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Abstract
Metal coated microcantilevers are used as transducers of their
electrochemical environment. Using the metallic layer of these cantilevers
as a working electrode allows one to modify the electrochemical state of the
cantilever surface. Since the mechanical behaviour of micrometre scale
objects is significantly surface-driven, this environment modification
induces bending of the cantilever. Using a full-field interferometric
measurement set-up to monitor the objects then provides an optical phase
map, which is found to originate from both electrochemical and mechanical
effects. The scaling of the electrochemically-induced phase with respect to
the surface charge density is modelled according to Gouy–Chapman–Stern
theory, whereas the relationship between the mechanical effect and the
surface charge density is analysed. An identification technique is described
to determine a modelling of the electroelastic coupling and to identify the
spatial charge density distribution from full-field phase measurements.
Minimizing the least-squares gap between the measured phase and a
statically admissible phase field, the mechanical effect is found to be
charge-driven. The charge density field is also found to be singular on the
cantilever edge, and the shear stress versus charge density is found to be
non-linear.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The increasing interest in microelectromechanical systems
(MEMS) has raised several issues concerning several specific
mechanical phenomena. Decreasing the size of mechanical
objects down to the 1–100 µm range significantly enhances
the surface-driven aspect of the mechanical behaviour, so
that these objects are used in a wide range of sensing
applications [1]. The present paper intends to focus on the
coupling between the electrochemical and the mechanical

effects, which involves small elastic strains, thus requiring the
measurement of vanishingly small strains [2]. This was first
achieved on macroscopic samples by several optical methods
such as Köster interferometer [3], which was used with a
gauge length in the 10 mm range. Electrochemical effects
have also been investigated through the mechanical loading
they induce on microcantilevers. An investigation of the
double-layer region [4] (i.e. no electrochemical reaction) as
well as adsorption reactions [5–7] and electrodeposition [8]
have been carried out using the standard optical lever
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technique [1]. Using this set-up allows one to demonstrate
the phenomenon, but it is not suited to describing the
involved mechanical effect. The development of in situ
ellipsometric measurements also allows for the development
of comprehensive models describing the optical behaviour of
noble metal working electrodes in the double-layer regime
[9, 10]. These models, based on the Gouy–Chapman–Stern
theory, have been successfully used to monitor the anion
adsorption in the double-layer regime [11], thus providing a
description of the electrochemical state of the interface. The
electroelastic coupling has then been monitored, combining
the optical lever technique with ellipsometric measurements
on a cantilever [12].

However, if the existence of this surface coupling
phenomena has been demonstrated, the modelling of the
connection between the electrochemical state of an interface
and the induced deformation remains an open question [2].
Since one of the main difficulty is to ensure a uniform and
well-defined loading at the micrometre scale, it is thought that
increasing the experimental information amount may lead to a
significant modelling improvement, provided the redundancy
of the measured quantity is sufficient. This statement is at the
origin of the development of identification techniques based
on full-field measurements in solid mechanics.

A first class of identification techniques allows for the
identification of elastic properties using redundant or full-field
kinematic data in the typical case where the loading is applied
in a well-defined manner. A first group, initiated in [13],
is derived from the constitutive equation error [14] and has
been applied to both dynamic model updating [15] and elastic
property or damage field identification [16]. It was also used
to get elastic properties by analysing a heterogeneous test [17].
Based on equilibrium conditions, the virtual fields method
has been used to identify homogeneous elastic properties of
composites [18, 19]. The reciprocity gap [20] is a specific
technique needing both kinematic and static quantities at the
same location of the body boundary [21]. Dealing with
experiments where the mechanical loading has to be identified
represents another class of identification problems.

Starting from the equilibrium gap method [22], one
may consider only kinematic measurements and add some
unknowns (describing the loading) in the identification
problem. This (inverse) problem is solved, provided that
the mechanical behaviour remains elastic [23]. Dealing
with multi-physical (i.e. coupled) phenomena, an alternative
solution consists of enriching the experimental basis with
full-field measurements of any complementary information
describing the phenomenon under scrutiny. The case where
these two fields are combined in a single measured field is
hereby considered, thus requiring no additional measurement
but a decoupling procedure. The aim of the present paper
is to propose the use of phase-modulated interferometric
measurements and an electrochemical workstation, presented
in section 2, to have access to the change in a full phase
field of the observed object, originating from both the
electrochemical state of the interface and the mechanical effect
on the observed cantilever. The way these two phenomena
operate is described and modelled in section 3. The proposed
decomposition allows one to distinguish the electrochemically
and mechanically induced optical phase and thus to derive

simultaneously a description of the charge density field and
the electroelastic coupling through a dedicated identification
procedure (section 4).

2. Experimental set-up

2.1. Nomarski imaging set-up

The interferential microscopy imaging set-up used herein is
shown in figure 1. A light-emitting diode (LED, λ = 760 nm)
illuminates a polarization beam-splitter. The beam reflected
by the beam-splitter is polarized at 45◦ of the axes of a photo-
elastic polarization modulator. The Wollaston prism, whose
axes are parallel to those of the modulator, splits the beam into
two orthogonally polarized beams at a small angle between
each other. These beams are focused upon the sample by an
immersion objective lens (18 mm focal length, NA = 0.3).
After reflection and recombination by the Wollaston prism,
the beam goes through the polarization modulator and the
polarization beam-splitter. The transmitted beam is finally
focused on a CCD array (Dalsa-CA-D1, 256 × 256 pixels,
8 bits). The polarization beam-splitter behaves as crossed
linear polarizers mounted at 45◦ of the axes of the Wollaston
prism and of the polarization modulator.

