ω∈�p�

ω4
∣∣p�

ω

∣∣2 if p�′
(t) = ±p�(t). (29)
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Evidently the relation (29) with the minus sign describes a situation when for a given
pair (�, �′)the time-averaged radiated power 〈P ��′ + P �′�〉 is negative, that is the
radiated energy propagates with the speed of light toward the source rather than
away from it. Note that formula (29) describes the radiation of EM interaction energy
between the two charges, and evidently it is not the same as the total EM radiation of
the fields which act on test charges.

2.3 Comparison with the Classical EM Theory

Here we briefly discuss similarities and differences between BEM and CEM theories
and show that the CEM theory is a limit case of the BEM theory. As a first example
let us consider a system of N > 1 b-charges described by one and the same dipole
moment p(t). Then in view of (29) we have for the system the following time-average
radiated power

〈PBEM〉 =
∑

�′ �=�

〈P ��′ + P �′�〉 = 2N(N − 1)

3c3

∑

ω∈�p

ω4|pω|2. (30)

In the CEM theory a similar system of N identical dipoles p has an effective dipole
moment Np. Substituting this number for p in the expression (29) we get

〈PCEM〉 = 2N2

3c3

∑

ω∈�p

ω4|pω|2. (31)

Relating representations (30) and (31) we readily obtain

〈PBEM〉 = (1 − 1/N)〈PCEM〉. (32)

As a second example let us consider clusters of many tightly bound identical b-
charges and label every cluster by index �. Namely, for every � we introduce (i) N�

b-charges having identical wave functions and elementary EM potentials with charges
q�

w = N�q
�:

ψ(�,s) = ψ(�,s) = ψ�, A(�,s)μ = A(�,s)μ where 1 ≤ � ≤ N, 1 ≤ s ≤ N�, (33)

and (ii) their identical EM fields F�μν = F (�,s)μν and currents J �,ν = J (�,s)ν . Then
we compare these fields with the classical EM fields F μν in (8) with the same cur-
rents, namely we compare electromagnetic parts of the Lagrangians in BEM and
CEM theories. We have

LCEM = − 1

16π
F μν Fμν = − 1

16π

∑

�′ �=�

N�′N�F
�μνF �′

μν − 1

16π

N∑

�=1

N2
� F �μνF �

μν,

and (10) takes the form

LBEM = − 1

16π

∑

{(�,s),(�′,s′):(�′,s′)�=(�,s)}
F (�,s)μνF (�′,s′)

μν



Found Phys (2011) 41: 242–260 251

= − 1

16π

∑

�′ �=�

N�′N�F
�μνF �′

μν − 1

16π

∑

�

N�(N� − 1)F �μνF �
μν.

The difference in both expressions can be attributed to interactions inside every clus-
ter, in particular for classical theory LCEM� = N2

� F �μνF �
μν compared with LBEM� =

N�(N� − 1)F �μνF �
μν with the relative difference

LBEM�/LCEM� − 1 = 1/N� (34)

which evidently becomes small as number N� of charges in the cluster becomes large.
The differences between BEM and CEM theories can be already seen from ex-

pressions (32) and (34) if the numbers N or N� of elementary charges are small. The
fundamental origin of the differences is that in the BEM theory there is no single EM
field as a reservoir of EM energy. Instead there are elementary EM potentials and all
of the EM energy is the energy of interaction of pairs of the elementary b-charges.
Importantly, the interactions between the charges cannot be exactly reduced to any
single EM field, and this feature becomes more pronounced at atomic scales.

An important signature of the BEM theory is a mechanism of negative radiation
for certain prescribed currents, i.e. a situation when the EM energy propagates with
the speed of light toward the current source rather than away from it as it is shown in
Sect. 2.2. This mechanism can conceivably work for a limited time in a system of sev-
eral bound charges, such as an atom or a molecule, resulting in effective energy gain
coming from matching energy loss of b-charges outside of this system. Notice that
such energy transfer is accounted based on the retarded/causal Green functions. The
negative radiation can be interpreted as an elementary absorption. Observe also that
according to expression (23) the interaction energy density can be negative similarly
to the electrostatic energy for two classical point charges of different signs.

The significance of individual EM fields in the new theory is manifested also in the
existence of a group of gauge transformations in addition to the gauge transformation
of the first or the second kind (known also as respectively global and local gauge
transformation) [12, 19]. Namely, we introduce a new gauge transformation

A�μ → A�μ + ∂μλ�(x), ψ� → e− iq�

χc λ��=(x)
ψ�, (35)

where functions λ�(x), 1 ≤ � ≤ N , are independent real-valued scalar functions of x

and

λ��= =
∑

�′ �=�

λ�.

