371 research outputs found

    Ground man-machine interfaces for orbiter checkout

    Get PDF
    The challenge of the concept of a reusable, cargo carrying space vehicle, and how those challenges were met for the Space Shuttle are discussed. The complexity of the vehicle, the ground support systen, the onboard computer system, ramifications of a reusable vehicle, and the turn around objectives for Shuttle flights are outlined. The Apollo and the space transportation system (STS) are compared

    Preliminary Results of an Experimental Investigation of the Qu Superconducting Heat Pipe

    Get PDF
    This note on preliminary results of our evaluation of the so-called Qu Tube is prompted in part by recent concerns expressed to the authors by some researchers regarding the performance characteristics of the superconducting, solid-state heat pipe as described in the patents, or on the company's websites. Briefly, the company's claims include: a new type of heat transfer mechanism that is a form of solid state thermal superconductivity, which results in an effective thermal conductivity of the order of tens of thousands of times that of an equivalent solid silver bar, or, tens to hundreds of times that of liquid - vapor heat pipes. The company's website also refers to tests conducted by Stanford Research Institute that substantiate these claims, but the report is apparently not publicly available. We are conducting an investigation of the Qu Tube under a NASA Grant, and in general find that these claims have merit, but our study is not yet complete. We present some of our preliminary results in part to show that it would not be imprudent to conduct such studies, especially for possible future applications requiring exceptional thermal management performance capabilities. Working with HiTek Services, we originally acquired several Qu Tubes, including 17" long, 5/16" diameter copper tubes, one that is 7 7/8" long, 3/16" diameter, and one that is 4" long, 1" diameter. We subjected the smaller tubes to various exploratory tests, including a transient test with electrical band heaters, boiling water tests, and a series of steady state tests with electrical band heaters heating one end with free convective cooling along the remainder of the length. All results indicate a very high thermal conductivity, but the length of these tubes limited our ability to obtain accurate data on temperature gradients, necessary to determine the effective thermal conductivity. We then acquired nine Qu Tubes that are 10' long, 5/16" diameter, and we have recently conducted initial tests, which further support the claims of exceptional thermal conductivity

    Performance Evaluation of Automated Static Analysis Tools

    Get PDF
    Automated static analysis tools can perform efficient thorough checking of important properties of, and extract and summarize critical information about, a source program. This paper evaluates three open-source static analysis tools; Flawfinder, Cppcheck and Yasca. Each tool is analyzed with regards to usability, IDE integration, performance, and accuracy. Special emphasis is placed on the integration of these tools into the development environment to enable analysis during all phases of development as well as to enable extension of rules and other improvements within the tools. It is shown that Flawfinder be the easiest to modify and extend, Cppcheck be inviting to novices, and Yasca be the most accurate and versatile

    Unbound states of 32Cl and the 31S(p,\gamma)32Cl reaction rate

    Get PDF
    The 31S(p,\gamma)32Cl reaction is expected to provide the dominant break-out path from the SiP cycle in novae and is important for understanding enrichments of sulfur observed in some nova ejecta. We studied the 32S(3He,t)32Cl charge-exchange reaction to determine properties of proton-unbound levels in 32Cl that have previously contributed significant uncertainties to the 31S(p,\gamma)32Cl reaction rate. Measured triton magnetic rigidities were used to determine excitation energies in 32Cl. Proton-branching ratios were obtained by detecting decay protons from unbound 32Cl states in coincidence with tritons. An improved 31S(p,\gamma)32Cl reaction rate was calculated including robust statistical and systematic uncertainties

    Direct reaction measurements with a 132Sn radioactive ion beam

    Full text link
    The (d,p) neutron transfer and (d,d) elastic scattering reactions were measured in inverse kinematics using a radioactive ion beam of 132Sn at 630 MeV. The elastic scattering data were taken in a region where Rutherford scattering dominated the reaction, and nuclear effects account for less than 8% of the cross section. The magnitude of the nuclear effects was found to be independent of the optical potential used, allowing the transfer data to be normalized in a reliable manner. The neutron-transfer reaction populated a previously unmeasured state at 1363 keV, which is most likely the single-particle 3p1/2 state expected above the N=82 shell closure. The data were analyzed using finite range adiabatic wave calculations and the results compared with the previous analysis using the distorted wave Born approximation. Angular distributions for the ground and first excited states are consistent with the previous tentative spin and parity assignments. Spectroscopic factors extracted from the differential cross sections are similar to those found for the one neutron states beyond the benchmark doubly-magic nucleus 208Pb.Comment: 22 pages, 7 figure

