160 research outputs found

    Peripheral KV7 channels regulate visceral sensory function in mouse and human colon

    Get PDF
    Background\textbf{Background} Chronic visceral pain is a defining symptom of many gastrointestinal disorders. The KV_V7 family (KV_V7.1-KV_V7.5) of voltage-gated potassium channels mediates the M current that regulates excitability in peripheral sensory nociceptors and central pain pathways. Here, we use a combination of immunohistochemistry, gut-nerve electrophysiological recordings in both mouse and human tissues, and single-cell qualitative real-time polymerase chain reaction of gut-projecting sensory neurons, to investigate the contribution of peripheral KV_V7 channels to visceral nociception. Results\textbf{Results} Immunohistochemical staining of mouse colon revealed labelling of KV_V7 subtypes (KV_V7.3 and KV_V7.5) with CGRP around intrinsic enteric neurons of the myenteric plexuses and within extrinsic sensory fibres along mesenteric blood vessels. Treatment with the KV_V7 opener retigabine almost completely abolished visceral afferent firing evoked by the algogen bradykinin, in agreement with significant co-expression of mRNA transcripts by single-cell qualitative real-time polymerase chain reaction for KCNQ subtypes and the B2_2 bradykinin receptor in retrogradely labelled extrinsic sensory neurons from the colon. Retigabine also attenuated responses to mechanical stimulation of the bowel following noxious distension (0-80 mmHg) in a concentration-dependent manner, whereas the KV_V7 blocker XE991 potentiated such responses. In human bowel tissues, KV_V7.3 and KV_V7.5 were expressed in neuronal varicosities co-labelled with synaptophysin and CGRP, and retigabine inhibited bradykinin-induced afferent activation in afferent recordings from human colon. Conclusions\textbf{Conclusions} We show that KV_V7 channels contribute to the sensitivity of visceral sensory neurons to noxious chemical and mechanical stimuli in both mouse and human gut tissues. As such, peripherally restricted KV_V7 openers may represent a viable therapeutic modality for the treatment of gastrointestinal pathologies.This work was supported by an EFIC-Grunenthal grant awarded to Madusha Peiris, CAG/CIHR/CCFR Fellowship to David E Reed, Rosetrees Postdoctoral Grant (A1296) to James RF Hockley/Ewan St. John Smith, Medical Research Council Grant (G0900907) to David C Bulmer and a Wellcome Trust University Award to L Ashley Blackshaw

    P2Y Receptors Sensitize Mouse and Human Colonic Nociceptors

    Get PDF
    Activation of visceral nociceptors by inflammatory mediators contributes to visceral hypersensitivity and abdominal pain associated with many gastrointestinal disorders. Purine and pyrimidine nucleotides (e.g., ATP and UTP) are strongly implicated in this process following their release from epithelial cells during mechanical stimulation of the gut, and from immune cells during inflammation. Actions of ATP are mediated through both ionotropic P2X receptors and metabotropic P2Y receptors. P2X receptor activation causes excitation of visceral afferents; however, the impact of P2Y receptor activation on visceral afferents innervating the gut is unclear. Here we investigate the effects of stimulating P2Y receptors in isolated mouse colonic sensory neurons, and visceral nociceptor fibers in mouse and human nerve-gut preparations. Additionally, we investigate the role of Na(v)1.9 in mediating murine responses. The application of UTP (P2Y(2) and P2Y(4) agonist) sensitized colonic sensory neurons by increasing action potential firing to current injection and depolarizing the membrane potential. The application of ADP (P2Y(1), P2Y(12), and P2Y(13) agonist) also increased action potential firing, an effect blocked by the selective P2Y(1) receptor antagonist MRS2500. UTP or ADP stimulated afferents, including mouse and human visceral nociceptors, in nerve-gut preparations. P2Y(1) and P2Y(2) transcripts were detected in 80% and 56% of retrogradely labeled colonic neurons, respectively. Na(v)1.9 transcripts colocalized in 86% of P2Y(1)-positive and 100% of P2Y(2)-positive colonic neurons, consistent with reduced afferent fiber responses to UTP and ADP in Na(v)1.9(−/−) mice. These data demonstrate that P2Y receptor activation stimulates mouse and human visceral nociceptors, highlighting P2Y-dependent mechanisms in the generation of visceral pain during gastrointestinal disease. SIGNIFICANCE STATEMENT Chronic visceral pain is a debilitating symptom of many gastrointestinal disorders. The activation of pain-sensing nerves located in the bowel wall and their sensitization to physiological stimuli, including bowel movements, underpins the development of such pain, and is associated with mediators released during disease. This work addresses the unstudied role of purine and pyrimidine nucleotides in modulating colonic nociceptors via P2Y receptors using a combination of electrophysiological recordings from human ex vivo samples and a detailed functional study in the mouse. This is the first report to identify colonic purinergic signaling as a function of P2Y receptor activation, in addition to established P2X receptor activity, and the results contribute to our understanding of the development of visceral pain during gastrointestinal disease

