211 research outputs found

    Decisin support system for risk assessment and management of floods

    Get PDF
    The objective of the RAMFLOOD project is to develop and validate a new decision support system (DSS) for the risk assessment and management of emergency scenarios due to severe floods. The DSS combines environmental and geo-physical data from earth observation, with advanced computer simulation and graphical visualisation methods and artificial intelligence techniques, for generating knowledge contributing to the risk prevention of floods and the design of effective response actions maximising the safety of infrastructures and human life

    3D numerical analysis of flow characteristics in an open – channel bend

    Get PDF
    [ES] El presente trabajo muestra un análisis numérico 3D del comportamiento del flujo de agua en un canal curvo influenciado por la presencia de un vertedero y una compuerta. La simulación numérica se realizó utilizando el software de Dinámica de Fluidos Computacional (CFD) basado en el método de volúmenes finitos (FVM) – OpenFOAM. En el modelo numérico la turbulencia se trata con la metodología RANS (k–ε, k–ω, y RNG k–ε) y se usa el método VOF (Volume of Fluid) para la captura de la superficie libre del agua. Los resultados numéricos obtenidos se evalúan al compararlos con los valores experimentales de calado en diferentes puntos dentro del dominio. Los valores de calado se midieron haciendo uso de sensores de nivel de agua y limnímetros. De esta manera, los resultados numéricos tridimensionales obtenidos son utilizados para analizar las líneas de corriente, las componentes de velocidades y los flujos secundarios.[EN] In this paper, three-dimensional numerical analysis of flow field patterns in an open channel bend influenced by a weir and a sluice gate is presented. The simulation was performed using the open source computational fluid dynamics (CFD) solver based on finite volume method (FVM) – OpenFOAM. Turbulence is treated using Reynolds-Averaged Navier Stokes equations (RANS) approach (i.e., k–ε, k–ω, y k–ε(RNG)), and the volume of fluid (VOF) method is used to simulate the air-water interface. The numerical results are assessed against experimental data (water depth) at different points within the domain. Water depths were measured by means of water level sensors and limnimeters. Therefore, the three-dimensional numerical results obtained are used to analyze streamlines, components of velocities, and secondary flows.Este trabajo fue posible gracias al financiamiento de la Secretaria de Educación Superior, Ciencia, Tecnología e Innovación (SENESCYT) del gobierno de la República del Ecuador a través de la beca doctoral del primer autor. Asimismo, los autores desean expresar su gratitud al Instituto de Investigación FLUMEN por facilitar sus instalaciones de laboratorio.Sánchez-Cordero, E.; Gómez, M.; Bladé, E. (2020). Análisis numérico 3D de las características del flujo en un canal curvo. Ingeniería del agua. 24(3):157-168. https://doi.org/10.4995/ia.2020.12276OJS157168243Celik, I., Ghia, U., Roache, P., Freitas, C. 2008. Procedure for Estimation and Reporting of Uncertainty Due to Discretization in CFD Applications. Journal of Fluids Engineering, 130(7), 1-4. https://doi.org/10.1115/1.2960953Gholami, A., Akbar Akhtari, A., Minatour, Y., Bonakdari, H., Javadi, A.A. 2014. Experimental and Numerical Study on Velocity Fields and Water Surface Profile in a Strongly-Curved 90° Open Channel Bend. Engineering Applications of Computational Fluid Mechanics, 8(3), 447-461. https://doi.org/10.1080/19942060.2014.11015528Gómez M., Martínez-Gomariz E. 2016. 1D, 2D, and 3D Modeling of a PAC-UPC Laboratory Canal Bend. In: Gourbesville P., Cunge J., Caignaert G. (eds) Advances in Hydroinformatics. Springer Water. Springer, Singapore. https://doi.org/10.1007/978-981-287-615-7_29Ippen, A.T., Drinker, P.A. 1962. Boundary Shear Stresses in Curved Trapezoidal Channels. Journal of the Hydraulics Division, 88(5), 143-180.Kalkwijk, J.P.T., de Vriend, H.J. 1980. Computational of the flow in shallow river bends. Journal of Hydraulic Research, 18(4), 327-342. https://doi.org/10.1080/00221688009499539Launder, B.E., Spalding, D.B. 1974. The numerical computation of turbulent flows. Computer Methods in Applied Mechanics and Engineering, 3(2), 269-289. https://doi.org/10.1016/0045-7825(74)90029-2MacCormack, R.W., Paullay, A.J. 1972. Computational Efficiency Achieved by Time Splitting of Finite Difference Operators. American Institute of Aeronautics and Astronautics, AIAA paper 72-154. https://doi.org/10.2514/6.1972-154MacDonald, P.W. 1971. The Computation of Transonic Flow Through Two- Dimensional Gas Turbine Cascades. American Society of Mechanical Engineers, (Paper 71-GT-89). https://doi.org/10.1115/71-GT-89Naji Abhari, M., Ghodsian, M., Vaghefi, M., Panahpur, N. 2010. Experimental and numerical simulation of flow in a 90° bend. Flow Measurement and Instrumentation, 21(3), 292-298. https://doi.org/10.1016/j.flowmeasinst.2010.03.002Ramamurthy, A.S., Han, S.S., Biron, P.M. 2013. Three-Dimensional Simulation Parameters for 90° Open Channel Bend Flows. Journal of Computing in Civil Engineering, 27(3), 282-291. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000209Rozovskiĭ, I. 1957. Flow of water in bends of open channels. Academy of Sciences of the Ukrainian SSR, Kiev, USSR (translated by the Israel Program for Scientific Translations, Jerusalem, 1961), Academy of Sciences of the Ukrainian SSR; Israel Program for Scientific Translations]; Kiev;[Washington D.C. available from the Office of Technical Services U.S. Dept. of Commerce].Wilcox, D.C. 1994. Turbulence Modeling for CFD. (C.D. La Canada and Industries, eds.), DCW Industries, La Canada, California (USA).Yakhot, V., Orszag, S.A. 1986. Renormalization group analysis of turbulence. I. Basic theory. Journal of Scientific Computing, Kluwer Academic/Plenum Publishers, 1(1), 3-51. https://doi.org/10.1007/BF0106145