A straightforward examination shows that for N ≥ 2 the system Lagrangian L defined
by (10)–(11) is invariant with respect to the gauge transformations (35). It is due to
the gauge invariance with respect to elementary gauge transformations (35) the source
current in the elementary Maxwell equations (16), (17) defined by (14) is exactly the
conserved Noether’s elementary current for every �.
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3 Non-relativistic Dynamics of Localized Charges

In this section, based on our relativistic model we introduce a non-relativistic model
for the case where charges move slowly compared with speed of light. First we in-
troduce field equations and the Lagrangian and briefly describe their derivation from
the relativistic model.

Using frequency-shifting substitution ψ = e−iω0tψ�
ω(t,x) similar to (19) with

ψ�
ω which depends on both t and x we obtain an obvious expression for the term

− 1
c2 ∂̃�

t ∂̃�
t ψ� − κ2

0 ψ� in the Klein-Gordon equation (12). We neglect in this expres-

sion terms with the factor 1
c . Since magnetic fields of moving charges have coefficient

1
c and are small for small velocities, they are also neglected, and we retain only the
external magnetic fields. Consequently, our non-relativistic approximation turns into
the following nonlinear Schrödinger equation (NLS)

iχ∂tψ
� = − χ2

2m�

(∇̃�
ex

)2
ψ� + q�(ϕ��= + ϕex)ψ

� + χ2

2m�

[
G�

a

]′
(|ψ�|2)ψ�, (36)

where (i) ψ� = ψ�
ω; (ii) a is the size parameter; (iii) ∇̃�

ex = ∇ − iq�

χc
Aex is covariant

gradient; (iv) ϕ��= is defined by (6) and every potential ϕ� is determined from the
equation

∇2ϕ� = −4πq�|ψ�|2, � = 1, . . . ,N. (37)

We take then a particular solution of (37) given by Green’s formula

ϕ�(t,x) = q�

∫

R3

|ψ�|2(t,y)

|y − x| dy. (38)

Notice that in the nonrelativistic case the �-th b-charge is described by a pair (ψ�,ϕ�)

where the elementary EM field is represented only by the scalar electric potential ϕ�.
The above non-relativistic model has the following Lagrangian

L̂
(
ϕ, {ψ�}N�=1, {ϕ�}N�=1

) = 1

8π
|∇ϕ|2 +

∑

�

L̂�(ψ�,ψ�∗, ϕ), where

L̂� = χ i

2

[
ψ�∗∂tψ

� − ψ�∂tψ
�∗] − χ2

2m�

{∣∣∇̃�
exψ

�
∣∣2 + G�(ψ�∗ψ�)

}
(39)

+ G�(ψ�∗ψ�) − q�(ϕ + ϕex − ϕ�)ψ�ψ�∗ − 1

8π
|∇ϕ�|2,

with ψ�∗ being the complex conjugate to ψ� and ϕ = ∑
� ϕ�. Field equations (36),

(37) coincide with the Euler-Lagrange equations derived from (39).
The properties and examples of the nonlinearities G�

a are provided in Sect. 3.1.
As the result of charge conservation for solutions of (36) the norms ‖ψ�‖2 remain
constant and we impose the following charge normalization condition:

‖ψ�‖2 =
∫

R3
|ψ�|2 dx = 1, t ≥ 0, � = 1, . . . ,N. (40)
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A motivation for this particular normalization is based on the formula (38) and the re-
quirement that the elementary potential ϕ� is asymptotically the Coulomb’s potential
q�/|x| for large |x|.

According to the classical electrodynamics the evolution of a point charge q of
a mass m and position vector r(t) in an external electromagnetic (EM) field in the
non-relativistic case is governed by Newton’s equation (4). In our model a charge is
described by a wave function ψ�(t,x) governed by a system of nonlinear Schrodinger
equations (36) coupled through corresponding electric potentials. We show below in
regimes when wave functions ψ�(t,x) = ψ�

a(t,x) remain well localized around their
centers r�(t) defined by

r�(t) = r�
a(t) =

∫

R3
x
∣∣ψ�

a(t,x)
∣∣2 dx (41)

that the centers satisfy approximately Newton’s equations with Lorentz forces. The
dependence of the nonlinearity of on the size parameter a is defined by (21). We
consider below two different regimes: (i) macroscopic dynamics, with a macroscopic
spatial scale Rmacr � a and a bound state as in hydrogen atom. For macroscopic
regimes we prove in Sect. 3.2 that when a → 0 the centers of the interacting charges
converge to solutions of the Newton’s equations with the Lorentz forces if ψ� remain
localized. We also provide examples of exact solutions in the form of accelerating
solitons for which the localization assumption holds. For bound regimes we recover
discrete frequency and energy spectrum matching the same for the Schrödinger hy-
drogen atom with any desired accuracy controlled by the ratio of Bohr radius and the
size parameter a.

