99 research outputs found

    Computational studies explain the importance of two different substituents on the chelating bis(amido) ligand for transfer hydrogenation by bifunctional Cp*Rh(III) catalysts

    Get PDF
    A computational approach (DFT-B3PW91) is used to address previous experimental studies (Chem. Commun. 2009, 6801) that showed that transfer hydrogenation of a cyclic imine by Et3N·HCO2H in dichloromethane catalyzed by 16-electron bifunctional Cp*Rh III(XNC6H4NX') is faster when XNC 6H4NX' = TsNC6H4NH than when XNC6H4NX' = HNC6H4NH or TsNC 6H4NTs (Cp* = η5-C5Me 5, Ts = toluenesulfonyl). The computational study also considers the role of the formate complex observed experimentally at low temperature. Using a model of the experimental complex in which Cp* is replaced by Cp and Ts by benzenesulfonyl (Bs), the calculations for the systems in gas phase reveal that dehydrogenation of formic acid generates CpRhIIIH(XNC 6H4NX'H) via an outer-sphere mechanism. The 16-electron Rh complex + formic acid are shown to be at equilibrium with the formate complex, but the latter lies outside the pathway for dehydrogenation. The calculations reproduce the experimental observation that the transfer hydrogenation reaction is fastest for the nonsymmetrically substituted complex CpRh III(XNC6H4NX') (X = Bs and X' = H). The effect of the linker between the two N atoms on the pathway is also considered. The Gibbs energy barrier for dehydrogenation of formic acid is calculated to be much lower for CpRhIII(XNCHPhCHPhNX') than for CpRh III(XNC6H4NX') for all combinations of X and X'. The energy barrier for hydrogenation of the imine by the rhodium hydride complex is much higher than the barrier for hydride transfer to the corresponding iminium ion, in agreement with mechanisms proposed for related systems on the basis of experimental data. Interpretation of the results by MO and NBO analyses shows that the most reactive catalyst for dehydrogenation of formic acid contains a localized Rh-NH π-bond that is associated with the shortest Rh-N distance in the corresponding 16-electron complex. The asymmetric complex CpRhIII(BsNC6H4NH) is shown to generate a good bifunctional catalyst for transfer hydrogenation because it combines an electrophilic metal center and a nucleophilic NH group

    The effects of fruit smoothies on enamel erosion

    Get PDF
    Objectives: This prospective, randomised in vitro study was to investigate the pH and titratable acidity of fruit smoothie drinks and to assess the effect of these drinks on enamel erosion. Method: Fifty enamel slabs were divided into five groups which were allocated to the sample solutions groups: Innocent® smoothie strawberries and bananas (SB), Innocent® smoothie mangoes and passion fruit (MP) and Diet Coke. Distilled deionised water (DD) was used as negative control and citric acid 0.3 % as positive control. All the slabs were subjected to a 21-day pH cycling regime involving 2 min of immersions, five times a day with appropriate remineralization periods in between. Measurement of surface loss was assessed using profilometry. Independent sample t tests were used to compare mean. Results: The titratable acidity for both test smoothies were 3.5-4 times more than that needed to neutralise Diet Coke and citric acid 0.3 %. The pH of SB, MP smoothie and Diet Coke was found to be 3.73, 3.59 and 2.95, respectively. MP smoothie caused the greatest amount of surface loss followed by Diet Coke. Both smoothies were found to cause significant surface loss. MP smoothie resulted in significantly higher surface loss compared with MB smoothie and citric acid 3 %. Conclusion: The smoothies tested were acidic and had high titratable acidity. They produced a significant erosion of enamel in vitro. The results of this study suggest that there should be increased awareness of the erosive effects of smoothies especially as their consumption seems to be on the increase

    The Role of Hospitalists in the Acute Care of Stroke Patients

    Get PDF
    Stroke care has become progressively more complicated with advances in therapies necessitating timely intervention. There are multiple potential providers of stroke care, which traditionally has been the province of general neurologists and primary care physicians. These new players, be they vascular neurologists, neurohospitalists, internal medicine hospitalists, or neurocritical care physicians, at the bedside or at a distance, are poised to make a significant impact on our care of stroke patients. The collaborative model of care may be or become the most prevalent as physicians apply their distinct skill sets to the complex care of inpatients with cerebrovascular disease

    Perceiving Nasal Patency through Mucosal Cooling Rather than Air Temperature or Nasal Resistance

    Get PDF
    Adequate perception of nasal airflow (i.e., nasal patency) is an important consideration for patients with nasal sinus diseases. The perception of a lack of nasal patency becomes the primary symptom that drives these patients to seek medical treatment. However, clinical assessment of nasal patency remains a challenge because we lack objective measurements that correlate well with what patients perceive.The current study examined factors that may influence perceived patency, including air temperature, humidity, mucosal cooling, nasal resistance, and trigeminal sensitivity. Forty-four healthy subjects rated nasal patency while sampling air from three facial exposure boxes that were ventilated with untreated room air, cold air, and dry air, respectively. In all conditions, air temperature and relative humidity inside each box were recorded with sensors connected to a computer. Nasal resistance and minimum airway cross-sectional area (MCA) were measured using rhinomanometry and acoustic rhinometry, respectively. General trigeminal sensitivity was assessed through lateralization thresholds to butanol. No significant correlation was found between perceived patency and nasal resistance or MCA. In contrast, air temperature, humidity, and butanol threshold combined significantly contributed to the ratings of patency, with mucosal cooling (heat loss) being the most heavily weighted predictor. Air humidity significantly influences perceived patency, suggesting that mucosal cooling rather than air temperature alone provides the trigeminal sensation that results in perception of patency. The dynamic cooling between the airstream and the mucosal wall may be quantified experimentally or computationally and could potentially lead to a new clinical evaluation tool