The interference pattern is obtained as the difference of
two topographies of the surface, shifted by the Wollaston prism
by a distance d. The Wollaston shear sdirection is chosen to
be parallel to the cantilever axis, denoted by x, so that the
topographies involved in the interference pattern are views of
the cantilever shifted along the direction of its larger dimension

Figure 1. Schematic view of a Nomarski shear-interferometer with
phase modulation.
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Figure 2. A typical interference pattern. The shear direction is
parallel to the cantilever direction, and the shear d is almost equal to
the cantilever length. The axis system is shifted for the sake of
clarity and the origin is set at point O.

Figure 3. Schematic view of the used fluid cell.

(see figure 2). The distance d is chosen to be almost similar to
the cantilever length. The pixel size in the object plane is equal
to 0.9 µm. The optical phase map is then retrieved using four
integrating buckets and arises from both the sample topography
(i.e. height and slope fields) and the reflection coefficient field
of the interface [24].

2.2. Electrochemical procedure

2.2.1. Sample preparation. Figure 3 shows a schematic view
of the used fluid cell. It is mainly composed of two polymer
parts (polydimethylsiloxane (PDMS)). The lower part is used
to hold the sample, which is glued on a copper piece thanks
to a conducting epoxy resin. The temperature of this copper
piece is controlled by Peltier effect modules and a temperature
sensor. A clear aperture is made in the upper part and closed
by the immersion objective. The mechanical contact between
the objective and the upper PDMS part ensures the fluid cell to
be watertight. Another copper part, whose temperature is also
controlled by Peltier modules, embraces this upper polymer
part. The temperature was set to 24.7 ◦C during the experiment.
Fluid inlet and outlet allow for a simple modification of the
content of the fluid cell.

Figure 4. Cyclic voltammetry of the microcantilevers array in a
10−2 M KCl solution. Number of cycles: 3, scan rate: 2 mV s−1,
starting potential: −0.1 V versus Ag/AgCl.

The fluid cell presented in figure 3 is filled with an
electrolytic solution, and a gold-coated silica array of 18 cells
of 6 micro-objects is sealed in it. The objects under
consideration are microcantilevers (70 × 20 × 0.84 µm3),
which are made of silica (thickness: 770 nm) obtained by
thermal oxidation of a silicon wafer. The cantilevers are
defined by patterning and isotropic etching of the silica (in HF
buffer) and released by KOH etching. A titanium (thickness:
20 nm) and a gold (thickness: 50 nm) layer are then evaporated
onto the sample. A conducting glue is used to ensure the
electrical connection to the gold layer. This microcantilevers
cell is used as the working electrode. All the connections
are insulated with a thin PDMS layer, to ensure that only
the gold surface of the working electrode is in contact with
the solution. This insulation step was performed outside the
cleanroom, by pipetting some PDMS around the sample and
avoiding physical contact between PDMS and the cantilevers.
There is then a total area of almost 1 cm2 in constant contact
with the electrolytic solution. The counter-electrode is a
250 µm diameter and 15 cm long platinum wire plunging in
the fluid cell. The Ag/AgCl reference electrode is made
of a silver wire (250 µm in diameter) onto which a silver
chloride layer has been electrodeposited by oxidation in a 1 M
KCl solution. The three electrodes are then connected to a
CHI 660 A electrochemical workstation (IJCambria, England).
After bubbling nitrogen, the fluid cell is then filled with a
KCl solution (10−2 M), prepared from milliQ water. The
gold surface is then cleaned electrochemically by performing
successive cyclic voltammograms between 0 and 0.8 V at
10 mV s−1. Gold is then successively oxidized and reduced,
until a stable voltammogram (i.e. after a few cycles) is obtained,
thus ensuring a clean and reproducible metallic surface. The
fluid cell is then purged and filled again with a 10−2 M KCl
deoxygenated solution.

2.2.2. Electrochemical response of the microcantilevers array.
Figure 4 shows the cyclic voltammetry at the microcantilevers
array. The electrode potential was swept linearly at a scan
rate of 2 mV s−1, during three cycles, between −0.1 and
0.4 V versus Ag/AgCl. The scan rate was chosen to ensure
an almost constant state during an imaging step (about 1 s),
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and the potential is prescribed with a 0.1 mV resolution.
The potential window was chosen so that the electrode
processes are not perturbed by any substance or electrode
material electrochemical transformation. For potentials less
than −0.1 V versus Ag/AgCl, oxygen reduction may be
observed while a peak, presumably related to Au oxidation,
is observed for potentials greater than 0.5 V. The reversible
system observed at 0.05 V (oxidation) and −0.05 V (reduction)
is attributed to the Ti underlayer oxidation. The shape of these
peaks (namely, symmetric peaks ‘added’ to a base line) is
typical for surface, diffusionless, phenomena such as surface
passivation. The related electrochemical process is therefore
believed not to interfere with the double-layer charging on the
gold layer. The shape of the voltammogram, in the chosen
potential region, is characteristic of a double layer charging
process. It is worth noting that voltammograms obtained
at different scan rates are found to change proportionally to
the scan rate (except around the reversible system), thereby
proving the non-Faradaic nature of the measured current. The
numerical integration of the cyclic voltammogram is obtained
by using all the three cycles sampled with a 1 mV resolution,
thus providing the variation of the charge carried by the
electrode with the potential.

3. Phenomena at the origin of the measured
optical phase

During the three potential cycles, a phase map is recorded every
0.05 V step, thus providing a set of 61 phase maps, that is a
15×111×61 phase measurements stack covering the cantilever
through the whole experiment. The aim of this section is then to
express the phase change as a function of both the deformation
of the cantilever and the electrochemical modification of the
interface.

3.1. Decomposition in electrochemically induced and
mechanically induced optical phase

The interface composition is modified when subjected to a
potential change. This property has been used to predict the
change of the ellipsometric parameters with the surface charge
in these surfaces [9, 10]. Paik et al [11] have shown that it is
necessary to take into account at least two phenomena if one
wants to compute the ellipsometric parameters change in an
electrode/electrolyte interface:

• the local change in the refractive index of the solution due
to a local concentration shift;

• the complex refractive index change in the metal induced
by the free electrons density change at the surface.

If the electrode potential is modified to impose a metal surface
charge σm, then the electrolyte side of the interface yields
a surface charge density σd in a diffuse layer, and specific
adsorption of anions (respectively, cations) may occur, leading
to a surface chargeσ− (respectively, σ+). Electrical equilibrium
of the interface requires

σm + σd + σ− + σ+ = 0. (1)

The Gouy–Chapman theory [25–27] may be used to describe
the interface between a monovalent electrolyte solution whose

bulk concentration is N0 (i.e. number of charges per unit
volume) and a metallic electrode, assuming the latter to be
planar. The diffuse layer charge per unit electrode surface σd

reads as

σd = −
√

8N0εwkT sinh

{
e(�m − �∞)

2kT

}
, (2)

where εw is the dielectric constant for water, k the Boltzmann
constant, T the absolute temperature, e the electron charge, �m

the electrode (metal) potential and �∞ the remote potential.
The concentration distributions for cations N+ and anions N−
read as

N± = N0




1 ± γ exp

(
− x

λD

)

1 ∓ γ exp

(
− x

λD

)



2

, (3)

where the parameter γ is defined by

γ = tanh

{−e(�m − �∞)

4kT

}
(4)

and λD is the Debye length given by

λ2
D = εwkT

8πe2N0
. (5)

From equation (3), it is shown that only a thin layer close
to the surface, whose thickness scales as λD, is significantly
modified when charging the electrode. The concentration
shift induced in this layer modifies locally the refractive index
of the solution, modifying the complex reflection coefficient
of the interface, and therefore generating a non-mechanically
induced optical phase change. For the present system, λD �
3 nm. Consequently, the total measured optical phase change
φ is decomposed into a mechanically induced optical phase
φmec and an electrochemically induced optical phase φec

φ = φmec + φec. (6)

The combination is assumed to be additive, as long as one term
significantly dominates the other one:

• the ‘almost mechanical’ case, where the displacement is
large compared with λD,

• the ‘almost electrochemical’ case, where λD is large
compared with the displacement.

The following two subsections are intended to relate φmec and
φec terms to the surface charge density σd.

3.2. Electrochemically induced optical phase

One proposes to compute the reflection coefficient of a charged
interface for a focused beam in the same manner as Stedman
[9,10] and Paik et al [11] derived the ellipsometric parameters
for a plane wave impinging on a metal-electrolyte interface.
Let us derive refractive index changes of the solution and
of the metal for the present case and use them to describe
the link between φec and the electrochemical state of the
interface through the complex reflection coefficient change of
the surface illuminated with a focused monochromatic beam.
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3.2.1. Refractive index of the solution. The surface excess
concentrations are deduced from the density profiles

�± =
∫ ∞

0
(N± − N0) dz = N0

±4γ λD

1 ∓ γ
. (7)

As previously discussed [9], one chooses to represent the
diffuse layer by a finite one whose thickness is 2λD. One
also considers that the liquid side of the interface is charged
by the diffuse layer, as well as by adsorbed ions located at the
inner Helmholtz plane. The equivalent densities Ñ+ and Ñ−
are thus defined to ensure the same surface excesses

Ñ+ = N0 +
�+ + σ+

2λD
= N0

1 + γ

1 − γ
+

σ+

2λD
, (8)

Ñ− = N0 +
�− + σ−

2λD
= N0

1 − γ

1 + γ
+

σ−
2λD

. (9)

The refractive index ne of the electrolyte layer is then obtained
from the Lorentz–Lorenz formula

ne(�m − �∞, σ+, σ−) =
√

M̄ + 2ρ̄
∑

i xiRi

M̄ − ρ̄
∑

i xiRi

, (10)

where M̄ is the mean molar mass of the film and ρ̄ its mean
mass density. The latter requires the molar volume of the
components of the film, which are taken from [28]. The molar
fractions xi of the different elements composing the film read as

xi = Ñi

ÑH2O + Ñ+ + Ñ−
(11)

for i = {H2O, +, −}. The molar refractivities Ri of the
components of the film are taken from [29].

3.2.2. Refractive index of the metal. According to Drude’s
model, and neglecting the contribution of the bound electrons,
the complex refractive index n̂m of the metal is obtained as

n̂2
m = 1 − 4πnele

2

m

1

ω(ω − iβ)
, (12)

where β is Drude’s damping parameter, m the electron mass,
ω the frequency of the impinging wave and nel the volume
charge density. Decomposing n̂m into real and imaginary parts

n̂m = nm(1 + iκ) (13)

and considering both real and imaginary parts of equation (12)
yields

n2
m(1 − κ2) = 1 − snel,

2n2
mκ = −s

β

ω
nel, (14)

where s is defined by

s = 4πe2

m

1

ω2 + β2
. (15)

Solving equation (14) for the ratio β/ω yields

β

ω
= − 2n2

mκ

1 − n2
m(1 − κ2)

. (16)

The ratio β/ω is deduced from ellipsometric measurements.
At zero charge, one measures

nm = 0.33,

κ = −13.12

for a wavelength of 760 nm. Setting (16) into its definition,
s is rewritten as

s = 4πe2

mω2

(1 − n2
m(1 − κ2))2

1 − 2n2
m(1 − κ2) + n4

m(1 + κ2)2
. (17)

If the surface charge density σm is changed to σm + dσm, the
charge density change at the surface reads as

dnel = dσm

et
, (18)

where t is the ‘thickness’ of the metal layer whose charge is
modified. One arbitrarily sets t = 1 nm, as in [11]. The new
refractive index of the metal layer is described by n′

m and κ ′

satisfying

n′2
m(1 − κ ′2) = n2

m(1 − κ2) − s × dnel,

2n′2
mκ ′ = 2n2

mκ − s
β

ω
dnel. (19)

n′
m is thus found by solving

4n′4
m + n′2

m

[
4n2

m(κ2 − 1) + 4s dnel
]

− 4n2
m

(
n2

mκ2 − κs
β

ω
dnel

)
−

(
s
β

ω
dnel

)2

= 0 (20)

and κ ′ is deduced from

κ ′ =
2n2

mκ − s
β

ω
dnel

2n′2
m

. (21)

3.2.3. Reflection coefficient of the surface. The complex
reflection coefficients rTE and rTM for TE and TM polarized
light are then deduced using the Fresnel formula [30] as
functions of the surface charge density in the metal σm and
the charge densities for adsorbed anions σ− and cations
σ+, modelling the interface with two homogeneous layers
whose optical properties are defined as described above.
The electrochemical contribution to the optical phase field
measured with the Nomarski shear-interferometer is then
described considering TE and TM polarized beams separately,
for a given incidence angle θ . For example,

φec(x, y, θ) = φTM(x, y, θ) − φTE(x − d, y, θ). (22)

As the image is formed by using the whole objective pupil, the
phase change measured after reflection on the sample does not
depend on the initial polarization [31], so that the fields φTM

and φTE are equal. As a consequence, φec(x, y, θ) is a measure
of the heterogeneous part of the reflection phase change field

φec(x, y, θ) = φTE,TM(x, y, θ) − φTE,TM(x − d, y, θ). (23)

The exact relationship for the fully illuminated pupil may
be difficult to predict accurately since it depends on the
numerical aperture and the apodization function of the
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Figure 5. Change in the phase of the base complex reflection
coefficient rTE+rTM

2 of a Au(1 1 1)/KCl interface as a function of the
surface charge for θe = 0.3 rad.

objective. Therefore, one will consider in the following
the function φTE,TM(x, y, θe) = h(σm(x, y), θe) of the metal
surface charge density σm(x, y) and of an apparent incidence
angle θe [32]:

φTE,TM(x, y, θe) = arg

(
rTE(x, y, θe) + rTM(x, y, θe)

2

)
= h(σm(x, y), θe). (24)

Figure 5 shows the change in the phase of the base complex
reflection coefficient (rTE + rTM)/2 of the considered interface
as a function of the electrode surface charge, assuming no
specific adsorption (i.e. σ− = σ+ = 0), for θe = 0.3 rad.
It is worth noting that the described results are consistent
with previously published ellipsometric parameters [11].
Moreover, as outlined in [11], the obtained phase function does
not significantly depend on the arbitrarily chosen ‘thickness’
of the affected metal layer.

3.3. Mechanically induced optical phase

3.3.1. From Gouy–Chapman theory to a surface shear-stress
field. Considering that the electrochemical free enthalpy GS

is driven by the interactions between the ions in solution and
the charges on the electrode, the total free enthalpy variation
of a small surface S0 subjected to a small surface change δS is
written as

δG = δGe + δGS = δGe(δS) + δS
σ 2

m

εw
, (25)

where the strain energy term δGe(δS) depends on the
mechanical behaviour of the cantilever. Let us denote by u(x)

the in-plane displacement field of the cantilever surface. The
surface modification then reads as

δS(x) = bu(x), (26)

where b is the cantilever width. Replacing it in equation (25)
leads to

δG(x) = δGe(x) + δGS(x) = δGe(x) + bu(x)
σ 2

m

εw
, (27)

so that the electrochemical term appears as an external force
contribution, similar to the work of a shear stress τ(x) in the
in-plane displacement u(x)

δG(x) = δGe(x) + bu(x)
σ 2

m

εw
= δGe(x) − bu(x)τ(x) (28)

with

τ(x) = −σ 2
m

εw
. (29)

Since the interface between the gold layer and the solution
is much larger than the cantilever surface, one assumes that
the modification of the cantilever surface does not induce a
significant change in the overall charge density.