    The Single-Particle Structure of Neutron-Rich Nuclei of Astrophysical Interest at the Ornl Hribf

    Full text link
    The rapid nuetron-capture process (r process) produces roughly half of the elements heavier than iron. The path and abundances produced are uncertain, however, because of the lack of nuclear strucure information on important neutron-rich nuclei. We are studying nuclei on or near the r-process path via single-nucleon transfer reactions on neutron-rich radioactive beams at ORNL's Holifield Radioactive Ion Beam Facility (HRIBF). Owing to the difficulties in studying these reactions in inverse kinematics, a variety of experimental approaches are being developed. We present the experimental methods and initial results.Comment: Proceedings of the Third International Conference on Fission and Properties of Neutron-Rich Nucle

    Reactions of a Be-10 beam on proton and deuteron targets

    Get PDF
    The extraction of detailed nuclear structure information from transfer reactions requires reliable, well-normalized data as well as optical potentials and a theoretical framework demonstrated to work well in the relevant mass and beam energy ranges. It is rare that the theoretical ingredients can be tested well for exotic nuclei owing to the paucity of data. The halo nucleus Be-11 has been examined through the 10Be(d,p) reaction in inverse kinematics at equivalent deuteron energies of 12,15,18, and 21.4 MeV. Elastic scattering of Be-10 on protons was used to select optical potentials for the analysis of the transfer data. Additionally, data from the elastic and inelastic scattering of Be-10 on deuterons was used to fit optical potentials at the four measured energies. Transfers to the two bound states and the first resonance in Be-11 were analyzed using the Finite Range ADiabatic Wave Approximation (FR-ADWA). Consistent values of the spectroscopic factor of both the ground and first excited states were extracted from the four measurements, with average values of 0.71(5) and 0.62(4) respectively. The calculations for transfer to the first resonance were found to be sensitive to the size of the energy bin used and therefore could not be used to extract a spectroscopic factor.Comment: 16 Pages, 10 figure

    New Features in the Computational Infrastructure for Nuclear Astrophysics

    Get PDF
    A Computational Infrastructure for Nuclear Astrophysics has been developed to streamline the inclusion of the latest nuclear physics data in astrophysics simulations. The infrastructure consists of a platform-independent suite of computer codes that are freely available online at http://nucastrodata.org. The newest features of, and future plans for, this software suite are given. © Copyright owned by the author(s)

    Two-neutron transfer reaction mechanisms in 12^{12}C(6^6He,4^{4}He)14^{14}C using a realistic three-body 6^{6}He model

    Get PDF
    The reaction mechanisms of the two-neutron transfer reaction 12^{12}C(6^6He,4^4He) have been studied at 30 MeV at the TRIUMF ISAC-II facility using the SHARC charged-particle detector array. Optical potential parameters have been extracted from the analysis of the elastic scattering angular distribution. The new potential has been applied to the study of the transfer angular distribution to the 22+^+_2 8.32 MeV state in 14^{14}C, using a realistic 3-body 6^6He model and advanced shell model calculations for the carbon structure, allowing to calculate the relative contributions of the simultaneous and sequential two-neutron transfer. The reaction model provides a good description of the 30 MeV data set and shows that the simultaneous process is the dominant transfer mechanism. Sensitivity tests of optical potential parameters show that the final results can be considerably affected by the choice of optical potentials. A reanalysis of data measured previously at 18 MeV however, is not as well described by the same reaction model, suggesting that one needs to include higher order effects in the reaction mechanism.Comment: 9 pages, 9 figure
    • …
    corecore