3.1 Determination of Nonlinearity

As we have already mentioned, the nonlinear self interaction function G is deter-
mined from the charge equilibrium equation (20) based on the form factor (ground
state) ψ̊ . Important features of our nonlinearity include: (i) the boundedness or slow
subcritical growth of its derivative G′(s) for s → ∞ with consequent boundedness
from below of the wave energy; (ii) slightly singular behavior about s = 0, that is for
small wave amplitudes. Throughout this section we have ψ ≥ 0 and hence |ψ | = ψ .
We introduce explicitly the dependence of the free ground state ψ̊ on the size para-
meter a > 0 as follows:

ψ̊(r) = ψ̊a(r) = a−3/2ψ̊1(a
−1r), (42)

and consequently ψ̊a(r) satisfies the charge normalization condition (40) for every
a > 0. Definition (42) is consistent with (20) and (21). Let us take a look at the
charge equilibrium equation (20) where the function ψ̊(r) = ψ̊a(r) is assumed to be a
smooth positive monotonically decreasing function of r ≥ 0 and to satisfy the charge
normalization condition of the form (40). Note that equations for a single resting
charge without external field are obtained by setting ∂tψ = 0, ϕex = 0, Aex = 0 in
(36). Obviously, the equations coincide with (20) and therefore the rest solutions of
relativistic and non-relativistic equations coincide, as it should be expected in the
case of zero velocity.
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Let us consider first the case a = 1 and ψ̊a = ψ̊1. Since ψ̊2
1 (r) is a monotonic func-

tion, we can find its inverse r = r(ψ2) and (20) yields the following representation
for G′(ψ̊2

1 ):

G′
1(s) = ∇2ψ̊1(r(s))

ψ̊1(r(s))
, 0 = ψ̊2

1 (∞) ≤ s ≤ ψ̊2
1 (0). (43)

If we do not need G′(s) to be smooth, we extend G′(s) for s ≥ ψ̊2
1 (0) as a constant,

namely G′
1(s) = G′

1(ψ̊
2
1 (0)) if s ≥ ψ̊2

1 (0). The first derivative of such an extension at
s = ψ̊2

1 (0) has a discontinuity point. If ψ̊a(r) is a smooth function, we can define an
extension of G′(s) for s ≥ ψ̊2

1 (0) which is a smooth bounded function for all r > 0,
slowly growing functions G′(s) also can be used. For arbitrary a > 0 we define G′

a(s)

by formula (21) to be consistent with (42) and (43).

Example 1 The form factor ψ̊1(r) decays as a power law: ψ̊1(r) = cpw(1 + r2)−p,

p > 3/4, where cpw is the normalization factor. This function evidently is positive
and monotonically decreasing. G′(s) is found then based on the relations (43). An el-
ementary computation of ∇2ψ̊1 shows that G′(s) has the form of a linear combination
of power laws.

Example 2 Exponentially decaying form factor ψ̊1(r) = cee−(r2+1)1/2
, where ce is

the normalization factor. An elementary computation based on (43) shows that for
s ≤ c2

e e−2

G′
1(s) = 1 − 4/ ln

(
c2

e/s
) − 4/ ln2(c2

e/s
) − 8/ ln3(c2

e/s
)
.

We extend G′
1(s) for s ≥ c2

e e−2 as a constant. To find G′
a(s) for arbitrary a we use its

representation (21).