    Optimization of the Floodplain Encroachment calculation with hydraulic criteria

    Get PDF
    [ES] La legislación española actual exige que en los estudios de inundabilidad se delimite la Zona de Flujo Preferente (ZFP), compuesta por envolvente de la Zona de Inundación Peligrosa (ZIP) y la Vía de Intenso Desagüe (VID). La delimitación de la VID es compleja, subjetiva, y no tiene solución única. Habitualmente se determina mediante la restricción de la zona disponible para el flujo, estrechando la zona que ocupa la avenida de 100 años de periodo de retorno, es decir, no permitiendo el flujo en las zonas más alejadas del eje del río. En el presente trabajo se analiza el concepto de VID, y se muestra cómo, en algunos casos, el método anterior no es el mejor, en especial en presencia de zonas de flujo desconectadas o en casos en los que el flujo puede tener una componente transversal importante. Finalmente, se presenta una metodología para la definición de una VID con el mayor sentido físico posible, mediante modelización numérica bidimensional.[EN] The current Spanish legislation requires flood risk assessment studies to determine the Preferential Flow Zone (ZFP), which consists of the union of the Hazardous Flood Area (ZIP) and the Intense Flow Path (VID). The definition of the VID is complex, subjective, and has no unique solution. It is usually determined by subsequently restricting the area available for flow, narrowing the area that initially occupies the flood of a 100-year return period, and controlling the increase in water depth this floodplain restriction causes. In this work the concept of VID is analysed, and it is shown how, in some cases, the common previous method is not the best, especially in the presence of disconnected flow zones or in cases where the flow may have an important transverse component. Finally, a methodological proposal is presented for the definition of a VID with physical sense, using two-dimensional numerical modelling.Sanz-Ramos, M.; Bladé, E.; Escolano, E. (2020). Optimización del cálculo de la Vía de Intenso Desagüe con criterios hidráulicos. Ingeniería del agua. 24(3):203-218. https://doi.org/10.4995/ia.2020.13364OJS203218243ACA. 2003. Recomanacions tècniques per als estudis d'inundabilitat d'àmbit local. Guia Tècnica, Agència Catalana de l'Aigua. Generalitat de Catalunya. Març 2003. [online] Available from: http://www.gencat.net/aca.ACA. 2007. Planificació de l'Espai Fluvial. Estudis d'inundabilitat en l'àmbit del projecte PEFCAT - Memòria específica Conca de La Muga.Anta Álvarez, J., Bermúdez, M., Cea, L., Suárez, J., Ures, P., Puertas, J. 2015. Modelización de los impactos por DSU en el río Miño (Lugo). Ingeniería del agua, 19(2), 105-116. https://doi.org/10.4995/ia.2015.3648Arcement, G.J., Schneider, V.R. 1989. Guide for selecting Manning's roughness coefficients for natural channels and flood plains.Balairón Pérez, L., López, D., Morán, R., Ramos, T., Toledo, M.Á. 2014. Avances en investigación aplicada mediante modelación física y numérica en el diseño de la ingeniería de presas, Ingeniería del Agua, 18(1), 55-69. https://doi.org/10.4995/ia.2014.3143Barnes, H.H. 1987. Roughness Characteristics of Natural Channels, Tech. Report, Geol. Surv. Water-Supply, United States Gov. Print. Off. Washington, U.S.A, 219. https://doi.org/10.1016/0022-1694(69)90113-9Bladé, E., Cea, L., Corestein, G., Escolano, E., Puertas, J., Vázquez-Cendón, E., Dolz, J., Coll, A. 2014a. Iber: herramienta de simulación numérica del flujo en ríos, Rev. Int. Métodos Numéricos para Cálculo y Diseño en Ing., 30(1), 1-10. https://doi.org/10.1016/j.rimni.2012.07.004Bladé, E., Cea, L., Corestein, G. 2014b. Modelización numérica de inundaciones fluviales, Ing. del Agua, 18(1), 71-82. https://doi.org/10.4995/ia.2014.3144Bladé, E., Sanz-ramos, M., Amengual, A., Romero, R., Roux, H., Savatier, J., Cherriere, M. 2018. Gestión integrada del riesgo de inundación y de los recursos hídricos empleando modelización integrada meteorológica, hidrológica e hidráulica, in XI Jornadas Españolas de Presas, León, Spain.Bladé, E., Sánchez-Juny, M., Arbat-Bofill, M., Dolz, J. 2019a. Computational Modeling of Fine Sediment Relocation Within a Dam Reservoir by Means of Artificial Flood Generation in a Reservoir Cascade, Water Resour. Res., 55(4), 3156-3170. https://doi.org/10.1029/2018WR024434Bladé, E., Sanz-Ramos, M., Dolz, J., Expósito-Pérez, J. M., Sánchez-Juny, M. 2019b. Modelling flood propagation in the service galleries of a nuclear power plant, Nucl. Eng. Des., 352, 110180. https://doi.org/10.1016/j.nucengdes.2019.110180BOE-A-2008-755. 2008. Real Decreto 9/2008, de 11 de enero, por el que se modifica el Reglamento del Dominio Público Hidráulico, aprobado por el Real Decreto 849/1986, de 11 de abril, Boletín Of. del Estado núm. 14, 16 enero 2008, páginas 3141 a 3149. Minist. la Pres., 9.BOE-A-2010-11184. 2010. Real Decreto 903/2010, de 9 de julio, de evaluación y gestión de riesgos de inundación, Boletín Of. del Estado. núm. 171, 15 julio 2010, páginas 61954 a 61967. Minist. la Pres., 14.BOE-A-2016-12466. 2016. Real Decreto 638/2016, de 9 de diciembre, por el que se modifica el Reglamento del Dominio Público Hidráulico aprobado por el Real Decreto 849/1986, de 11 de abril, el Reglamento de Planificación Hidrológica, aprobado por el Real Decreto 907/2007, y otros, Boletín Of. del Estado. núm. 314, 29 diciembre 2016, páginas 91133 a 91175. Minist. Agric. y Pesca, Aliment. y Medio Ambient., 43.Cea, L., Bladé, E. 2015. A simple and efficient unstructured finite volume scheme for solving the shallow water equations in overland flow applications, Water Resour. Res., 51(7), 5464-5486. https://doi.org/10.1002/2014WR016547Cea, L., Bermúdez, M., Puertas, J., Bladé, E., Corestein, G., Escolano, E., Conde, A., Bockelmann-Evans, B., Ahmadian, R. 2016. IberWQ: new simulation tool for 2D water quality modelling in rivers and shallow estuaries, J. Hydroinformatics, 18(5), 816-830. https://doi.org/10.2166/hydro.2016.235Chaudhry, M.H. 2008. Open-channel flow, Second Edition. Springer Science+Business Media, LLC. https://doi.org/10.1007/978-0-387-68648-6DOUE-L-2007-82010. 2007. Directiva 2007/60/CE del Parlamento Europeo y del Consejo, de 23 de octubre de 2007, relativa a la evaluación y gestión de los riesgos de inundación.Federal Emergency Management Agency (FEMA). 2015. Department of Homeland Security. Mitigation and Division: Multihazard Loss Estimation Methodology. Flood Model. Hazus-HM MR5 Technical Manual, EEUU.Fonseca, A.R., Santos, M., Santos, J.A. 2018. Hydrological and flood hazard assessment using a coupled modelling approach for a mountainous catchment in Portugal, Stoch. Environ. Res. Risk Assess., 1. https://doi.org/10.1007/s00477-018-1525-1González-Aguirre, J.C., Vázquez-Cendón, M.E., Alavez-Ramírez, J. 2016. Simulación numérica de inundaciones en Villahermosa México usando el código IBER, Ing. del Agua, 20(4), 201. https://doi.org/10.4995/ia.2016.5231ISDR. 2009. Global assessment report on disaster risk reduction, United Nations, Geneva, Switzerland.Kron, W. 2005. Flood Risk = Hazard + Values + Vulnerability, Water Int., 30(1), 58-68. https://doi.org/10.1080/02508060508691837López, D., Ramos, T., Sánchez, P., Marivela, R., Díaz, R., Rebollo, J.J., Andrés, F.R., Cuellar, V., De Blas, M., García, J.L. 2018. Smoothed particle hydrodynamics method for three- dimensional open channel flow simulations, J. Appl. Fluid Mech., 11(6), 1599-1611. https://doi.org/10.29252/jafm.11.06.28608MAGRAMA. 2011. Guía Metodológica para el Desarrollo del Sistema Nacional de Cartografía de Zonas Inundables, Ministerio de Medio Ambiente y Medio Rural y Marino. Gobierno de España: Madrid, España.MAPAMA. 2017. Guía de apoyo a la aplicación del RDPH enlas limitaciones a los usos del suelo en las zonas inundables de origen fluvial, Ministerio de Agricultura y Pesca, Alimentación y Medio Ambiente.Martínez-Gomariz, E., Gómez, M., Russo, B. 2016a. Estabilidad de personas en flujos de agua, Ing. del agua, 20(1), 43-58. https://doi.org/10.4995/ia.2016.4231Martínez-Gomariz, E., Gómez, M., Russo, B. 2016b. Experimental study of the stability of pedestrians exposed to urban pluvial flooding, Nat. Hazards, 82(2), 1259-1278. https://doi.org/10.1007/s11069-016-2242-zMMA. 1996. Clasificación de presas en Función del Riesgo Potencial - Guía Técnica, Ministerio de Medio Ambiente. Dirección General de Obras Hidráulicas y Calidad de las Aguas.Ochoa García, S.A., Reyna, T., García, M., Herrero, H., Díaz, J.M., Heredia, A. 2017. Análisis de la implementación de un modelo hidrodinámico tridimensional al flujo de un cauce natural, Ing. del Agua, 21(2), 103-107. https://doi.org/10.4995/ia.2017.6885Ribó, R., De Riera, M., Escolano, E. 1999. GiD Reference Manual, Ed. CIMNE, Spain.Roux, H., Amengual, A., Romero, R., Bladé, E., Sanz-Ramos, M. 2019. Evaluation of two hydrometeorogical ensemble strategies for flash flood forecasting over a catchment of the eastern Pyrenees, Nat. Hazards Earth Syst. Sci. Discuss., 425-450. https://doi.org/10.5194/nhess-2019-232.Ruiz-Villanueva, V., Bodoque, J. M., Díez-Herrero, A., Bladé, E. 2014. Large wood transport as significant influence on flood risk in a mountain village, Nat. Hazards, 74(2), 967-987. https://doi.org/10.1007/s11069-014-1222-4Russo, B., Gómez, M., Macchione, F. 2013. Pedestrian hazard criteria for flooded urban areas, Nat. Hazards, 69(1), 251-265. https://doi.org/10.1007/s11069-013-0702-2Sanz-Ramos, M., Bladé, E., Niñerola, D., Palau-Ibars, A. 2018a. Evaluación numérico-experimental del comportamiento histérico del coeficiente de rugosidad de los macrófitos, Ing. del Agua, 22(3), 109-124. https://doi.org/10.4995/ia.2018.8880Sanz-Ramos, M., Amengual, A., Bladé, E., Romero, R., Roux, H. 2018b. Flood forecasting using a coupled hydrological and hydraulic model (based on FVM) and highresolution meteorological model, in E3S Web of Conferences, vol. 40.Sanz-Ramos, M., Bladé Castellet, E., Palau Ibars, A., Vericat Querol, D., Ramos-Fuertes, A. 2019a. IberHABITAT: evaluación de la Idoneidad del Hábitat Físico y del Hábitat Potencial Útil para peces. Aplicación en el río Eume, Ribagua, 6(2), 158-167. https://doi.org/10.1080/23863781.2019.1664273Sanz-Ramos, M., Olivares Cerpa, G., Bladé i Castellet, E. 2019b. Metodología para el análisis de rotura de presas con aterramiento mediante simulación con fondo móvil, Ribagua, 6(2), 138-147. https://doi.org/10.1080/23863781.2019.1705198Sopelana, J., Cea, L., Ruano, S. 2017. Determinación de la inundación en tramos de ríos afectados por marea basada en la simulación continúa de nivel, Ing. del Agua, 21(4), 231-246. https://doi.org/10.4995/ia.2017.8770Toro, E. F. 2009. Riemann Solvers and Numerical Methods for Fluid Dynamics, Springer, Berlin (Heidelberg). https://doi.org/10.1007/b79761UNISDR. 2015. The human cost of weather related disasters (1995-2015)