    Effects of Obesity and Gastric Bypass Surgery on Nutrient Sensors, Endocrine Cells, and Mucosal Innervation of the Mouse Colon

    Get PDF
    Background: Nutrient-sensing receptors located on enteroendocrine (EEC) cells modulate appetite via detection of luminal contents. Colonic ‘tasting’ of luminal contents may influence changes to appetite observed in obesity and after weight loss induced by bariatric surgery. We assessed the effects of obesity and gastric bypass-induced weight loss on expression of nutrient-sensing G-protein coupled receptors (GPCRs), EEC and enterochromaffin (EC) cells and mucosal innervation. Methods: qPCR and immunohistochemistry were used to study colonic tissue from (a) chow-fed/lean, (b) high-fat fed/obese, (c) Roux-en-Y gastric bypass surgery (RYGB), and (d) calorie restriction-induced weight loss mice. Results: Expression of GPR41, GPR43, GPR40, GPR120, GPR84, GPR119, GPR93 and T1R3 was increased in obese mice. Obesity-induced overexpression of GPR41, 40, 84, and 119 further increased after RYGB whereas GPR120 and T1R3 decreased. RYGB increased TGR5 expression. L-cells, but not EC cells, were increased after RYGB. No differences in mucosal innervation by protein gene product (PGP) 9.5 and GLP-1R-positive nerve fibers were observed. Stimulation of colonic mucosa with GPR41, GPR40, GPR85, GPR119, and TGR5 agonists increased cell activation marker expression. Conclusions: Several nutrient-sensing receptors induced activation of colonic EEC. Profound adaptive changes to the expression of these receptors occur in response to diet and weight loss induced by RYGB or calorie restriction

    Itinerario intelectual y recepción de Zygmunt Bauman en Francia

    Get PDF
    La sociología de Zygmunt Bauman ha tenido una recepción muy diversa en el mundo, dependiendo de los contextos intelectuales y de los periodos de producción del autor. A partir de un estudio de la prolífica obra de Bauman, este artículo se propone describir las distintas etapas de ese itinerario, con el fin de comprender el proceso que condujo a tales disparidades. Este análisis tratará de explicar la tibia recepción del pensador en el ámbito intelectual francés, así como las polémicas que suscitó su trabajo en el mundo académico de habla inglesa. Por último, se busca definir parcialmente la forma y el estado actual de lo que Bauman llamó la "sociología líquida" en años recientes.Zygmunt Bauman's sociology has known very divers receptions, depending on the intellectual contexts and periods of writing. Through a study of the proliferous work of the author, this article aims at describing the different steps of this path, in order to grasp the process leading to such disparities. This analysis will try to explain the feeble reception of the thinker within the French intellectual sphere, as well as the several polemics engendered by his work in the English-speaking academic world. Lastly, this article would like to partially define the form and status of what the author has called "liquid sociology" in recent years

    A novel role for the extracellular matrix glycoprotein-Tenascin-X in gastric function.