3.3.2. Displacement fields basis. To be able to represent the
well-known localization effets on microelectrodes [33], one
assumes that the cantilever is subjected to a heterogeneous
shear-stress field

τ(x) = 1

(x0 − x)m
, (30)

where x0 and m are two parameters describing the stress field
when x < x0. According to the analysis of the system
described in [24], the mechanical term φmec reads as

φmec(x, y) = 4πn

ιλ
(v(x, y) − v(x − d, y))

+
∂φW

∂α

(
dv

dx
(x, y) − dv

dx
(x − d, y)

)
, (31)

where v(x) is in the out-of-plane displacement field and
∂φW/∂α is an experimentally identified coefficient, n the
average refractive index of the ambient medium, λ the used
wavelength and ι a scaling coefficient depending on the
numerical aperture of the used objective lens [24]. The
displacement and cross-section rotation fields are derived
as a closed-form solution in appendix A, thus providing a
description of the mechanical phase field φmec.

4. Identification

Section 3 provides a possible description of the measured
phase field arising from the electroelastic coupling described
in section 2. Figure 6 shows the measured optical phase
recorded along the median line of the cantilever as a function
of the loading step. This phase ranges (by definition) from
−π to π and is thus subjected to phase jumps. No significant
difference has been noted in the phase behaviour across the
cantilever width, so that the following results are presented for
the median (i.e. number 8) line of the cantilever, even though
the identification procedures involve all the pixels covering the
cantilever (i.e. 15-pixel rows). The aim of this section is to use
the measured phase maps, taking explicitly into account both
the electrochemical and the mechanical phase terms to propose
a modelling of the electroelastic coupling.
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Figure 6. Measured phase recorded along the median line of the
cantilever as a function of the loading step.

4.1. Identification problem

Solving a direct mechanical problem usually consists of finding
stress and displacement fields satisfying simultaneously:

• kinematic compatibility,
• equilibrium conditions, and
• constitutive law.

A global formulation of the purely mechanical identification
problem is to find the displacement field U minimizing ϕ2

ϕ2 = KKA‖U − Um‖KA + KSA‖U − USA‖SA

+ KCE‖U − UCE‖CE, (32)

that is matching ‘at best’ the measured displacement
field (i.e. the kinematic conditions, first term), satisfying
equilibrium conditions (second term) as well as the constitutive
law (third term) [23]. As outlined by equations (6) and (31),
the displacement field is not directly accessible, so that one
has to modify the function ϕ2 to use the optical phase instead
of displacements and to take into account the ambivalent
nature of the information carried by the measured optical
phase:

• the phase decomposition reads φmes = φmec + φec,
• the mechanical component φmec represents the displace-

ment field and thus appears in the first term (kinematic
conditions) of equation (32),

• the electrochemical component φec is an image of the
loading intensity on the cantilever and thus accounts for
the second term (equilibrium conditions). It is obtained
as φec(x, E) = h (σm(x, E)) − h (σm(x − d, E)).

Furthermore, contrary to most of the above-cited identification
procedures where the last term in equation (32) involves
only the (possibly heterogeneous) mechanical behaviour of
the material under scrutiny, here one deals with coupled
phenomena, thus involving an additional coupling term
between the local electrochemical state and the local
mechanical loading. For the sake of simplicity, one assumes
in the following that the material mechanical behaviour is
uniform along the cantilever. In order to avoid errors arising

from phase jumps, one proposes to formulate the identification
problem as finding a minimizer for

η2 = 1

Np

∑
x,y,n

χ(x, y, n)2 (33)

= 1

Np

∑
x,y,n

1

µ(x, y, n)2
(φtest(x, y, n) − φtest(x, y, n − 1)

− φmes(x, y, n) + φmes(x, y, n − 1))2 , (34)

where φmes(x, y, n)−φmes(x, y, n− 1) is the measured phase
change between two consecutive loading steps, φtest(x, y, n)−
φtest(x, y, n − 1) the phase change estimated from the
actual parameters, Np the number of measurement points
and µ(x, y, n)2 the estimated phase change variance at the
considered point (see appendix B). One should underline that
φtest(x, y, n) depends on:

• the mechanical loading applied to the overall cantilever at
step n (through the φmec-term), and

• the mechanical loading applied to point (x, y) and at
step n, through the φec-term.

Several assumptions have thus to be made to obtain an
admissible phase field basis, that is a basis for phase fields
satisfying simultaneously both equilibrium conditions and
constitutive law(s). Minimizing the objective function defined
by equation (33) yields then a projection of the measured
phase map onto the defined basis, minimizing the first term
of equation (32) (i.e. kinematic conditions). As the whole
working electrode is gold coated (and not only the cantilever
under scrutiny), the major difficulty to overcome is then to
estimate the local charge-density field (on the cantilever) from
global electrical measurements (i.e. on the whole electrode).