    Numerical modelling of river inundations

    Full text link
    [ES] La modelización numérica del flujo de agua en ríos es una herramienta que ayuda a dar respuesta a la legislación vigente europea y española referida a riesgo de inundación. Los modelos numéricos disponibles actualmente se encuentran en constante evolución. Mientras hace una década la modelización unidimensional era prácticamente la única alternativa, en el presente se han generalizado los modelos bidimensionales y se empiezan a utilizar los tridimensionales. Gracias a las actuales herramientas SIG, los resultados de la modelización numérica se pueden combinar con datos georreferenciados para realizar una cuantificación sistemática del riesgo de inundación. En este proceso existen aún una serie de desafíos como la consideración de los caudales sólidos y sus efectos en la morfología del cauce, una correcta descripción del flujo en puentes y estructuras, la integración de modelos hidrológicos con los modelos hidráulicos para una mejor consideración de las condiciones de contorno, y finalmente la optimización de las herramientas para disminuir los tiempos de cálculo actuales.[EN] At the present time there is a strong demand from policy makers for reliable predictions of the effects of climate and land use changes on inundation risk, in order to meet the targets specified in the EU Water Framework Directive. Numerical models are a valuable predictive tool to support decision-making related to the implementation of water and flood risk management strategies. While a decade ago one-dimensional modelling was the most commonly used tool in inundation studies, at the present time the application of two-dimensional models to river inundation modelling is generalized. Combined with GIS tools, the water depth and velocity results of a 2D model can be efficiently combined with land use data in order to quantify the potential damages caused by a certain inundation. Nevertheless, in order to improve the reliability of the numerical predictions, a number of challenges should be addressed in current models, as: modelling the interaction between hydrodynamics, solid loads, and morphologic changes during extreme flood events; a correct characterisation of head losses and flow through bridges with complex geometries; the integration of hydrological and hydraulic models for a better consideration of boundary conditions; and the implementation of efficient parallelization techniques in order to reduce the computational time and increase the scale of the problems which can be addressed with 2D and 3D models.Bladé, E.; Cea, L.; Corestein, G. (2014). Modelización numérica de inundaciones fluviales. Ingeniería del agua. 18(1):71-82. https://doi.org/10.4995/ia.2014.3144OJS7182181Bladé, E., Cea, L., Corestein, G., Escolano, E., Puertas, J., Vázquez-Cendón, E., Dolz, J., and Coll, a. (2014). "Iber: herramienta de simulación numérica del flujo en ríos." Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería, CIMNE (Universitat Politècnica de Catalunya), 30(1), 1-10.Bladé, E., Gómez-Valentín, M., Dolz, J., Aragón-Hernández, J. L., Corestein, G., and Sánchez-Juny, M. (2012). "Integration of 1D and 2D Finite Volume Schemes for Computations of Water Flow in Natural Channels." Advances in Water Resources, 42, 17-29.Cea, L., Stelling, G., and Zijlema, M. (2009). "Non-hydrostatic 3D free surface layer-structured finite volume model for short wave propagation." International Journal for Numerical Methods in Fluids, 61(4), 382-410.Chaudhry, M. H. (2008). Open-Channel Flow. Systems Engineering, Springer, 523.Cunge, J. A. (1975). "Two-dimensional modelling of flood plains." Unsteady Flow in Open Channels, K. Mahmood and V. Yevjevich, eds., W.P.R, Fort Collins.Cunge, J. A. (2014). "River hydraulics - a view from midstream." Journal of Hydraulic Research, 52(1), 137-138.DEFRA. (2008). Assessing and Valuing the Risk to Life from Flooding for Use in Appraisal of Risk Management Measures. Department for Environment, Food and Rural Affairs.FEMA. (2001). Understanding Your Risks. identifying hazards and estimating losses. (F. E. M. Agency, ed.), Federal Emergency Management Agency.Finaud-Guyot, P., Delenne, C., Guinot, V., and Llovel, C. (2011). "1D-2D coupling for river flow modeling." Comptes Rendus Mécanique, 339(4), 226-234.Floodsite. (2009). "Flood risk assessment and flood risk management. An introduction and guidance based on experiences and findings of FLOODsite."Hervouet, J.-M. (2000). "TELEMAC modelling system: an overview." Hydrological Processes, 14(13), 2209-2210.Hirt, C. ., and Nichols, B. . (1981). "Volume of fluid (VOF) method for the dynamics of free boundaries." Journal of Computational Physics, 39(1), 201-225.Knight, D. W. (2013). "River hydraulics - a view from midstream." Journal of Hydraulic Research, 51(1), 2-18.Lumbroso, D., and Mauro, M. di. (2008). "Recent developments in loss of life modelling for flood event management in the UK." Flood Recovery, innovation and response, Proverbs and E. P.-R. D., C.A. Brebbia, eds., WIT Press, Southampton.MAGRAMA-Inclam. (2014). "Sistema nacional de cartografía de zonas inundables. Demarcación Hidrográfica del Segura. Mapas de Peligrosidad y Riesgo de Inundación." MAGRAMA.MARM. (2011). Guía Metodológica para el desarrollo del Sistema Nacional de Cartografía de Zonas Inundables. (M. de M. A. y M. R. y Marino, ed.), 349.Morales-Hernández, M., García-Navarro, P., Burguete, J., and Brufau, P. (2013). "A conservative strategy to couple 1D and 2D models for shallow water flow simulation." Computers & Fluids, 81, 26-44.Morvan, H., Knight, D., Wright, N., Tang, X., and Crossley, A. (2008). "The concept of roughness in fluvial hydraulics and its formulation in 1D, 2D and 3D numerical simulation models." Journal of Hydraulic Research, 46(2), 191-208.Parker, G. (2008). "Transport of Gravels and Sediment Mixtures." Sedimentation Engineerieng. Processes, Measurements, Modeling, and Practice, M. H. García, ed., ASCE.PATRICOVA. (2002). "Plan de accion territorial de carácter sectorial sobre prevención del riesgo de inundación en la Comunidad Valenciana." Generalitat Valenciana.Phillips, N. A. (1957). "A Coordinate System Having Some Special Advantages For Numerical Forecasting." Journal of Meteorology, 14(2), 184-185.Soares-Frazão, S., Canelas, R., Cao, Z., Cea, L., Chaudhry, H. M., Die Moran, A., Kadi, K. El, Ferreira, R., Cadórniga, I. F., Gonzalez-Ramirez, N., Greco, M., Huang, W., Imran, J., Coz, J. Le, Marsooli, R., Paquier, A., Pender, G., Pontillo, M., Puertas, J., Spinewine, B., Swartenbroekx, C., Tsubaki, R., Villaret, C., Wu, W., Yue, Z., and Zech, Y. (2012). "Dam-break flows over mobile beds: experiments and benchmark tests for numerical models." Journal of Hydraulic Research, 50(4), 364-375.Stelling, G., and Zijlema, M. (2003). "An accurate and efficient finite-difference algorithm for non-hydrostatic free-surface flow with application to wave propagation." International Journal for Numerical Methods in Fluids, 43(1), 1-23.Tapsell, S.M., S.J. Priest, T. Wilson, C. V. & E. C. P.-R. (2009). "A new model to estimate risk to life for European flood events." Flood risk Management, research and practice, W. A. & J. H. Samuels, P., S. Huntingdon, ed., London.Toro, E. F. (2001). Shock-Capturing Methods for Free-Surface Shallow Flows. (J. W. S. Ltd, ed.), John Wiley & Sons, 309 pp.Vázquez-Cendón, M. E. (1999). "Improved Treatment of Source Terms in Upwind Schemes for the Shallow Water Equations in Channels with Irregular Geometry." Journal of Computational Physics, 148(2), 497-526.Verwey, A. (2001). "Latest developments in floodplain modelling-1D/2D integration." 6th Conference on Hydraulics in Civil Engineering: The State of Hydraulics; Proceedings, Institution of Engineers, Australia, 13.Wilson, M. D., Bates, P. D., Horritt, M. S., and Hunter, N. M. (2006). "Improved simulation of flood flows using storage cell models." Proceedings of the ICE - Water Management, 159(1), 9-18

