641 research outputs found
Strategic management of nitrogen within an organic cropping system using digestate from biogas production of recirculated crop residues
This project investigates strategic management of nitrogen by integrating crop residue management with biogas production. The approach offers potential for diversified farmer income, as food crops, feedstock for biogas and digestate for nutrient cycling are produced simultaneously. This type of diversification provides multifunctional solutions in organic farming, especially in production without access to animal manure. Biogas production from crop residues offers the possibility of reducing both emissions and leaching of nutrients to the surrounding ecosystems, as compared to the case where crop residue is incorporated into the soil for decomposition (Baggs et al. 2000; Velthof et al. 2002). This type of multifunctional cropping system provides solutions that can also help to solve issues on conventional farms, such as N emissions, and can also provide local production of biogas
Energy Injection Episodes in Gamma Ray Bursts: The Light Curves and Polarization Properties of GRB 021004
Several GRB afterglow light curves deviate strongly from the power law decay
observed in most bursts. We show that these variations can be accounted for by
including refreshed shocks in the standard fireball model previously used to
interpret the overall afterglow behavior. As an example we consider GRB 021004
that exhibited strong light curve variations and has a reasonably well
time-resolved polarimetry. We show that the light curves in the R-band, X-rays
and in the radio can be accounted for by four energy injection episodes in
addition to the initial event. The polarization variations are shown to be a
consequence of the injections.Comment: 4 pages, 2 figures. To appear in ApJ
Star formation efficiency and host galaxies of Gamma-Ray Bursts
Gamma-ray bursts are likely to be associated with regions of active star formation and may therefore be useful as cosmological tracers of galaxy formation. Using hydrodynamical/N-body simulations the cosmological properties of host galaxies are investigated. Assuming the hosts to be efficient star-forming objects, i.e. with high specific star formation rates, the majority of the candidate
hosts are found to below mass, young galaxies with a moderate star formation rate. This picture, consistent with most observations of GRB host galaxies, corroborates the idea that gamma-ray bursts do not follow the cosmic star formation rate. More importantly the hosts should contribute to unveil the faint end of the galaxy luminosity function
Energy injection episodes in GRBs: The case of GRB 021004
A number of GRB afterglow light curves deviate substantially from the power law decay observed in most bursts. These variations can be accounted for by including refreshed shocks in the standard fireball model previously used to interpret the overall afterglow behavior. We show that the light curves of GRB 021004 can be accounted for by four energy injection episodes in addition to the initial
event. The polarization variations are shown to be a consequence of the injections
Luminosity Functions of Gamma-Ray Burst Afterglows
Aims: Use the standard fireball model to create virtual populations of
gamma-ray burst afterglows and study their luminosity functions.
Methods: We randomly vary the parameters of the standard fireball model to
create virtual populations of afterglows. We use the luminosity of each burst
at an observer's time of 1 day to create a luminosity function and compare our
results with available observational data to assess the internal consistency of
the standard fireball model.
Results: We show that the luminosity functions can be described by a function
similar to a log normal distribution with an exponential cutoff. The function
parameters are frequency dependent but not very dependent on the model
parameter distributions used to create the virtual populations. