40 research outputs found

    Microscopic picture of aging in SiO2

    Get PDF
    We investigate the aging dynamics of amorphous SiO2 via molecular dynamics simulations of a quench from a high temperature T_i to a lower temperature T_f. We obtain a microscopic picture of aging dynamics by analyzing single particle trajectories, identifying jump events when a particle escapes the cage formed by its neighbors, and by determining how these jumps depend on the waiting time t_w, the time elapsed since the temperature quench to T_f. We find that the only t_w-dependent microscopic quantity is the number of jumping particles per unit time, which decreases with age. Similar to previous studies for fragile glass formers, we show here for the strong glass former SiO2 that neither the distribution of jump lengths nor the distribution of times spent in the cage are t_w-dependent. We conclude that the microscopic aging dynamics is surprisingly similar for fragile and strong glass formers.Comment: 4 pages, 7 figure

    Studies of an array of PbF2 Cherenkov crystals with large-area SiPM readout

    Get PDF
    The electromagnetic calorimeter for the new muon (g-2) experiment at Fermilab will consist of arrays of PbF2 Cherenkov crystals read out by large-area silicon photo-multiplier (SiPM) sensors. We report here on measurements and simulations using 2.0 -- 4.5 GeV electrons with a 28-element prototype array. All data were obtained using fast waveform digitizers to accurately capture signal pulse shapes versus energy, impact position, angle, and crystal wrapping. The SiPMs were gain matched using a laser-based calibration system, which also provided a stabilization procedure that allowed gain correction to a level of 1e-4 per hour. After accounting for longitudinal fluctuation losses, those crystals wrapped in a white, diffusive wrapping exhibited an energy resolution sigma/E of (3.4 +- 0.1) % per sqrt(E/GeV), while those wrapped in a black, absorptive wrapping had (4.6 +- 0.3) % per sqrt(E/GeV). The white-wrapped crystals---having nearly twice the total light collection---display a generally wider and impact-position-dependent pulse shape owing to the dynamics of the light propagation, in comparison to the black-wrapped crystals, which have a narrower pulse shape that is insensitive to impact position.Comment: 14 pages, 19 figures, accepted to Nucl.Instrum.Meth. A. In v2, edited Figures 14,15, and 17 for clarity, improved explanation of energy resolution systematics, added reference to SiP

    Neural correlates of socio-emotional perception in 22q11.2 deletion syndrome.

    Get PDF
    BACKGROUND: Social impairments are described as a common feature of the 22q11.2 deletion syndrome (22q11DS). However, the neural correlates underlying these impairments are largely unknown in this population. In this study, we investigated neural substrates of socio-emotional perception. METHODS: We used event-related functional magnetic resonance imaging (fMRI) to explore neural activity in individuals with 22q11DS and healthy controls during the visualization of stimuli varying in social (social or non-social) or emotional (positive or negative valence) content. RESULTS: Neural hyporesponsiveness in regions of the default mode network (inferior parietal lobule, precuneus, posterior and anterior cingulate cortex and frontal regions) in response to social versus non-social images was found in the 22q11DS population compared to controls. A similar pattern of activation for positive and negative emotional processing was observed in the two groups. No correlation between neural activation and social functioning was observed in patients with the 22q11DS. Finally, no social × valence interaction impairment was found in patients. CONCLUSIONS: Our results indicate atypical neural correlates of social perception in 22q11DS that appear to be independent of valence processing. Abnormalities in the social perception network may lead to social impairments observed in 22q11DS individuals

    Muon (g-2) Technical Design Report

    Get PDF
    The Muon (g-2) Experiment, E989 at Fermilab, will measure the muon anomalous magnetic moment a factor-of-four more precisely than was done in E821 at the Brookhaven National Laboratory AGS. The E821 result appears to be greater than the Standard-Model prediction by more than three standard deviations. When combined with expected improvement in the Standard-Model hadronic contributions, E989 should be able to determine definitively whether or not the E821 result is evidence for physics beyond the Standard Model. After a review of the physics motivation and the basic technique, which will use the muon storage ring built at BNL and now relocated to Fermilab, the design of the new experiment is presented. This document was created in partial fulfillment of the requirements necessary to obtain DOE CD-2/3 approval