    3D numerical analysis of a dam - break using VOF method and LES turbulence model

    Get PDF
    [EN] In this paper, three-dimensional numerical analysis of dam-break flow pattern in a laboratory-scale is reported. The simulation was performed using the open source computational fluid dynamics (CFD) solver based on finite volume method (FVM) – OpenFOAM. Turbulence is treated using large eddy simulation (LES) approach. The free surface is tracked using the Volume of Fluid method (VOF). The numerical results are assessed against published experimental data. Water depth and pressure measures are used to validate the numerical model. The results demonstrate that the 3D numerical configuration satisfactorily reproduces the temporal variation of these variables with correct trends and high correlation with the experimental values.[ES] El presente trabajo muestra un análisis numérico 3D del comportamiento del flujo de agua en una rotura de presa a escala de laboratorio. La simulación se realizó utilizando el software de dinámica de fluidos computacional (CFD) basado en el método de volúmenes finitos (FVM) – OpenFOAM. En el modelo numérico la turbulencia es tratada con la metodología LES (Large Eddy Simulation) y el método VOF (Volume of Fluid) es usado para la captura de la superficie libre del agua. Los resultados numéricos obtenidos se comparan con datos experimentales publicados haciendo uso de las variables de calado y presión. Los resultados muestran que la configuración del código numérico 3D es capaz de reproducir satisfactoriamente la variación temporal de las variables en estudio, con tendencias correctas y una alta correlación con los valores experimentales.Este trabajo fue posible gracias al apoyo financiero otorgado por la Secretaría Nacional de Educación Superior, Ciencia, Tecnología e Innovación (SENESCYT) del Gobierno de la República del Ecuador a través de la beca doctoral del primer autor.Sánchez-Cordero, E.; Boix, J.; Gómez, M.; Bladé, E. (2018). Análisis numérico 3D de una rotura de presa utilizando el método VOF y el modelo de turbulencia LES. Ingeniería del Agua. 22(3):167-176. doi:10.4995/ia.2018.9374SWORD167176223Ancey, C., Iverson, R. M., Rentschler, M., Denlinger, R. P. (2008). An exact solution for ideal dam-break floods on steep slopes. Water Resources Research, 44(1), 567-568. https://doi.org/10.1029/2007WR006353Aricò, C., Nasello, C., Tucciarelli, T. (2007). A marching in space and time (MAST) solver of the shallow water equations. Part II: The 2D model. Advances in Water Resources, 30(5), 1253-1271. https://doi.org/10.1016/j.advwatres.2006.11.004van Balen, W., Blanckaert, K., Uijttewaal, W. S. J. (2010). Analysis of the role of turbulence in curved open-channel flow at different water depths by means of experiments, LES and RANS. Journal of Turbulence, 11(12), 1-34. https://doi.org/10.1080/14685241003789404Biscarini, C., Di Francesco, S., Manciola, P. (2010). CFD modelling approach for dam break flow studies. Hydrology and Earth System Sciences, 14, 705-718. https://doi.org/10.5194/hess-14-705-2010Fraccarollo, L., Toro, E. F. (1995). Experimental and numerical assessment of the shallow water model for two-dimensional dambreak type problems. Journal of Hydraulic Research, 33(6), 843-864. https://doi.org/10.1080/00221689509498555Frazão, S. S., Zech, Y. (2002). Dam Break in Channels with 90° Bend. Journal of Hydraulic Engineering, 128(11), 956-968. https://doi.org/10.1061/(ASCE)0733-9429(2002)128:11(956)Jones, W. P., Wille, M. (1996). Large-eddy simulation of a plane jet in a cross-flow. International Journal of Heat and Fluid Flow, 17(3), 296-306. https://doi.org/10.1016/0142-727X(96)00045-8Kleefsman, K. M. T., Fekken, G., Veldman, A. E. P., Iwanowski, B., Buchner, B. (2005). A Volume-of-Fluid based simulation method for wave impact problems. Journal of Computational Physics, 206(1), 363-393. https://doi.org/10.1016/j.jcp.2004.12.007Liang, D., Lin, B., Falconer, R. A. (2007). Simulation of rapidly varying flow using an efficient TVD-MacCormack scheme. International Journal for Numerical Methods in Fluids, 53(5), 811-826. https://doi.org/10.1002/fld.1305Liu, X., García, M. H. (2008). Three-Dimensional Numerical Model with Free Water Surface and Mesh Deformation for Local Sediment Scour. Journal of Waterway, Port, Coastal, and Ocean Engineering, 134(4), 203-217. https://doi.org/10.1061/(ASCE)0733-950X(2008)134:4(203)Moin, P., Kim, J. (1982). Numerical investigation of turbulent channel flow. Journal of Fluid Mechanics, 118, 341-377. https://doi.org/10.1017/S0022112082001116Salinas-Vázquez, M., Vicente-Rodríguez, W., Chol-Orea, E., Leyva García, V. (2007). Simulación de la turbulencia de un flujo que pasa alrededor de un cilindro de sección cuadrada a partir de la utilización de la simulación de grandes escalas y de fronteras inmersas. Revista Mexicana de Física, 53(6), 461-469.Smagorinsky, J. (1963). General circulation experiments with the primitive equations. I. The basic experiment. Monthly Weather Review, 91, 99-164. https://doi.org/10.1175/1520-0493(1963)091%3C0099:GCEWTP%3E2.3.CO;2Stoker, J. J. (James J. (1957). Water waves: the mathematical theory with applications. Wiley.Stoll, R., Porte-Agel, F. (2006). Dynamic subgrid-scale models for momentum and scalar fluxes in large-eddy simulations of neutrally stratified atmospheric boundary layers over heterogeneous terrain. Water Resources Research, 42, 1-18. https://doi.org/10.1029/2005WR003989Wu, C., Huang, G., Zheng, Y. (1999). Theoretical Solution of Dam-Break Shock Wave. Journal of Hydraulic Engineering, 125(11), 1210-1215. https://doi.org/10.1061/(ASCE)0733-9429(1999)125:11(1210

