2,190 research outputs found

    Molecular gyroscopes and biological effects of weak ELF magnetic fields

    Full text link
    Extremely-low-frequency magnetic fields are known to affect biological systems. In many cases, biological effects display `windows' in biologically effective parameters of the magnetic fields: most dramatic is the fact that relatively intense magnetic fields sometimes do not cause appreciable effect, while smaller fields of the order of 10--100 ÎŒ\muT do. Linear resonant physical processes do not explain frequency windows in this case. Amplitude window phenomena suggest a nonlinear physical mechanism. Such a nonlinear mechanism has been proposed recently to explain those `windows'. It considers quantum-interference effects on protein-bound substrate ions. Magnetic fields cause an interference of ion quantum states and change the probability of ion-protein dissociation. This ion-interference mechanism predicts specific magnetic-field frequency and amplitude windows within which biological effects occur. It agrees with a lot of experiments. However, according to the mechanism, the lifetime Γ−1\Gamma^{-1} of ion quantum states within a protein cavity should be of unrealistic value, more than 0.01 s for frequency band 10--100 Hz. In this paper, a biophysical mechanism has been proposed that (i) retains the attractive features of the ion interference mechanism and (ii) uses the principles of gyroscopic motion and removes the necessity to postulate large lifetimes. The mechanism considers dynamics of the density matrix of the molecular groups, which are attached to the walls of protein cavities by two covalent bonds, i.e., molecular gyroscopes. Numerical computations have shown almost free rotations of the molecular gyros. The relaxation time due to van der Waals forces was about 0.01 s for the cavity size of 28 angstr\"{o}ms.Comment: 10 pages, 7 figure

    Accretion Disks and Dynamos: Toward a Unified Mean Field Theory

    Full text link
    Conversion of gravitational energy into radiation in accretion discs and the origin of large scale magnetic fields in astrophysical rotators have often been distinct topics of research. In semi-analytic work on both problems it has been useful to presume large scale symmetries, necessarily resulting in mean field theories. MHD turbulence makes the underlying systems locally asymmetric and nonlinear. Synergy between theory and simulations should aim for the development of practical mean field models that capture essential physics and can be used for observational modeling. Mean field dynamo (MFD) theory and alpha-viscosity accretion theory exemplify such ongoing pursuits. 21st century MFD theory has more nonlinear predictive power compared to 20th century MFD theory, whereas accretion theory is still in a 20th century state. In fact, insights from MFD theory are applicable to accretion theory and the two are artificially separated pieces of what should be a single theory. I discuss pieces of progress that provide clues toward a unified theory. A key concept is that large scale magnetic fields can be sustained via local or global magnetic helicity fluxes or via relaxation of small scale magnetic fluctuations, without the kinetic helicity driver of 20th century textbooks. These concepts may help explain the formation of large scale fields that supply non-local angular momentum transport via coronae and jets in a unified theory of accretion and dynamos. In diagnosing the role of helicities and helicity fluxes in disk simulations, each disk hemisphere should be studied separately to avoid being misled by cancelation that occurs as a result of reflection asymmetry. The fraction of helical field energy in disks is expected to be small compared to the total field in each hemisphere as a result of shear, but can still be essential for large scale dynamo action.Comment: For the Proceedings of the Third International Conference and Advanced School "Turbulent Mixing and Beyond," TMB-2011 held on 21 - 28 August 2011 at the Abdus Salam International Centre for Theoretical Physics, Trieste, http://users.ictp.it/~tmb/index2011.html Italy, To Appear in Physica Scripta (corrected small items to match version in print

    Electron-Positron Jets from a Critically Magnetized Black Hole

    Full text link
    The curved spacetime surrounding a rotating black hole dramatically alters the structure of nearby electromagnetic fields. The Wald field which is an asymptotically uniform magnetic field aligned with the angular momentum of the hole provides a convenient starting point to analyze the effects of radiative corrections on electrodynamics in curved spacetime. Since the curvature of the spacetime is small on the scale of the electron's Compton wavelength, the tools of quantum field theory in flat spacetime are reliable and show that a rotating black hole immersed in a magnetic field approaching the quantum critical value of Bk=m2c3/(eℏ)≈4.4×1013B_k=m^2 c^3/(e\hbar) \approx 4.4 \times 10^{13}~G ≈1.3×10−11\approx 1.3\times10^{-11} cm−1^{-1} is unstable. Specifically, a maximally rotating three-solar-mass black hole immersed in a magnetic field of 2.3×10122.3 \times 10^{12}~G would be a copious producer of electron-positron pairs with a luminosity of 3×10523 \times 10^{52} erg s−1^{-1}.Comment: 10 pages, 6 figures, submitted to Phys. Rev.

    Mathematical stories: Why do more boys than girls choose to study mathematics at AS-level in England?