    Imaging the Impact of Prenatal Alcohol Exposure on the Structure of the Developing Human Brain

    Get PDF
    Prenatal alcohol exposure has numerous effects on the developing brain, including damage to selective brain structure. We review structural magnetic resonance imaging (MRI) studies of brain abnormalities in subjects prenatally exposed to alcohol. The most common findings include reduced brain volume and malformations of the corpus callosum. Advanced methods have been able to detect shape, thickness and displacement changes throughout multiple brain regions. The teratogenic effects of alcohol appear to be widespread, affecting almost the entire brain. The only region that appears to be relatively spared is the occipital lobe. More recent studies have linked cognition to the underlying brain structure in alcohol-exposed subjects, and several report patterns in the severity of brain damage as it relates to facial dysmorphology or to extent of alcohol exposure. Future studies exploring relationships between brain structure, cognitive measures, dysmorphology, age, and other variables will be valuable for further comprehending the vast effects of prenatal alcohol exposure and for evaluating possible interventions

    Measurement of the Positive Muon Anomalous Magnetic Moment to 0.46 ppm

    Get PDF
    We present the first results of the Fermilab Muon g-2 Experiment for the positive muon magnetic anomaly aμ(gμ2)/2a_\mu \equiv (g_\mu-2)/2. The anomaly is determined from the precision measurements of two angular frequencies. Intensity variation of high-energy positrons from muon decays directly encodes the difference frequency ωa\omega_a between the spin-precession and cyclotron frequencies for polarized muons in a magnetic storage ring. The storage ring magnetic field is measured using nuclear magnetic resonance probes calibrated in terms of the equivalent proton spin precession frequency ω~p{\tilde{\omega}'^{}_p} in a spherical water sample at 34.7^{\circ}C. The ratio ωa/ω~p\omega_a / {\tilde{\omega}'^{}_p}, together with known fundamental constants, determines aμ(FNAL)=116592040(54)×1011a_\mu({\rm FNAL}) = 116\,592\,040(54)\times 10^{-11} (0.46\,ppm). The result is 3.3 standard deviations greater than the standard model prediction and is in excellent agreement with the previous Brookhaven National Laboratory (BNL) E821 measurement. After combination with previous measurements of both μ+\mu^+ and μ\mu^-, the new experimental average of aμ(Exp)=116592061(41)×1011a_\mu({\rm Exp}) = 116\,592\,061(41)\times 10^{-11} (0.35\,ppm) increases the tension between experiment and theory to 4.2 standard deviationsComment: 10 pages; 4 figure

    Yohimbine can induce ethanol tolerance in an in vitro preparation of rat locus coeruleus

    No full text
    Noradrenergic neurons have been implicated in the development of ethanol dependence and tolerance. Moreover, the development of an hyposensitivity of alpha 2 adrenoceptors has been postulated during long-term exposition to ethanol. In order to test the putative role of alpha 2 receptors in ethanol intoxication, we have studied the interaction between ethanol and yohimbine, an alpha 2 antagonist, on the spontaneous firing rate of rat locus coeruleus (LC) in an in vitro slice model. The spikes from single neurons were recorded by glass microelectrodes. Ethanol at 100 mM, a concentration that parallels the behavioral effects in the human and in the animals, inhibits the firing activity of some LC cells. This inhibition was quickly reversed after stopping the ethanol perfusion and was observed for each further administration. However, if yohimbine (20 microM) was simultaneously perfused, the ethanol-induced inhibition was rapidly antagonized. This effect is reversible after long time washout of yohimbine. This suggests that alpha 2 adrenoceptors could be implicated in the inhibitory effect of ethanol on LC noradrenergic neurons and perhaps in the development of tolerance. However, other hypotheses are discussed, because yohimbine can also antagonize other types of receptors.Journal ArticleFLWNAinfo:eu-repo/semantics/publishe
    corecore