    Iber — River modelling simulation tool

    Get PDF
    Para dar respuesta a los requerimientos en materia de aguas definidos en las directrices, reglamentos y recomendaciones existentes en la legislación española, los cuales están mayoritariamente basados en directivas europeas, se ha desarrollado una herramienta de modelización numérica del flujo de agua en lámina libre en 2 dimensiones. La herramienta, llamada Iber, combina un módulo hidrodinámico, un módulo de turbulencia y un módulo de transporte de sedimentos, y utiliza el método de volúmenes finitos para resolver las ecuaciones correspondientes. Al módulo de cálculo se le ha adaptado una interfaz que se basa en el software de preproceso y posproceso GiD, desarrollado por CIMNE. El resultado es una herramienta de modelización numérica del flujo de agua y sedimentos en ríos y estuarios, que utiliza esquemas numéricos avanzados especialmente estables y robustos en cualquier situación pero especialmente adecuados para flujos discontinuos y, en concreto, para cauces torrenciales y regímenes irregulares.The recent requirements of Spanish regulations and directives, on their turn based on European directives, have led to the development of a new two dimensional open channel flow modelling tool. The tool, named Iber, combines a hydrodynamic module, a turbulence module and a sediment transport module, and is based in the finite volume method to solve the involved equations. The simulation code has been integrated in a pre-process and post-process interface based on GiD software, developed by CIMNE. The result is a flow and sediment modelling system for rivers and estuaries that uses advanced numerical schemes, robust and stable, which are especially suitable for discontinuous flows taking place in torrential and hydrologically irregular rivers.Peer Reviewe

    Saint Venant’s equations for dense-snow avalanche modelling

    Get PDF
    [ES] La creciente preocupación por los riesgos naturales, como las avalanchas de nieve, ha propiciado el desarrollo de modelos numéricos ad hoc como una herramienta de soporte para su análisis y evaluación. Los modelos existentes para simulación de aludes se basan en la conservación de la masa y de la cantidad de movimiento, que son unas ecuaciones similares a las ecuaciones de Saint Venant para agua con diferencias sólo en los términos de fricción (modelo reológico). Este documento muestra las posibilidades de estas ecuaciones para simular avalanchas de placa-densa y el tratamiento numérico realizado en Iber. Se ha empleado una nueva metodología para equilibrar el término fuente y el vector de flujo evitando así oscilaciones espurias y movimientos no reales, y que modifica la pendiente de fondo en base a los parámetros del fluido y así detener su movimiento. La herramienta se ha probado en dos casos de estudio para analizar el comportamiento del fluido en función de los parámetros del mode[EN] The growing concern about natural hazards, such as snow avalanches, has led to the development of ad hoc numerical models as a support tool for their analysis and evaluation. Existing models for avalanche simulation are based on the conservation of mass and the momentum, which are similar equations to the Saint Venant equations for water with differences only in terms of friction (rheological model). This document shows the possibilities of these equations to simulate dense-slab avalanches and the numerical treatment carried out in Iber. A new methodology has been used to balance the source term and the flow vector to avoid spurious oscillations and unreal movements, modifying the bottom slope based on the fluid parameters and thus stop its movement. The tool has been tested in two case studies to analyse the behaviour of the fluid depending on the parameters of the rheological model.Sanz-Ramos, M.; Bladé, E.; Torralba, A.; Oller, P. (2020). Las ecuaciones de Saint Venant para la modelización de avalanchas de nieve densa. Ingeniería del agua. 24(1):65-79. https://doi.org/10.4995/ia.2020.12302OJS6579241Adewale, F.J., Lucky, A.P., Oluwabunmi, A.P., Boluwaji, E.F. 2017. Selecting the most appropriate model for rheological characterization of synthetic based drilling mud. Int. J. Appl. Eng. Res., 12, 7614-7629.Ancey, C. 2006. Dynamique des avalanches. École Polytechnique Fédérale de Lausanne, Lausanne (Suisse).Ancey, C., Gervasoni, C., Meunier, M. 2004. Computing extreme avalanches. Cold Reg. Sci. Technol., 39, 161-180. https://doi.org/10.1016/j.coldregions.2004.04.004Anderson, J.D. 1995. Computational Fluid Dynamics: The basis with applications, 6th Ed. ed. McGraw-Hill, Inc. London.Barbolini, M., Issler, D. 2006. Avalanche Test Sites and Research Equipment in Europe An Updated Overview. SATSIE Project Team. Accesible at http://satsie.ngi.no/docs/satsie_d08.pdf.Bartelt, P., Bühler, Y., Christen, M., Deubelbeiss, Y., Salz, M., Schneider, M., Schumacher, L. 2017. RAMMS: Avalanche User Manual. WSL Institute for Snow and Avalanche Research SLF.Bartelt, P., Salm, B., Gruber, U. 1999. Calculating dense-snow avalanche runout using a Voellmy-fluid model with active/passive longitudinal straining. J. Glaciol., 45, 242-254. https://doi.org/10.3189/S002214300000174XBartelt, P., Valero, C.V., Feistl, T., Christen, M., Bühler, Y., Buser, O. 2015. Modelling cohesion in snow avalanche flow. J. Glaciol., 61, 837-850. https://doi.org/10.3189/2015JoG14J126Beguería, S., W. J. Van Asch, T., Malet, J.P., Gröndahl, S. 2009. A GIS-based numerical model for simulating the kinematics of mud and debris flows over complex terrain. Nat. Hazards Earth Syst. Sci. 9, 1897-1909. https://doi.org/10.5194/nhess-9-1897-2009Bermúdez, A., Dervieux, A., Desideri, J.A., Vázquez, M.E. 1998. Upwind schemes for the two-dimensional shallow water equations with variable depth using unstructured meshes. Comput. Methods Appl. Mech. Eng., 155, 49-72. https://doi.org/10.1016/S0045-7825(97)85625-3Bingham, E.C. 1916. An investigation of the laws of plastic flow. Bull. Bur. Stand., 13, 309-353. https://doi.org/10.6028/bulletin.304Bladé, E., Cea, L., Corestein, G., Escolano, E., Puertas, J., Vázquez-Cendón, E., Dolz, J., Coll, A. 2014. Iber: herramienta de simulación numérica del flujo en ríos. Rev. Int. Métodos Numéricos para Cálculo y Diseño en Ing., 30, 1-10. https://doi.org/10.1016/j.rimni.2012.07.004Bladé, E., Gómez-Valentín, M. 2006. Modelación del flujo en lámina libre sobre cauces naturales. Análisis integrado en una y dos dimensiones. Centro Internacional de Métodos Numéricos en Ingeniería. Monografía CIMNE no 97, Junio 2006.Blagovechshenskiy, V., Eglit, M., Naaim, M. 2002. The calibration of an avalanche mathematical model using field data. Nat. Hazards Earth Syst. Sci., 2, 217-220. https://doi.org/10.5194/nhess-2-217-2002Cea, L. 2005. An unstructured finite volume model for unsteady turbulent shallow water flow with wet-dry fronts: numerical solver and experimental validation. Tesis Dr. Universidad da Coruña.Cea, L., Puertas, J., Vázquez-Cendón, M.E. 2007. Depth averaged modelling of turbulent shallow water flow with wet-dry fronts. Arch. Comput. Methods Eng., 14, 303-341. https://doi.org/10.1007/s11831-007-9009-3Chaudhry, M.H. 2008. Open-channel flow: Second Edition, Open-Channel Flow: Second Edition. Springer Science+Business Media, LLC. https://doi.org/10.1007/978-0-387-68648-6Christen, M., Bartelt, P., Gruber, U. 2002. AVAL-1D: An avalanche dynamics program for the practice, in: International Congress Interpraevent. Pacific Rim, 14-18 October 2002, Matsumoto, Japan, pp. 715-725.Christen, M., Bartelt, P., Gruber, U., Issler, D. 2001. AVAL-1D - numerical calculations of dense flow and powder snow avalanches. Swiss Federal Institute for Snow and Avalanche Research, Davos, Switzerland. Technical report.Christen, M., Kowalski, J., Bartelt, P. 2010. RAMMS: Numerical simulation of dense snow avalanches in three-dimensional terrain. Cold Reg. Sci. Technol., 63, 1-14. https://doi.org/10.1016/j.coldregions.2010.04.005Deardorff, J.W. 1970. A numerical study of three-dimensional turbulent channel flow at large Reynolds numbers. J. Fluid Mech., 41, 453-480. https://doi.org/10.1017/S0022112070000691Dent, J.D., Lang, T.E. 1983. A biviscous modified Bingham model of snow avalanche motion. Ann. Glaciol., 4, 42-46. https://doi.org/10.3189/S0260305500005218Fischer, J.T., Kofler, A., Fellin, W., Granig, M., Kleemayr, K. 2015. Multivariate parameter optimization for computational snow avalanche simulation. J. Glaciol, 61, 875-888. https://doi.org/10.3189/2015JoG14J168Gaume, J., Van Herwijnen, A., Chambon, G., Wever, N., Schweizer, J. 2017. Snow fracture in relation to slab avalanche release: Critical state for the onset of crack propagation. Cryosphere, 11, 217-228. https://doi.org/10.5194/tc-11-217-2017Gruber, U., Bartelt, P. 2007. Snow avalanche hazard modelling of large areas using shallow water numerical methods and GIS. Environ. Model. Softw., 22, 1472-1481. https://doi.org/10.1016/j.envsoft.2007.01.001Hungr, O. 1995. A model for the runout analysis of rapid flow slides, debris flows, and avalanches. Can. Geotech. J., 32, 610-623. https://doi.org/10.1139/t95-063Hungr, O., McDougall, S. 2009. Two numerical models for landslide dynamic analysis. Comput. Geosci. 35, 978-992. https://doi.org/10.1016/j.cageo.2007.12.003ICSI-IAHS, 1981. Avalanche atlas; illustrated international avalanche classification. International Commission on Snow and Ice of the International Association of Hydrological Sciences. UNESCO, Courvoisier SA, París, France.Issler, D., Harbitz, C.B., Kristensen, K., Lied, K., Moe, A.S., Barbolini, M., De Blasio, F. V., Khazaradze, G., McElwaine, J.N., Mears, A.I., Naaim, M., Sailer, R. 2005. A comparison of avalanche models with data from dry-snow avalanches at Ryggfonn, Norway. Landslides Avalanches ICFL 2005 Norw. 173-179.Julien, P.Y., León, C.A. 2000. Mudfloods, mudflows and debrisflows, classification in rheology and structural design, in: Int. Workshop on the Debris Flow Disaster 27 November-1 December 1999. pp. 1-15.Keylock, C.J., Barbolini, M. 2011. Snow avalanche impact pressure - vulnerability relations for use in risk assessment. Can. Geotech. J., 38, 227-238. https://doi.org/10.1139/t00-100Maggioni, M., Bovet, E., Dreier, L., Buehler, Y., Godone, D., Bartelt, P., Freppaz, M., Chiaia, B., Segor, V. 2013. Influence of summer and winter surface topography on numerical avalanche simulations, in: International Snow Science Workshop. ISSW 2013. At: Grenoble Chamonix-Mont-Blanc, France, pp. 591-598.Naef, D., Rickenmann, D., Rutschmann, P., McArdell, B.W. 2006. Comparison of flow resistance relations for debris flows using a one-dimensional finite element simulation model. Nat. Hazards Earth Syst. Sci., 6, 155-165. https://doi.org/10.5194/nhess-6-155-2006Oller, P., Janeras, M., de Buen, H., Arnó, G., Christen, M., García, C., Martínez, P. 2010. Using AVAL-1D to simulate avalanches in the eastern Pyrenees. Cold Reg. Sci. Technol., 64, 190-198. https://doi.org/10.1016/j.coldregions.2010.08.011Orszag, S.A. 1970. Analytical theories of turbulence. J. Fluid Mech., 41, 363-386. https://doi.org/10.1017/S0022112070000642Pitsch, H. 2006. Large-Eddy simulation turbulent combustion. Annu. Rev. Fluid Mech., 38, 453-482. https://doi.org/10.1146/annurev.fluid.38.050304.092133Reynolds, O. 2006. On the Dynamical Theory of Incompressible Viscous Fluids and the Determination of the Criterion. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci., 186, 123-164. https://doi.org/10.1098/rsta.1895.0004Roe, P.L. 1986. A basis for the upwind differencing of the two-dimensional unsteady Euler equations, in: Morton, K.W., Baines, M.J. (Eds.), Numerical Methods for Fluid Dynamics II. pp. 59-80.Ruiz-Villanueva, V., Mazzorana, B., Bladé, E., Bürkli, L., Iribarren-Anacona, P., Mao, L., Nakamura, F., Ravazzolo, D., Rickenmann, D., Sanz-Ramos, M., Stoffel, M., Wohl, E. 2019. Characterization of wood-laden flows in rivers. Earth Surf. Process. Landforms, 44, 1694-1709. https://doi.org/10.1002/esp.4603Sagaut, P. 2001. Large Eddy Simulation for incompressible flows. An introduction. Springer-Verlag, Berlin. https://doi.org/10.1007/978-3-662-04416-2Salm, B. 1993. Flow, flow transition and runout distances of flowing avalanches. Ann. Glaciol., 18, 221-226. https://doi.org/10.1017/S0260305500011551Sanz-Ramos, M., Bladé, E., Niñerola, D., Palau-Ibars, A. 2018. Evaluación numérico-experimental del comportamiento histérico del coeficiente de rugosidad de los macrófitos. Ing. del Agua, 22, 109-124. https://doi.org/10.4995/ia.2018.8880Savage, S.B., Hutter, K. 1989. The motion of a finite mass of granular material down a rough incline. J. Fluid Mech., 199, 177-215. https://doi.org/10.1017/S0022112089000340Scheidl, C., Rickenmann, D., McArdell, B.W. 2013. Runout Prediction of Debris Flows and Similar Mass Movements, in: Margottini C., Canuti P., Sassa K. (Eds) Landslide Science and Practice. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31310-3_30Schweizer, J., Jamieson, J.B., Schneebeli, M. 2003. Snow avalanche formation. Rev. Geophys. 41. https://doi.org/10.1029/2002RG000123Smagorinsky, J. 1963. General circulation experiments with the primitive equations. Mon. Weather Rev., 91, 99-164. https://doi.org/10.1175/1520-0493(1963)091%3C0099:GCEWTP%3E2.3.CO;2Tan, W.Y. 1992. Shallow Water Hydrodynamics, first Edit. ed. Elsevier Science.Thibert, E., Bellot, H., Ravanat, X., Ousset, F., Pulfer, G., Naaim, M., Hagenmuller, P., Naaim-Bouvet, F., Faug, T., Nishimura, K., Ito, Y., Baroudi, D., Prokop, A., Schön, P., Soruco, A., Vincent, C., Limam, A., Héno, R. 2015. The full-scale avalanche test-site at Lautaret Pass (French Alps). Cold Reg. Sci. Technol., 115, 30-41. https://doi.org/10.1016/j.coldregions.2015.03.005Toro, E.F. 2009. Riemann Solvers and Numerical Methods for Fluid Dynamics. Springer, Berlin (Heidelberg). https://doi.org/10.1007/b79761Torralba-Conill, A. 2017. Implementation of a two-dimensional model for simulating Snow Avalanches. Universitat Politècnica de Catalunya.Torralba, A., Bladé, E., Oller, P. 2017. Implementació d'un model bidimensional per a simulació d'allaus de neu densa, in: V Jornades Tècniques de Neu i Allaus: Pyrenean Symposium on Snow and Avalanches. Ordino, Andorra.Voellmy, A. 1955. Über die Zerstörungskraft von Lawinen. Schweizerische Bauzeitung 73, 15. http://doi.org/10.5169/seals-61891Wever, N., Vera Valero, C., Techel, F. 2018. Coupled Snow Cover and Avalanche Dynamics Simulations to Evaluate Wet Snow Avalanche Activity. J. Geophys. Res. Earth Surf., 123, 1772-1796. https://doi.org/10.1029/2017JF00451