Example 3 Gaussian form factor ψ̊1(r) = Cge−r2/2 with Cg = π−3/4. Such a func-
tion is called gausson in [4]. Elementary computation based on (43) and (21) shows
that for a given size parameter a > 0 the nonlinearity, which we call logarithmic
nonlinearity, is given by the formula

G′
a(|ψ |2) = −a−2 ln

(
a3|ψ |2/C2

g

) − 3a−2. (44)

3.2 Charges in Remote Interaction Regimes

We show here that if the size parameter a → 0 the dynamics of the centers of lo-
calized solutions is approximated by Newton’s law of motion. This is done in the
spirit of the well known in quantum mechanics Ehrenfest Theorem [15, 7, 23] and
[4]. Wave-corpuscle solutions defined by (52), (53) provide an example of explicit
localized solutions which have such a dynamics. As we stated, the Lagrangian L̂ in
(39) is gauge invariant and every �-th charge has a 4-current (ρ�,J�) defined by

ρ� = q|ψ�|2, J� =
(

χq�

m�
Im

∇ψ�

ψ�
− q�2Aex

m�c

)
|ψ�|2, (45)
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which satisfies the continuity equations ∂tρ
� + ∇ · J� = 0 or explicitly

∂t |ψ�|2 + ∇ ·
(

χ

m�
Im

∇ψ�

ψ�
|ψ�|2 − q�

m�c
Aex|ψ�|2

)
= 0. (46)

Note that J� defined by (45) agrees with the definition (14) of current J� in Maxwell
equations. Equations (46) can be obtained via multiplying (36) by ψ�∗ and taking
imaginary part. Integrating the continuity equation we find that ‖ψ�‖2 = const and
we impose the normalization condition (40). Multiplying continuity equation (46) by
x and integrating we find the following identities

dr�

dt
= v�, where v�(t) =

∫

R3
v�(t,x)dx, v� = 1

q�
J�. (47)

Taking time derivative of (47) and using the field equations we obtain (see [3] for
details) the following system for � = 1, . . . ,N :

m� d2r�(t)

d2t
= q�

∫

R3

[(
∑

�′ �=�

E�′ + Eex

)
|ψ�|2 + v� × Bex

c

]
dx, (48)

where E�′
(t,x) = −∇ϕ�′

(t,x), Eex and Bex are defined by (18).
We show below that (48) imply the following remarkable property: the positions

r�(t) satisfy with a high accuracy Newton’s equations of motion for the system of N

point charges if the size parameter a is small compared to the typical spatial scale
Rmacr of variation of EM fields. More technical details and exact conditions needed
for the derivation are provided in [3].

Suppose that for every �-th charge density |ψ�|2 and the corresponding current
density J� are localized in a small vicinity of the position r�(t), this vicinity shrinks
as a → 0 and that |r�(t) − r�′

(t)| ≥ γ > 0 with γ independent on a on time interval
[0, T ]. Then if a → 0 we get

|ψ�|2(t,x) → δ(x − r�(t)), v�(t, x) → v�(t)δ(x − r�(t)), (49)

where the coefficients before the Dirac delta-functions are determined by the charge
normalization conditions (40) and relations (47). Using potential representations
(38) we infer from (49) the convergence of the potentials ϕ� to the corresponding
Coulomb’s potentials, namely

ϕ�(t,x) → ϕ�
C(t,x) = q�

|x − r�| , −∇ϕ�(t,x) → E�
C(x) = q� x − r�

|x − r�|3 (50)

as a → 0. Hence, passing to the limit, we obtain the following system for � =
1, . . . ,N :

m� d2r�

dt2
=

∑

�′ �=�

q�E�′
C(r�) + q�Eex(r�) + q�

c
v� × Bex(r�). (51)
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The limit equations of motion are evidently Newton’s equations of motion with the
proper Lorentz forces. Note that in the derivation we essentially use the fact that the
nonlinearity G′

a , which, according to (21), singularly depends on a as a → 0, does
not enter the system (48) explicitly.

In the case of a single charge the Lagrangian and the field equations are obtained
by setting N = 1 in (39), (36), (37). In this case evidently � takes only one value and
ϕ��= = 0. For a special class of external fields we present now explicit solutions to the
field equations (36), (37) for a single charge in the form of wave-corpuscles (accel-
erating solitons). We assume here for simplicity a purely electric external EM field,
i.e. when Aex = 0, Eex(t,x) = −∇ϕex(t,x) (see [1, 2] for a similar exact solution
with non-zero magnetic field). We define then wave-corpuscle ψ,ϕ by the following
formula:

ψ(t,x) = eiS/χ ψ̊(|x − r�(t)|), S = m�v�(t) · (x − r�(t)) + sp(t). (52)

In the above formula ψ̊ is the form factor satisfying (20), ϕ is determined by (38).
Since ψ̊(|x|) is center-symmetric, r� satisfies (41).