4.2. Identification as a potential driven process

Let us assume here that the global charge density of the
cantilever may be estimated from the potential of the working
electrode. As a consequence:

• the local charge density reads as σm(x, E) =
D(x) × P(E),

• D(x) = cp(x0)/(x0 − x)p and the constant cp(x0) is
defined through the normalization condition∫ L

0 D(x) dx = 1, by integrating the localization function
over the cantilever length L.

• the local shear stress is a continuous function of the charge
density τ = δσ n

m,
• P(E) is alternatively defined in two ways:

(a) P(E) = BCd(E − EPZC), where Cd is the
(homogeneous) differential capacity of the surface,
B is a multiplicative constant to be identified (both
constant along the cycles) and EPZC the zero-charge
potential,

(b) dP(E) = BCda dE during anodic scans, dP(E) =
BCdc dE during cathodic scans and EPZC the zero-
charge potential for the first scan. This last
formulation allows one to account for a slight
charge leak.
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Table 1. Identified parameters for the different stress-charge relationships assuming a potential driven process.

Parameter EPZC δ δ(BCdcp(x0))
n θe Residual

set p n x0/L (V/Ag–AgCl) (u.a.) (a.u.) (rad) Cdc/Cda η2
min

a 2.07 1.37 1.07 −0.02 −2.47 × 10−6 −4.62 0.47 0.2
b 1.45 1.71 1.12 0.06 −1.7 × 10−7 −13.73 0.16 0.77 0.19

Figure 7. Residual map along the median line of the cantilever as a
function of the loading step χ(x, 8, n) after minimization assuming
a potential driven process and the b-set parameters.

Assuming that the cantilever edges are sharp would lead to
impose x0 = L and p � 1 to ensure that the the surface charge
density is integrable along the cantilever. The charge density is
then singular, which is no longer true if one takes into account
a finite edge radius [33]. One then chooses to impose only that
x0 > L, so that the saturation effect due to the edge radius is
represented preserving the integrability condition.

The minimization of η2 is then performed, to provide a
parameters set suitable for describing the measured phase maps
as well as a residual value η2

min. Even though the solution
has been found to be dependent on the initial guess, the best
solution sets (for both assumptions) are reported in table 1. The
charge-density field is found to be singular with p around 2.
The stress-charge density is also found to be non-linear, with
an n-exponent around 1.7 for the b-set. Moreover, using
the b-set allows one to identify a differential capacity ratio
Cdc/Cda = 0.77, meaning that the electric potential is not the
suitable state variable to describe the mechanical loading.

This last result is shown by considering the residual map
along the median line of the cantilever as a function of the
loading step in figure 7. This residual is dimensionless as it
is the ratio of the phase gap over the expected phase deviation
(see appendix B). The normalized residual is greater than 1 on
the cantilever for almost every loading step, meaning that the
residual arises from modelling errors instead of measurement
uncertainties. The overall error indicator η2

min is then about
0.2, which is rather high compared with the fact that pixels
on the substrate, for which the modelling error vanishes,
are also involved. This is a good indication that this first
modelling should be improved by enriching the description
of the electroelastic coupling.

Table 2. Identified parameters for the different stress-charge
expansions assuming a charge-density driven process.

Number of terms
in the coupling θe Residual
relationship expansion p x0/L (rad) η2

min

1 3.41 1.13 0.58 6.33 × 10−2

2 3.41 1.13 0.60 6.33 × 10−2

3 3.35 1.12 0.43 6.27 × 10−2

4 3.32 1.12 0.51 6.27 × 10−2

5 3.31 1.12 0.60 6.27 × 10−2

4.3. Identification as a charge-density driven process

The enrichment is achieved by including the charge
information Q obtained from the electrochemical workstation
by integrating the current going through the whole working
electrode and assuming that Q = 0 at the initial instant.
The charge variation is obtained by numerically integrating
all the voltammogram cycles, sampled with a 1 mV resolution.
The charge change is then down-sampled to the image
acquisition frequency. The assumptions are the following.

• The local charge density reads as σm(x, Q) = D(x)×Q.
• The presence of the cantilevers on the electrode does

not significantly modify the overall electrode charge
compared with a standard planar electrode. As a
consequence, one sets D(x) = cq(x0)/(x0 − x)p and the
constant cq(x0) is defined so that D(x) = 1 when x tends
to the field border on the substrate. The function D(x)

is then a localization function, relating the local charge
density to the uniform charge one would get on a standard
planar electrode. This condition then just means that
one assumes that this uniform electrode charge density is
recovered ‘far enough’ from the cantilever, that is around
30 µm from the cantilever base in the present case.

• The local shear-stress profile is a continuous function of
the charge density, expanded onto a polynomial basis

τ =
T∑

t=1

δtσ
t
m. (35)

4.3.1. Identified charge-density field and stress-charge
relationship. The minimization of η2 is then performed
for different values for T ranging from 1 to 5, to provide
parameter sets representing the measured phase maps. After
a standard minimization assuming a linear (T = 1) coupling
relationship, the parameters are identified for greater T values
using a relaxation algorithm. This has been found to provide
stable results with respect to the initial guess for the first
minimization.

The solution sets are reported in table 2. The charge-
density field is found to be singular with p around 3.3
and a charge-density singularity virtually located in front
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Figure 8. (a) Identified charge-density field along the median line
of the cantilever as a function of the loading step. (b) Identified
out-of-plane displacement field along the median line of the
cantilever as a function of the loading step.

of the cantilever edge (x0/L = 1.12), highlighting the
microelectrode effect (see [34] for instance).

The resulting charge-density field along the median line
of the cantilever is shown in figure 8(a). The ratio of
the maximum charge density to its average is around 2000,
outlining the high charge localization on microelectrodes. It
is worth noting that even if p > 1, the charge density is
integrable since x0 > L. The induced mechanical effect
yields a maximum upward displacement of about 100 nm at
the end of the cantilever, as shown in figure 8(b). This
corresponds to a measured phase change mainly arising from
the mechanical term, except at the cantilever edge, where
the electrochemical term is dominant. Even with a ‘crude’
linear coupling relationship, the overall residual η2

min is down
to 6.33 × 10−2. It is worth noting that this is achieved using
only 4 parameters compared with the 8 parameters of the b-set
defined in section 4.2.

The overall residual slightly decreases by using more
terms in the coupling expansion. The resulting coupling
relations are shown in figure 9. By increasing the number
of terms in the coupling relationship expansion, one reveals
an inflexion point reached for a charge density of about
250 C m−2, with a stress saturation for σm > σs = 250 C m−2,
whereas the low charge-density part is concave. One should

Figure 9. Identified coupling relationship for T ranging from 1 to 5.
The curve for T = 2 has been slightly shifted for the sake of clarity.

Figure 10. Residual map along the median line of the cantilever as a
function of the loading step χ(x, 8, n) after minimization assuming
a charge-density driven process and a 5-term expansion for the
stress-charge-density relationship.

outline that this qualitatively agrees with the description
derived in section 3.3.1, even though the identified exponent
for charge densities less than 200 C m−2 is 1.09 to be
compared with the 2-exponent deduced in section 3.3.1. It
should be emphasized that the latter strongly depends on the
kinematic model used to describe the cantilever behaviour (see
equation (26)). It is also worth noting that the existence of an
inflexion point in the coupling relation is consistent with a
specific anion adsorption, which makes the surface expansion
more favourable and which has been found to occur in an
almost reversible manner for Au(1 1 1)–Cl− systems [35–37].
Last, it should be noted that these results are not significantly
modified by any ‘regularization’ attempt to cancel the Ti
underlayer passivation contribution to the overall electrode
charge.

4.3.2. Residual map. Figure 10 shows the residual map
along the median line of the cantilever as a function of
the loading step χ(x, 8, n) for a 5-terms expansion of the
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coupling relationship. The normalized phase error is found to
remain almost everywhere in the [−1, 1] range, meaning this
mainly arises from measurement uncertainties. It should be
underlined that the decrease in η2 when revealing the inflexion
point (see table 2) is small compared with the overall value
because the modification only concerns a few loading steps,
where the surface charge density reaches σs. Furthermore,
the error pattern close to the loading steps where the electrode
potential is 0.4 V (that is steps 10, 30 and 50 in figure 10)
exhibits negative error values during anodic scans and positive
values during cathodic scans. This symmetric shape, which
is preserved even though the images obtained for an electrode
potential of 0.4 V (where the current varies very suddenly)
are removed, tends to show that further improvements in the
mechanical modelling of the observed effects may be achieved
when considering partly inelastic stresses.

5. Conclusion

Metal coated microcantilevers were utilized as micro-
electrodes. Full-field interferometric measurements were
carried out to monitor both the surface composition changes
and the cantilever displacement during cyclic voltammetry in
the double-layer region. The scaling of the electrochemically
induced phase with respect to the surface charge density is
modelled according to Gouy–Chapman–Stern theory, whereas
the relationship between the mechanical effect and the surface
charge density is identified thanks to a dedicated formulation of
the identification problem. The electroelastic coupling effect
is found to be charge-driven. The charge-density field is also
found to be singular on the cantilever edge, and the shear stress
versus charge density is shown to be non-linear, exhibiting
an inflexion point that may be the signature of specific anion
adsorption.

Appendix A. Displacement fields basis

One assumes a priori that the cantilever is subjected to a
heterogeneous shear-stress field

τ(x) = 1

(x0 − x)m
, (A.1)

where x0 and m are two parameters describing the stress field
when x < x0. The bending moment Mf (x) reads as

Mf (x) = − be1

2

∫ L

x

dη

(x0 − η)m

= − be1

2
ln

(
x0 − x

x0 − L

)
if m = 1

= − be1

2(m − 1)
((x0 − L)1−m − (x0 − x)1−m)

if m �= 1, (A.2)

where L is the cantilever’s length. By assuming that the
bending stiffness is uniform all along the beam, the rotation
and displacement fields are obtained assuming that the beam
is described by an Euler–Bernoulli model [38] with a constant
bending stiffness EBIB, where Eb and Ib are the average
Young’s modulus and quadratic moment, respectively. The

cross-section rotation field is obtained as a function of the
exponent m by setting dv(0)/dx = 0:

dv(x)

dx
= − be1

2EbIb

{
(x − x0) ln

(
x − x0

L − x0

)

− x + x0 ln

(
x0

x0 − L

)}
if m = 1

= − be1

2EbIb

{
ln

(
x0 − x

x0

)
+

x

(x0 − L)

}
if m = 2

= − be1

4EbIb

{
− 1

x0 − x
+

x

(x0 − L)2
+

1

x0

}
if m = 3

= − be1

2EbIb(m − 1)

{
(x0 − x)−m+2 − x−m+2

0

−m + 2

+ x(x0 − L)−m+1

}
if m �= {1, 2, 3} (A.3)

and the displacement field is obtained by setting v(0) = 0

v(x) = be1

4EbIb

{
−(x − x0)

2 ln

(
x − x0

L − x0

)

− x0(2x − x0) ln

(
x0

x0 − L

)
− x

(
x0 − 3x

2

)}
if m = 1

= − be1

2EbIb

{
(x − x0) ln

(
x0 − x

x0

)

− x

(
1 − x

2(x0 − L)

)}
if m = 2

= − be1

4EbIb

{
ln

(
x0 − x

x0

)
+

1

2

(
x

x0 − L

)2

+
x

x0

}

if m = 3

= − be1

2EbIb(m − 1)

{
x−m+3

0 − (x0 − x)−m+3

(−m + 2)(−m + 3)

+
x2

2
(x0 − L)−m+1 − x

x−m+2
0

−m + 2

}
if m �= {1, 2, 3}

(A.4)

Appendix B. Estimation of the measured phase
variance

It can be shown [24] that using four integrating buckets and a
sinusoidal phase modulation yields four intensity images Ep,
for p = {1, 2, 3, 4},

Ep = T

4
(I0 + AJ0(ψ) cos(φ)) +

T A cos(φ)

π

∞∑
n=1

J2n(ψ0)

2n

× [sin(npπ + 2nθmod) − sin(n(p − 1)π + 2nθmod)]

− T A sin(φ)

π

∞∑
n=0

J2n+1(ψ0)

2n + 1

×
(

cos
(π

2
(2n + 1)(p − 1) + (2n + 1)θmod

)
− cos

(π

2
(2n + 1)p + (2n + 1)θmod

))
, (B.1)
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where Jn is the first kind Bessel function of nth order. The
images Ep depend on average impinging intensity I0 and
on cos(φ) and sin(φ) where φ is the optical phase to be
measured. Using four independent images then provides
enough information to recover three parameters, including φ.
For each pixel of the CCD array, the ideal set of equation (B.1)
is rewritten as a linear system of equations:

MP = E, (B.2)

where the parameters vector P reads as

Pt =
[
T I0

4
,
T A

π
cos(φ),

T A

π
sin(φ)

]
(B.3)

and the images vector

Et = [E1, E2, E3, E4] (B.4)

with (·)t the transpose of (·). The matrix M is built from
the modulation parameters and is then independent of the
considered point. Let us denote by λm the given (measured)
realization of a Poisson process whose intensity is Ep. The
solution parameter vector Psol is obtained as the likelihood
maximizer, that is as the minimizer of

L(P) =
4∑

i=1

{
ln

(
�(λm,i)

) − ln
(
�(λi) − (λm,i − λi) ln(λi)

)}
(B.5)

with respect to the parameter set P

λ = MP, (B.6)

where λ denotes the actual intensity set. The stationarity
conditions read

g(λm, P) = Mt f (λ) − Mtr = 0, (B.7)

where

f (λi) = ln(λi) − �(λi) + 1, (B.8)

ri = λm,i

λi

, (B.9)

and �(x) is the Gamma–Euler function and �(x) the derivative
of ln(�(x)) with respect to x. Considering small perturbations
from a solution (λs = E, Ps), a Taylor expansion of g yields

MtNM(P − Ps) = MtR (B.10)

with

Ni,j = 0 if i �= j (B.11)

Ni,i =
(

df

dλ
(λ = λs,i) +

1

λs,i

)
(B.12)

Ri = λi − λs,i

λs,i

, (B.13)

so that the error on the parameters P is a linear combination of
the normalized error on the measured intensities R

δP = P − Ps = AR, (B.14)

where
A = (MtNM)−1Mt . (B.15)

The couple (P2, P3) = (T A cos(φsol)/π, T A sin(φsol)/π) is
extracted from the parameter vector P and used as the argument
of a standard ‘atan2’ function to provide a less corrupted value
of the phase. As a consequence, errors δP on the identified P
vector induce a phase bias δφ that relates to δP as

tan(δφ)2 � (δP3 cos(φ) − δP2 sin(φ))2

(P 2
2 + P 2

3 )
. (B.16)

A (conservative) estimator ε for δφ is then provided by

ε = tan−1




√∫ 2π

0
tan(δφ(φ))2 dφ


 . (B.17)

The quantity ε depends on (δP2)
2 and (δP3)

2, which are
estimated by

(δPk)
2 =

4∑
l=1

A2
k,l

1

λl

, (B.18)

so that ε depends on the considered point (x, y, n) in the phase
maps, and the variance µ(x, y, n)2 of the difference between
two consecutive phase measurements is estimated as

µ(x, y, n)2 = ε(x, y, n)2 + ε(x, y, n − 1)2. (B.19)
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