162 research outputs found

    Predictions for Higgs and SUSY spectra from SO(10) Yukawa Unification with mu > 0

    Get PDF
    We use t,b,τt, b, \tau Yukawa unification to constrain SUSY parameter space. We find a narrow region survives for μ>0\mu > 0 (suggested by \bsgam and the anomalous magnetic moment of the muon) with A01.9m16A_0 \sim - 1.9 m_{16}, m101.4m16m_{10} \sim 1.4 m_{16}, m1612003000m_{16} \sim 1200 -3000 \gev and μ,M1/2100500\mu, M_{1/2} \sim 100 - 500 \gev. Demanding Yukawa unification thus makes definite predictions for Higgs and sparticle masses.Comment: 10 pages, 3 figures, revised version to be published in PR

    Czech Participation in the INTEGRAL Satellite: A Review

    Get PDF
    The ESA INTEGRAL satellite, launched in October 2002, is the first astrophysical satellite of the European Space Agency ESA with Czech participation. The results of the first 7 years of investigations of various scientific targets e.g. cataclysmic variables, blazars, X-ray sources, and GRBs with the ESA INTEGRAL satellite with Czech participation are briefly presented and discussed

    Application of Wavelet Transform for Image Denoising of Spatially and Time Variable Astronomical Imaging Systems

    Get PDF
    We report on our efforts to formulate algorithms for image signal processing with the spatially and time variant Point-Spread Function (PSF) and inhomogeneous noise of real imaging systems. In this paper we focus on application of the wavelet transform for denoising of the astronomical images with complicated conditions. They influence above all accuracy of the measurements and the new source detection ability. Our aim is to test the usefulness ofWavelet transform (as the standard image processing technique) for astronomical purposes

    Czech Participation in INTEGRAL: 1996–2011

    Get PDF
    The European Space Agency ESA INTEGRAL satellite launched in October 2002 is the first astrophysical satellite of the European Space Agency (ESA) with Czech participation. The results of the first 8 years of investigations of various scientific targets are briefly presented and discussed here, with emphasis on cataclysmic variables and blazars with the ESA INTEGRAL satellite with Czech participation

    Sparticle mass spectra from SU(5) SUSY GUT models with bτb-\tau Yukawa coupling unification

    Full text link
    Supersymmetric grand unified models based on the gauge group SU(5) often require in addition to gauge coupling unification, the unification of b-quark and τ\tau-lepton Yukawa couplings. We examine SU(5) SUSY GUT parameter space under the condition of bτb-\tau Yukawa coupling unification using 2-loop MSSM RGEs including full 1-loop threshold effects. The Yukawa-unified solutions break down into two classes. Solutions with low tan\beta ~3-11 are characterized by gluino mass ~1-4 TeV and squark mass ~1-5 TeV. Many of these solutions would be beyond LHC reach, although they contain a light Higgs scalar with mass <123 GeV and so may be excluded should the LHC Higgs hint persist. The second class of solutions occurs at large tan\beta ~35-60, and are a subset of tbτt-b-\tau unified solutions. Constraining only bτb-\tau unification to ~5% favors a rather light gluino with mass ~0.5-2 TeV, which should ultimately be accessible to LHC searches. While our bτb-\tau unified solutions can be consistent with a picture of neutralino-only cold dark matter, invoking additional moduli or Peccei-Quinn superfields can allow for all of our Yukawa-unified solutions to be consistent with the measured dark matter abundance.Comment: 19 pages, 5 figures, 1 table, PDFLate

    Success of cuckoo catfish brood parasitism reflects coevolutionary history and individual experience of their cichlid hosts

    Get PDF
    Obligate brood parasites manipulate other species into raising their offspring. Avian and insect brood parasitic systems demonstrate how interacting species engage in reciprocal coevolutionary arms races through behavioral and morphological adaptations and counteradaptations. Mouthbrooding cichlid fishes are renowned for their remarkable evolutionary radiations and complex behaviors. In Lake Tanganyika, mouthbrooding cichlids are exploited by the only obligate nonavian vertebrate brood parasite, the cuckoo catfish Synodontis multipunctatus. We show that coevolutionary history and individual learning both have a major impact on the success of cuckoo catfish parasitism between coevolved sympatric and evolutionarily naïve allopatric cichlid species. The rate of cuckoo catfish parasitism in coevolved Tanganyikan hosts was 3 to 11 times lower than in evolutionarily naïve cichlids. Moreover, using experimental infections, we demonstrate that parasite egg rejection in sympatric hosts was much higher, leading to seven times greater parasite survival in evolutionarily naïve than sympatric hosts. However, a high rejection frequency of parasitic catfish eggs by coevolved sympatric hosts came at a cost of increased rejection of their own eggs. A significant cost of catfish parasitism was universal, except for coevolved sympatric cichlid species with previous experience of catfish parasitism, demonstrating that learning and individual experience both contribute to a successful host response

    SUSY GUTs under Siege : Proton Decay

    Get PDF
    SO(10) supersymmetric grand unified theories [SUSY GUTs] provide a beautiful framework for physics beyond the standard model. Experimental measurements of the three gauge couplings are consistent with unification at a scale MG3×1016M_G \sim 3 \times 10^{16} GeV. In addition predictive models for fermion masses and mixing angles have been found which fit the low energy data, including the recent data for neutrino oscillations. SO(10) boundary conditions can be tested via the spectrum of superparticles. The simplest models also predict neutron and proton decay rates. In this paper we discuss nucleon decay rates and obtain reasonable upper bounds. A clear picture of the allowed SUSY spectra as constrained by nucleon decay is presented.Comment: 13 page

    Neutrino Masses and Lepton-Flavor Violation in Supersymmetric Models with lopsided Froggatt-Nielsen charges

    Get PDF
    We analyze in detail lepton-flavor violation (LFV) in the charged-lepton sector such as μeγ\mu \to e \gamma, τμγ\tau \to \mu \gamma, μeee\mu \to eee and the μe\mu \to e conversion in nuclei, within the framework of supersymmetric models with lopsided Froggatt--Nielsen charges, in which the large mixing in the neutrino sector as well as small mixings in the quark sector can be naturally accommodated. We show that the present experimental limits on the LFV processes already exclude some of the models. The future proposed search for LFV, especially in muon processes, can provide a significant probe to this framework. We also stress the importance of the measurement of Ue3MNSU^{MNS}_{e3} in neutrino experiments, and the fact that the KamLAND experiment could play a significant role to test a certain class of models.Comment: 33 pages, 20 figure

    On the possible space-time fractality of the emitting source

    Get PDF
    Using simple space-time implementation of the random cascade model we investigate numerically a conjecture made some time ago which was joining the intermittent behaviour of spectra of emitted particles with the possible fractal structure of the emitting source. We demonstrate that such details are seen, as expected, in the Bose-Einstein correlations between identical particles. \\Comment: Thoroughly rewritten and modify version, to be published in Phys. Rev.
    corecore