Suppose that ϕex(t,x) is a continuous function which is linear with respect to x.
Then ψ defined by (52) provides an exact solution to (36), if r�(t) and v�(t) are
determined from the equation

m� d2r�

dt2
= q�Eex(t, r�), v� = dr�

dt
, (53)

with an explicit formula for the phase shift sp(t). The verification of the fact that an
exact solution can be written in this form is straightforward and details can be found
in [1], [2] or [3]. For the particular case of the logarithmic nonlinearity solutions of
the form (52) were found in [4] in the form of accelerating gaussons.

The exponential factor in the wave-corpuscle solution of the form (52) can be
identified with the de Broglie wave, for details see [1, 2]. Note that the construction
of the solution (52) does not depend on a particular form of the nonlinearity G′ = G′

a

as long as (20) is satisfied and the dependence on a in (52) is only through ψ̊(|x −
r|) = a−3/2ψ̊1(a

−1|x−r|). Obviously, if ψ(t,x) is defined by (52) then |ψ(t,x)|2 →
δ(x − r) exactly as in (49).

3.3 Hydrogen Atom Model

Here we provide a sketch of our hydrogen atom (HA) model. In this model ψ� is
obviously spinless though it is quite clear that extensions of this model to multi-
component ψ� is possible.

To model the hydrogen atom (HA) we set N = 2 in the non-relativistic system
(36), (37) where the indices � take two values � = 1, for electron, and � = 2, for
proton, and the charges values q1 = −q = q2. The electric fields in the resting hydro-
gen atom have to be time-independent, hence |ψ�|2 in (37) must be time-independent
too. Therefore we assume that only phase factors depend on time and consider the
multi-harmonic solutions of this system, namely solutions of the form

ψ�(t,x) = e−iω�tψ�(x), ϕ�(t,x) = ϕ�(x), � = 1,2. (54)
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Plugging the expressions (54) in (36), (37) we find that the functions ψ�(x) satisfy
the following nonlinear eigenvalue problem

χω�ψ� + χ2

2m�
∇2ψ� − q�ϕ�=�ψ� = χ2

2m�

G′
�(|ψ�|2)ψ�, (55)

where, in accordance with (6), ϕ�=1 = ϕ2, ϕ�=2 = ϕ1 and ϕ� are defined by (38). We
choose logarithmic nonlinearities G′

� = G′
�a as in (44) implying that the frequencies

ω1,ω2 and the values of particle energies satisfy Planck-Einstein formula E = �ω

exactly (see [3] for details and also [4] where a relation between the Planck-Einstein
formula and the logarithmic nonlinearity was discovered in a different setting). We
rewrite the system (55), as the following nonlinear eigenvalue problem

χ

q2
ω1ψ1 + a1

2
∇2ψ1 + ϕ2

q2
ψ1 = a1

2
G′

1(|ψ1|2)ψ1, (56)

χ

q2
ω2ψ2 + a2

2
∇2ψ2 + ϕ1

q1
ψ2 = a2

2
G′

2(|ψ2|2)ψ2, (57)

where ϕ� are defined by (38), a� = χ2

q2m�
, � = 1,2. Note that the quantity a1 turns into

the Bohr radius if χ equals to the Planck constant �, and m1, q are the electron mass
and charge respectively. Here ψ1 and ψ2 are respectively the wave functions for the
electron and the proton satisfying charge normalization condition

‖ψ1‖ = 1, ‖ψ2‖ = 1. (58)

The problem of finding frequencies ω1,ω2 can be reduced to finding critical val-
ues of the energy functional E (ψ1,ψ2) with the constraint (58) with ω1,ω2 being
the Lagrange multipliers. An analysis of this variational problem (see [3] for de-
tails) shows that this problem can be reduced approximately to a simpler variational
problem for energy ECb(�1) of a single wave function in a way similar to the Born-
Oppenheimer approximation in the quantum mechanics. The accuracy of approxima-
tion of lower energy levels of E (ψ1,ψ2) is controlled by the small parameter b2 � 1
where b = m1

m2
= a2

a1
� 1

1837 is the electron/proton mass ratio. Consequently, we ob-
tain the following nonlinear eigenvalue problem for the electron wave function �1
and dimensionless spectral parameter ω:

ω�1 + 1

2
∇2�1 + 1

|y|�1 = 1

2
G′

1(|�1|2)�1, (59)

subjected to the constraint ‖�1‖ = 1.
We exploit the dependence of the nonlinearity G′

1 = G′
1a on the parameter κ =

a1/a which is the ratio of the Bohr radius a1 to the electron size parameter a. For
small κ the nonlinearity G′