    Get PDF
    Copyright @ 2005 Taylor & FrancisIn this paper I address the question: How is it that people come to choose mathematics and in what ways is this process gendered? I draw on the findings of a qualitative research study involving interviews with 43 young people all studying mathematics in post-compulsory education in England. Working within a post-structuralist framework, I argue that gender is a project and one that is achieved in interaction with others. Through a detailed reading of Toni and Claudia’s stories I explore the tensions for young women who are engaging in mathematics, something that is discursively inscribed as masculine, while (understandably) being invested in producing themselves as female. I conclude by arguing that seeing ‘doing mathematics’ as ‘doing masculinity’ is a productive way of understanding why mathematics is so male dominated and by looking at the implications of this understanding for gender and mathematics reform work.This work is funded by the ESR

    The Chandra X-ray Survey of Planetary Nebulae (ChanPlaNS): Probing Binarity, Magnetic Fields, and Wind Collisions

    Full text link
    We present an overview of the initial results from the Chandra Planetary Nebula Survey (ChanPlaNS), the first systematic (volume-limited) Chandra X-ray Observatory survey of planetary nebulae (PNe) in the solar neighborhood. The first phase of ChanPlaNS targeted 21 mostly high-excitation PNe within ~1.5 kpc of Earth, yielding 4 detections of diffuse X-ray emission and 9 detections of X-ray-luminous point sources at the central stars (CSPNe) of these objects. Combining these results with those obtained from Chandra archival data for all (14) other PNe within ~1.5 kpc that have been observed to date, we find an overall X-ray detection rate of ~70%. Roughly 50% of the PNe observed by Chandra harbor X-ray-luminous CSPNe, while soft, diffuse X-ray emission tracing shocks formed by energetic wind collisions is detected in ~30%; five objects display both diffuse and point-like emission components. The presence of X-ray sources appears correlated with PN density structure, in that molecule-poor, elliptical nebulae are more likely to display X-ray emission (either point-like or diffuse) than molecule-rich, bipolar or Ring-like nebulae. All but one of the X-ray point sources detected at CSPNe display X-ray spectra that are harder than expected from hot (~100 kK) central star photospheres, possibly indicating a high frequency of binary companions to CSPNe. Other potential explanations include self-shocking winds or PN mass fallback. Most PNe detected as diffuse X-ray sources are elliptical nebulae that display a nested shell/halo structure and bright ansae; the diffuse X-ray emission regions are confined within inner, sharp-rimmed shells. All sample PNe that display diffuse X-ray emission have inner shell dynamical ages <~5x10^3 yr, placing firm constraints on the timescale for strong shocks due to wind interactions in PNe.Comment: 41 pages, 6 figures; submitted to the Astronomical Journa

    Absence of a metallic phase in random-bond Ising models in two dimensions: applications to disordered superconductors and paired quantum Hall states

    Full text link
    When the two-dimensional random-bond Ising model is represented as a noninteracting fermion problem, it has the same symmetries as an ensemble of random matrices known as class D. A nonlinear sigma model analysis of the latter in two dimensions has previously led to the prediction of a metallic phase, in which the fermion eigenstates at zero energy are extended. In this paper we argue that such behavior cannot occur in the random-bond Ising model, by showing that the Ising spin correlations in the metallic phase violate the bound on such correlations that results from the reality of the Ising couplings. Some types of disorder in spinless or spin-polarized p-wave superconductors and paired fractional quantum Hall states allow a mapping onto an Ising model with real but correlated bonds, and hence a metallic phase is not possible there either. It is further argued that vortex disorder, which is generic in the fractional quantum Hall applications, destroys the ordered or weak-pairing phase, in which nonabelian statistics is obtained in the pure case.Comment: 13 pages; largely independent of cond-mat/0007254; V. 2: as publishe

    Turbulent cross-helicity in the mean-field solar dynamo problem

    Full text link
    We study the dynamical and statistical properties of turbulent cross-helicity (correlation of the aligned fluctuating velocity and magnetic field components). We derive an equation governing generation and evolution of the turbulent cross-helicity and discuss its meaning for the dynamo. Using symmetry properties of the problem we suggest a general expression for the turbulent cross-helicity pseudo-scalar and compute the turbulent coefficients in this expression. Effects of the density stratification, large-scale magnetic fields, differential rotation and turbulent convection are taken into account. We investigate the relative contribution of these effects to the cross-helicity evolution for two kinds of dynamo models of the solar cycle including a distributed mean-field model and a flux-transport dynamo model. We show that the contribution from the density stratification follows the evolution of the radial magnetic field, while large-scale electric currents produce a more complicated pattern of the cross-helicity of the comparable magnitude. We suggest that the results of observational analysis of the cross-helicity will depend on the averaging scales. Our results show that the pattern of the cross-helicity evolution strongly depends on details of the dynamo mechanism. Thus, we anticipate that direct observations of the cross-helicity on the Sun may serve for the diagnostic purpose of the solar dynamo process.Comment: 30 pages, 3 figures (accepted for ApJ

    Detection of a Corrugated Velocity Pattern in the Spiral Galaxy NGC 5427

    Get PDF
    Here we report the detection, in Halpha emission, of a radial corrugation in the velocity field of the spiral galaxy NGC 5427. The central velocity of the Halpha line displays coherent, wavy-like variations in the vicinity of the spiral arms. The spectra along three different arm segments show that the maximum amplitude of the sinusoidal line variations are displaced some 500 pc from the central part of the spiral arms. The peak blueshifted velocities appear some 500 pc upstream the arm, whereas the peak redshifted velocities are located some 500 pc downstream the arm. This kinematical behavior is similar to the one expected in a galactic bore generated by the interaction of a spiral density wave with a thick gaseous disk, as recently modeled by Martos & Cox (1998).Comment: Accepted for publication in Ap
    • 

    corecore