    Análisis numérico 3D de una rotura de presa utilizando el método VOF y el modelo de turbulencia LES

    Get PDF
    El presente trabajo muestra un análisis numérico 3D del comportamiento del flujo de agua en una rotura de presa a escala de laboratorio. La simulación se realizó utilizando el software de dinámica de fluidos computacional (CFD) basado en el método de volúmenes finitos (FVM) – OpenFOAM. En el modelo numérico la turbulencia es tratada con la metodología LES (Large Eddy Simulation) y el método VOF (Volume of Fluid) es usado para la captura de la superficie libre del agua. Los resultados numéricos obtenidos se comparan con datos experimentales publicados haciendo uso de las variables de calado y presión. Los resultados muestran que la configuración del código numérico 3D es capaz de reproducir satisfactoriamente la variación temporal de las variables en estudio, con tendencias correctas y una alta correlación con los valores experimentales

    Numerical-experimental assessment of the hysterical behaviour of the macrophytes roughness coefficient

    Get PDF
    [EN] The associated problems with the massive growth of macrophytes in the Lower Ebro, has led authorities and managers to explore the possibilities to minimize their negative effects on the water ecosystem and associated water uses by removing them by means of controlled floods. The main goal of the present work is to evaluate the hydraulic behaviour of the macrophytes through numerical simulation (Iber model) and its comparison with field data, in order to design the most efficient flushing flows. For this purpose, roughness coefficient – water depth relations (constant, variable and variable with hysteresis) were used to calibrate the numerical model with field data. It was observed that the best fit occurred the variable type with hysteresis curves (different ascent and descent branches) were used.[ES] La problemática asociada al crecimiento masivo de macrófitos en el Bajo Ebro ha llevado a autoridades y gestores a examinar la posibilidad de paliar los efectos negativos que producen sobre el sistema hídrico, y los usos del agua, mediante la realización de avenidas controladas periódicas que provoquen su remoción. El presente trabajo tiene como objetivo principal evaluar el comportamiento hidráulico de los macrófitos mediante simulación numérica (modelo Iber) y su comparación con datos de campo, con el fin de explorar las mejores opciones posibles para diseñar avenidas controladas más eficaces. Para ello se han empleado diferentes relaciones entre el coeficiente de rugosidad y la altura de agua bajo tres enfoques distintos (constante, variable y variable con histéresis) a fin de calibrar el modelo numérico con los datos de campo. Se ha podido observar que el mejor ajuste se produce cuando dichas curvas son de tipo variable con histéresis (diferente rama de subida que de bajada).Los autores agradecen a ENDESA GENERACIÓN (UPH Ebro-Pirineos) el acceso a los datos de las avenidas controladas, a ENDESA S.A. (Cambio Climático, Biodiversidad, I+D+i ambiental y Recursos Hídricos) la financiación de la primera campaña de campo y los trabajos de modelización numérica (Instituto Flumen, 2016), al Grupo Especial de Actividades Subacuáticas de la Guardia Civil su colaboración en la primera campaña de campo y al Grupo de Investigación de Dinámica Fluvial RIUS (Universidad de Lleida) los datos batimétricos y topográficos facilitados.Sanz-Ramos, M.; Bladé, E.; Niñerola, D.; Palau-Ibars, A. (2018). Evaluación numérico-experimental del comportamiento histérico del coeficiente de rugosidad de los macrófitos. Ingeniería del Agua. 22(3):109-124. doi:10.4995/ia.2018.8880SWORD109124223Arcement, G. J. J. y Schneider, V. R., 1989. Guide for Selecting Manning's Roughness Coefficients for Natural Channels and Floodplains. USGS Water-supply Paper 2339.Anderson, L. W. J. 2003. A review of aquatic weed biology and management research conducted by the United Status Department of Agriculture - Agricultural Research Service. Pest Management Science, 59, 801-813. https://doi.org/10.1002/ps.725Batalla, R. J., Vericat, D. 2009. Hydrological and sediment transport dynamics of flushing flows: implications for management in large Mediterranean rivers. River Research and Applications, 25, 297-314. https://doi.org/10.1002/rra.1160Barnes, H. H., 1987. Roughness Characteristics of Natural Channels. USGS.Berger, C., Wells, S. 2008. Modeling the Effects of Macrophytes on Hydrodynamics. J. Environ. Eng., 134(9), 778-788. https://doi.org/10.1061/(ASCE)0733-9372(2008)134:9(778)Bladé, E., Cea. L., Corestein, G., Escolano, E., Puertas, J., Vázquez-Cendón, E., Dolz, J., Coll, A. 2014a. Iber: herramienta de simulación numérica del flujo en ríos. Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería. CIMNE (Universitat Politècnica de Catalunya), 30(1), 1-10.Bladé, E., Cea, L., Corestien, G. 2014b. Modelización numérica de inundaciones. Ingeniería del Agua, 18(1), 71-82. https://doi.org/10.4995/ia.2014.3144Carr, G. M., Duthie, H. C., Taylor, W. D. 1997. Models of aquatic plant productivity: a review of the factors that influence growth. Aquatic Botany, 59, 195-215. https://doi.org/10.1016/S0304-3770(97)00071-5Cirujano, S., Meco, A., Cezón, K. 2011. Flora acuática: Macrófitos. Jornada de presentación del Tesauro Taxonómico para la clasificación del estado ecológico de las masas de agua continentales, TAXAGUA. Ministerio de Medio Ambiente y Medio Rural y Marino, Madrid, España.CHE. 2008. Vuelo multiespectral para la caracterización de macrófitos. Confederación Hidrográfica del Ebro, expediente 173/08-SNS.CHE. 2010. Asistencia técnica para el control de macrófitos: Mejora de la gestión de los embalses del Bajo Ebro. Entidades colaboradoras: URS, ENDESA, Universidad de Girona y Universitat de Lleida. Zaragoza. 145 pp.CHE. 2015. Memoria Anual 2015 de la Confederación Hidrográfica del Ebro. Ministerio de Agricultura. Alimentación y Medio Ambiente. Centro de Publicaciones (NIPO: 284160028).Dawson, F. H., Robinson, W. N. 1984. Submerged macrophytes and the hydraulic roughness of a lowland chalkstream. Verh. Internat. Verein. Limnol., 22, 1944-1948. https://doi.org/10.1080/03680770.1983.11897598ENDESA. 2016. Estudi granulomètric del tram aigües avall de la Central Hidroelèctrica de Flix. Informe técnico inédito (Eccus, S.L.). Febrero 2016, Lleida, España.Fathi-Moghadam, M., Kashefipour, M., Ebrahimi, N., Emamgholizadeh, S. 2011. Physical and Numerical Modeling of Submerged Vegetation Roughness in Rivers and Flood Plains. Journal of Hydrologic Engineering, 16(11), 858-864. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000381Fathi-Moghadam, M., Drikvandi, K. 2012. Manning Roughness Coefficient for Rivers and Flood Plains with Non-Submerged Vegetation. International Journal of Hydraulic Engineering, 1(1), 1-4. https://doi.org/10.5923/j.ijhe.20120101.01Green, J. C. 2005a. Further comment on drag and reconfiguration of macrophytes. Freshwater Biology, 50, 2162-2166. https://doi.org/10.1111/j.1365-2427.2005.01470.xGreen, J. C. 2005b. Modelling flow resistance in vegetated streams: review and development of new theory. Hydrological Processes, 19, 1245-1259. https://doi.org/10.1002/hyp.5564Green, J. C. 2006. Effect of macrophyte spatial variability on channel resistance. Advances in Water Resources, 29(3), 426-438. https://doi.org/10.1016/j.advwatres.2005.05.010Hui, E., Hu, X. 2010. A study of drag coefficient related with vegetation based on the flume experiment. Journal of Hydrodynamics. 22(3), 329-337. https://doi.org/10.1016/S1001-6058(09)60062-7Instituto Flumen. 2016. Estudio en Modelo numérico de la capacidad erosiva del río Ebro en el tramo Flix-Ascó. Informe técnico inédito (Insituto Flume). Abril 2016, Barcelona, España.Järvelä, J. 2002. Flow resistance of flexible and stiff vegetation: a flume study with natural plants. Journal of Hydrology, 269(1-2) 44-54. https://doi.org/10.1016/S0022-1694(02)00193-2Järvelä, J. 2005. Effect of submerged flexible vegetation on flow structure and resistance. Journal of Hydrology, 307(1-4), 233-241. https://doi.org/10.1016/j.jhydrol.2004.10.013Montesinos, S., Fernández, L. 2009. Determinación de macrófitos en el río Ebro entre Flix y Mora d'Ebre. Teledetección. Agua y Desarrollo Sostenible. Actas del XIII Congreso de Asociación Española de Teledetección, Calatayud, 137-140.Nikora, V., Larned, S., Nikora, N., Debnath, K., Cooper, G., Reid, M. 2008. Hydraulic Resistance due to Aquatic Vegetation in Small Streams: Field Study. Journal of Hydraulic Engineering. 134(9), 1326-1332 [Technical note]. https://doi.org/10.1061/(ASCE)0733-9429(2008)134:9(1326)Palau, A., Batalla, R.J., Rosico, E., Meseguer, A., Vericat, D. 2004. Management of water level and design of flushing floods for environmental river maintenance downstream of the Riba-Roja reservoir (lower Ebro River. NE Spain). HYDRO 2004-A New Era for Hydropower, Porto, Portugal. 18-20 October 2004.Prats, J., Dolz, J., Armengol, J. 2009. Variabilidad temporal en el comportamiento hidráulico del curso inferior del río Ebro. Ingeniería del Agua. 16(4), 259-272. https://doi.org/10.4995/ia.2009.2960Stephan, U., Gutknecht, D. 2002. Hydraulic resistance of submerged flexible vegetation. Journal of Hydrology, 269, 27-43. https://doi.org/10.1016/S0022-1694(02)00192-0Strickler, A. 1923. Beiträge zur Frage der Geschwindigkeitsformel und der Rauhigkeitszahl für Ströme. Kanäle und geschlossene Leitungen. Mitteilungen des Eidg. Amtes für Wasserwirtschaft. Bern. 1923.Tena, A., Ksiazek, L., Vericat, D., Batalla, R. J., 2013. Assessing the geomorphic effects of flushing flow in large regulated river. River Research and Applications 29: 876-890. https://doi.org/10.1002/rra.2572Vericat, D., Batalla, R. J. 2004. Efectos de las presas en la dinámica fluvial del curso bajo del río Ebro. Rev. C. & G., 18(1-2), 37-50.Wu, F., Shen, H., Chou, Y. 1999. Variation of Roughness Coefficients for Unsubmerged and Submerged Vegetation. J. Hydraul. Eng., 125(9), 934-942. https://doi.org/10.1061/(ASCE)0733-9429(1999)125:9(934

    Large wood transport as significant influence on flood risk in a mountain village

    Get PDF
    An important issue that is not considered in most flood risk assessments in mountain villages in Spain is the transport of solids associated with the flood flow, in this case, large wood transport. The transport and deposition of this wood in urban areas may be a potentially worse hazard than the flood flow itself. Despite its importance, large wood is a key ecological element in rivers, so removing it could be an unsuccessful approach. Therefore, efforts are needed in the better understanding of wood transport and deposition in streams. To analyse this process, scenario-based 2D hydrodynamic flood modelling was carried out. Since flood risk assessment has considerable intrinsic uncertainty, probabilistic thinking was complemented by possibilistic thinking, considering worst-case scenarios. This procedure obtained a probabilistic flood map for a 500-year return period. Then, a series of scenarios was built based on wood budget to simulate wood transport and deposition. Results allowed us to identify the main infrastructures sensitive to the passing of large wood and simulate the consequences of their blockage due to wood. The potential damage was estimated as well as the preliminary social vulnerability for all scenarios (with and without wood transport). This work shows that wood transport and deposition during flooding may increase potential damage at critical stream configurations (bridges) by up to 50% and the number of potentially exposed people nearby these areas by up to 35%
    corecore