1(s) = κ2G′
11(κ

−3s) is a small perturbation in the eigen-
value problem (59). Further detailed analysis of the corresponding variational prob-
lem shows that lower energy levels of the energy functional ECb(�1) are arbitrary
close to the energy levels of the linear Schrodinger operator for HA provided that
κ = a1/a is sufficiently small. Consequently, based on estimates obtained in [3] we
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find that n-th lower frequency ω1n for solution of (56), (57) is given by the following
approximate formula

χω1n = − 1

n2

q2

2a1

[
1 + O

(
b2 +

(
a1

a

)2∣∣∣∣ln
(

a1

a

)∣∣∣∣

)]
, n = 1,2, . . . . (60)

The correction term O(b2 + (a1/a)2| ln(a1/a)|) in (60) is small provided b and a1/a

are small. Observe that differences of energy levels of the nonlinear eigenvalue prob-
lem are very close to the same in the Rydberg formula with relative error of order
10−4 if a1/a is of order 10−2. Hence, if we assume that the size a of a free electron
is 100 times larger than the Bohr radius, then the introduced here hydrogen atom
model provides a good quantitative agreement with the hydrogen spectroscopic data.
We think that it is quite reasonable to assume that a free electron has a much larger
size than an electron bound in a hydrogen atom where it is naturally contracted by
the electric force of the positively charged proton.

We would like to point out that the provisional HA model from [2] based on a
single EM field already provides for discrete energy levels, but as a1/a → 0 the
limiting linear eigenvalue problem involves a potential −q2/|y| + qφ(y) where in
addition to the Coulomb potential there is a term qφ(y) due to the electron EM self-
interaction. So, if there is EM self-interaction the limiting eigenvalue problem as
a1/a → 0 does not turn into the same for the linear Schrodinger operator for the HA.

Now we briefly compare the above non-relativistic treatment of the HA with the
treatment in the framework of the full relativistic version of our model. We start
directly from the relativistic system in (12), (16), (17) and look for time-harmonic
solutions with A� = 0 and time-independent ϕ� using substitutions (19) and (54) as
follows:

ψ�(t,x) = e−i(ω�+ω0)tψ�(x), ϕ�(t,x) = ϕ�(x),

where � = 1,2, ω0 = mc2/χ = cκ0. We arrive then at a system similar to (55)

(
m�c2 + χω� − q�ϕ�=�

)2
ψ� + χ2c2∇2ψ� − χ2c2G�′(ψ∗

� ψ�)ψ� − m2c4ψ� = 0.

Based on smallness of electron/proton mass ratio we similarly to the non-relativistic
case arrive at the following eigenvalue problem for electron density which is a rela-
tivistic version of (59):

(
m1c2 + χω1 + q2/|y|)2

ψ1 + c2χ2∇2ψ1 − c2χ2G′(|ψ1|2)ψ1 − m2
1c4ψ1 = 0. (61)

If the ratio κ = a1/a is small, the nonlinearity G′(s) = κ2G′(κ−3s) can be treated
as a small perturbation, and the linear part of (61) essentially determines the lower
energy levels. Note that if we set χ = � the linear part of (61) coincides with the rel-
ativistic version of the Schrodinger equation, [15, p. 309]. According to [15] the en-
ergy levels of this equation in a contrast to the non-relativistic hydrogen Schrodinger
equation have a fine structure, the fine structure energy levels are given by Sommer-
feld’s formula and the relative scale of the fine structure is controlled by α2 where α

is Sommerfeld’s fine structure constant, α � 1
137 . This shows that in our relativistic
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model relativistic effects are present even in the case of zero velocities if the square
of Sommerfeld’s fine structure constant is not assumed to be negligible.

Note that in our treatment of charges at macroscopic scales in Sect. 3.2 we assume
the electron size a to be very small whereas in Sect. 3.3 we assume κ = a1/a to
be very small. There is no contradiction in doing that if one takes into account the
small value of the Bohr radius a1 ∼ 5.3 × 10−11 m compared with the scale Rmacr of
spatial variation of macroscopic external EM fields acting on the charge. The error of
approximation of r�(t) in (41) by the Newtonian trajectory found from (51) is of order
a2/R2

macr � 1. In the treatment of the HA in this section we assume κ2 = a2
1/a2 � 1.

Taking a ∼ 102a1 we arrive at the restriction Rmacr � 5.3 × 10−9m which is an
estimate of the spatial scale at which external EM fields can vary and the motion of
charges caused by the fields can be described by Newton’s equations with the Lorentz
forces with a good accuracy.
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