    Providing perioperative care for patients with hip fractures

    Get PDF
    Providing perioperative care for patients with hip fractures can present major challenges for the anaesthesiologist. These patients often have multiple comorbidities, the deterioration of any one of which may have precipitated the fall. A careful balance has to be achieved between minimising the time before operation and spending time to optimise their medical status. This review will present insights into preoperative patient assessment and optimization in this group of patients from the anaesthesiologists’ perspective. In particular, it will highlight important medical issues of concern that may alter anaesthetic risks and management. With a greater understanding of what these issues are, potentially a more prompt and integrated approach to managing these patients may be made. Hopefully, this would result in minimising last minute cancellations due to medical reasons for these patients

    TPH2 Gene Polymorphisms and Major Depression – A Meta-Analysis

    Get PDF
    BACKGROUND: Tryptophan hydroxylase-2 (TPH2) is the rate-limiting enzyme in the synthetic pathway for brain serotonin and is considered key factor for maintaining normal serotonin transmission in the central neuron system (CNS). Gene-disease association studies have reported a relationship between TPH2 and major depressive disorder (MDD) in different populations, however subsequent studies have produced contradictory results. OBJECTIVES: We performed a systematic overview and a meta-analysis with all available data up-to-date. METHODS: We scrutinized PubMed, Embase, HuGNet and China National Knowledge Infrastructure (CNKI ) and last update was held on October 2011. We also searched the manuscripts and the supplementary documents of the published genome-wide association studies in the field. Effect sizes of independent loci that have been studied in more than 3 articles were synthesized using fixed and random effects models. RESULTS: We found 27 eligible articles that studied a total of 74 single nucleotide polymorphisms (SNPs). Finally, 12 independent loci were included in the meta-analysis. The synthesis of the data shown that two SNPs (rs4570625 and rs17110747) were associated with MDD using fixed effects models. SNP rs4570625 had low heterogeneity and remained significant using the more conservative random effects calculations with a summary OR = 0.83 (95% CI: 0.73-0.96). CONCLUSION: The current study identified a SNP (rs4570625) with strong epidemiological credibility; however more studies are required to provide robust evidence for other weak associations

    Upregulation of CRABP1 in human neuroblastoma cells overproducing the Alzheimer-typical Aβ42 reduces their differentiation potential

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Alzheimer's disease (AD) is characterized by neurodegeneration and changes in cellular processes, including neurogenesis. Proteolytic processing of the amyloid precursor protein (APP) plays a central role in AD. Owing to varying APP processing, several β-amyloid peptides (Aβ) are generated. In contrast to the form with 40 amino acids (Aβ<sub>40</sub>), the variant with 42 amino acids (Aβ<sub>42</sub>) is thought to be the pathogenic form triggering the pathological cascade in AD. While total-Aβ effects have been studied extensively, little is known about specific genome-wide effects triggered by Aβ<sub>42 </sub>or Aβ<sub>40 </sub>derived from their direct precursor C99.</p> <p>Methods</p> <p>A combined transcriptomics/proteomics analysis was performed to measure the effects of intracellularly generated Aβ peptides in human neuroblastoma cells. Data was validated by real-time polymerase chain reaction (real-time PCR) and a functional validation was carried out using RNA interference.</p> <p>Results</p> <p>Here we studied the transcriptomic and proteomic responses to increased or decreased Aβ<sub>42 </sub>and Aβ<sub>40 </sub>levels generated in human neuroblastoma cells. Genome-wide expression profiles (Affymetrix) and proteomic approaches were combined to analyze the cellular response to the changed Aβ<sub>42</sub>- and Aβ<sub>40</sub>-levels. The cells responded to this challenge with significant changes in their expression pattern. We identified several dysregulated genes and proteins, but only the cellular retinoic acid binding protein 1 (CRABP1) was up-regulated exclusively in cells expressing an increased Aβ<sub>42</sub>/Aβ<sub>40 </sub>ratio. This consequently reduced all-trans retinoic acid (RA)-induced differentiation, validated by CRABP1 knock down, which led to recovery of the cellular response to RA treatment and cellular sprouting under physiological RA concentrations. Importantly, this effect was specific to the AD typical increase in the Aβ<sub>42</sub>/Aβ<sub>40 </sub>ratio, whereas a decreased ratio did not result in up-regulation of CRABP1.</p> <p>Conclusion</p> <p>We conclude that increasing the Aβ<sub>42</sub>/Aβ<sub>40 </sub>ratio up-regulates CRABP1, which in turn reduces the differentiation potential of the human neuroblastoma cell line SH-SY5Y, but increases cell proliferation. This work might contribute to the better understanding of AD neurogenesis, currently a controversial topic.</p

    Hippocampal Atrophy as a Quantitative Trait in a Genome-Wide Association Study Identifying Novel Susceptibility Genes for Alzheimer's Disease

    Get PDF
    With the exception of APOE ε4 allele, the common genetic risk factors for sporadic Alzheimer's Disease (AD) are unknown., which can be considered potential “new” candidate loci to explore in the etiology of sporadic AD. These candidates included EFNA5, CAND1, MAGI2, ARSB, and PRUNE2, genes involved in the regulation of protein degradation, apoptosis, neuronal loss and neurodevelopment. Thus, we identified common genetic variants associated with the increased risk of developing AD in the ADNI cohort, and present publicly available genome-wide data. Supportive evidence based on case-control studies and biological plausibility by gene annotation is provided. Currently no available sample with both imaging and genetic data is available for replication.Using hippocampal atrophy as a quantitative phenotype in a genome-wide scan, we have identified candidate risk genes for sporadic Alzheimer's disease that merit further investigation
    corecore