    Get PDF
    KEY POINTS: Tenascin X (TNX) functions in the extracellular matrix of skin and joints where it maintains correct intercellular connections and tissue architecture TNX is associated exclusively with vagal-afferent endings and some myenteric neurones in mouse and human stomach, respectively. TNX-deficient mice have accelerated gastric emptying and hypersensitivity of gastric vagal mechanoreceptors that can be normalized by an inhibitor of vagal-afferent sensitivity. Cultured nodose ganglion neurones showed no changes in response to capsaicin, cholecystokinin and potassium chloride in TNX-deficient mice. TNX-deficient patients have upper gastric dysfunction consistent with those in a mouse model. Our translational studies suggest that abnormal gastric sensory function may explain the upper gut symptoms present in TNX deficient patients, thus making it important to study gastric physiology. TNX deficiency should be evaluated routinely in patients with connective tissue abnormalities, which will enable a better understanding of its role and allow targeted treatment. For example, inhibitors of vagal afferents-baclofen could be beneficial in patients. These hypotheses need confirmation via targeted clinical trials. ABSTRACT: Tenascin-X (TNX) is a glycoprotein that regulates tissue structure via anti-adhesive interactions with collagen in the extracellular matrix. TNX deficiency causes a phenotype similar to hypermobility Ehlers-Danlos syndrome involving joint hypermobility, skin hyperelasticity, pain and gastrointestinal dysfunction. Previously, we have shown that TNX is required for neural control of the bowel by a specific subtype of mainly cholinergic enteric neurones and regulates sprouting and sensitivity of nociceptive sensory endings in mouse colon. These findings correlate with symptoms shown by TNX-deficient patients and mice. We aimed to identify whether TNX is similarly present in neural structures found in mouse and human gastric tissue. We then determined whether TNX has a functional role, specifically in gastric motor and sensory function and nodose ganglia neurones. We report that TNX was present in calretinin-immunoreactive extrinsic nerve endings in mouse and human stomach. TNX deficient mice had accelerated gastric emptying and markedly increased vagal afferent responses to gastric distension that could be rescued with GABAB receptor agonist. There were no changes in nodose ganglia excitability in TNX deficient mice, suggesting that vagal afferent responses are probably the result of altered peripheral mechanosensitivity. In TNXB-deficient patients, significantly greater symptoms of reflux, indigestion and abdominal pain were reported. In the present study, we report the first role for TNX in gastric function. Further studies are required in TNX deficient patients to determine whether symptoms can be relieved using GABAB agonists

    Mechanosensitive Enteric Neurons in the Myenteric Plexus of the Mouse Intestine

    Get PDF
    BACKGROUND: Within the gut the autonomous enteric nervous system (ENS) is able to sense mechanical stimuli and to trigger gut reflex behaviour. We previously proposed a novel sensory circuit in the ENS which consists of multifunctional rapidly adapting mechanosensitive enteric neurons (RAMEN) in the guinea pig. The aim of this study was to validate this concept by studying its applicability to other species or gut regions. METHODOLOGY/PRINCIPAL FINDINGS: We deformed myenteric ganglia in the mouse small and large intestine and recorded spike discharge using voltage sensitive dye imaging. We also analysed expression of markers hitherto proposed to label mouse sensory myenteric neurons in the ileum (NF145kD) or colon (calretinin). RAMEN constituted 22% and 15% of myenteric neurons per ganglion in the ileum and colon, respectively. They encoded dynamic rather than sustained deformation. In the colon, 7% of mechanosensitive neurons fired throughout the sustained deformation, a behaviour typical for slowly adapting echanosensitive neurons (SAMEN). RAMEN and SAMEN responded directly to mechanical deformation as their response remained unchanged after synaptic blockade in low Ca(++)/high Mg(++). Activity levels of RAMEN increased with the degree of ganglion deformation. Recruitment of more RAMEN with stronger stimuli may suggest low and high threshold RAMEN. The majority of RAMEN were cholinergic but most lacked expression of NF145kD or calretinin. CONCLUSIONS/SIGNIFICANCE: We showed for the first time that fundamental properties of mechanosensitive enteric neurons, such as firing pattern, encoding of dynamic deformation, cholinergic phenotype and their proportion, are conserved across species and regions. We conclude that RAMEN are important for mechanotransduction in the ENS. They directly encode dynamic changes in force as their firing frequency is proportional to the degree of deformation of the ganglion they reside in. The additional existence of SAMEN in the colon is likely an adaptation to colonic motor patterns which consist of phasic and tonic contractions

    Increased 5-HT3-mediated signalling in pelvic afferent neurons from mice deficient in P2X2 and/or P2X3 receptor subunits

    Get PDF
    Extracellular ATP and 5-hydroxytryptamine (5-HT) are both involved in visceral sensory pathways by interacting with P2X and 5-HT3 receptors, respectively. We have investigated the changes in P2X and 5-HT3-mediated signalling in pelvic afferent neurons in mice deficient in P2X2 and/or P2X3 subunits by whole-cell recording of L6–S2 dorsal root ganglion (DRG) neurons and by multi-unit recording of pelvic afferents of the colorectum. In wildtype DRG neurons, ATP evoked transient, sustained or mixed (biphasic) inward currents. Transient currents were absent in P2X3−/− neurons, whereas sustained currents were absent in P2X2−/− DRG neurons. Neither transient nor sustained currents were observed following application of ATP or α,β-methylene ATP (α,β-meATP) in P2X2/P2X3Dbl−/− DRG neurons. 5-HT was found to induce a fast inward current in 63% of DRG neurons from wildtype mice, which was blocked by tropisetron, a 5-HT3 receptor antagonist. The percentage of DRG neurons responding to 5-HT was significantly increased in P2X 2−/−, P2X3−/− and P2X2/P2X3Dbl−/− mice, and the amplitude of 5-HT response was significantly increased in P2X2/P2X3Dbl−/− mice. The pelvic afferent response to colorectal distension was attenuated in P2X2/P2X3Dbl−/− mice, but the response to serosal application of 5-HT was enhanced. Furthermore, tropisetron resulted in a greater reduction in pelvic afferent responses to colorectal distension in the P2X2/P2X3Dbl−/− preparations. These data suggest that P2X receptors containing the P2X2 and/or P2X3 subunits mediate purinergic activation of colorectal afferents and that 5-HT signalling in pelvic afferent neurons is up-regulated in mice lacking P2X2 or P2X3 receptor genes. This effect is more pronounced when both subunits are absent

    Primary irritant and delayed-contact hypersensitivity reactions to the freshwater cyanobacterium Cylindrospermopsis raciborskii and its associated toxin cylindrospermopsin

    Get PDF
    BACKGROUND: Freshwater cyanobacteria are common inhabitants of recreational waterbodies throughout the world; some cyanobacteria can dominate the phytoplankton and form blooms, many of which are toxic. Numerous reports in the literature describe pruritic skin rashes after recreational or occupational exposure to cyanobacteria, but there has been little research conducted on the cutaneous effects of cyanobacteria. Using the mouse ear swelling test (MEST), we sought to determine whether three toxin-producing cyanobacteria isolates and the purified cyanotoxin cylindrospermopsin produced delayed-contact hypersensitivity reactions. METHODS: Between 8 and 10 female Balb/c mice in each experiment had test material applied to depilated abdominal skin during the induction phase and 10 or 11 control mice had vehicle only applied to abdominal skin. For challenge (day 10) and rechallenge (day 17), test material was applied to a randomly-allocated test ear; vehicle was applied to the other ear as a control. Ear thickness in anaesthetised mice was measured with a micrometer gauge at 24 and 48 hours after challenge and rechallenge. Ear swelling greater than 20% in one or more test mice is considered a positive response. Histopathology examination of ear tissues was conducted by independent examiners. RESULTS: Purified cylindrospermopsin (2 of 9 test mice vs. 0 of 5 control mice; p = 0.51) and the cylindrospermopsin-producing cyanobacterium C. raciborskii (8 of 10 test mice vs. 0 of 10 control mice; p = 0.001) were both shown to produce hypersensitivity reactions. Irritant reactions were seen on abdominal skin at induction. Two other toxic cyanobacteria (Microcystis aeruginosa and Anabaena circinalis) did not generate any responses using this model. Histopathology examinations to determine positive and negative reactions in ear tissues showed excellent agreement beyond chance between both examiners (κ = 0.83). CONCLUSION: The irritant properties and cutaneous sensitising potential of cylindrospermopsin indicate that these toxicological endpoints should be considered by public health advisors and reservoir managers when setting guidelines for recreational exposure to cyanobacteria

    The Cis-regulatory Logic of the Mammalian Photoreceptor Transcriptional Network

    Get PDF
    The photoreceptor cells of the retina are subject to a greater number of genetic diseases than any other cell type in the human body. The majority of more than 120 cloned human blindness genes are highly expressed in photoreceptors. In order to establish an integrative framework in which to understand these diseases, we have undertaken an experimental and computational analysis of the network controlled by the mammalian photoreceptor transcription factors, Crx, Nrl, and Nr2e3. Using microarray and in situ hybridization datasets we have produced a model of this network which contains over 600 genes, including numerous retinal disease loci as well as previously uncharacterized photoreceptor transcription factors. To elucidate the connectivity of this network, we devised a computational algorithm to identify the photoreceptor-specific cis-regulatory elements (CREs) mediating the interactions between these transcription factors and their target genes. In vivo validation of our computational predictions resulted in the discovery of 19 novel photoreceptor-specific CREs near retinal disease genes. Examination of these CREs permitted the definition of a simple cis-regulatory grammar rule associated with high-level expression. To test the generality of this rule, we used an expanded form of it as a selection filter to evolve photoreceptor CREs from random DNA sequences in silico. When fused to fluorescent reporters, these evolved CREs drove strong, photoreceptor-specific expression in vivo. This study represents the first systematic identification and in vivo validation of CREs in a mammalian neuronal cell type and lays the groundwork for a systems biology of photoreceptor transcriptional regulation
    • …
    corecore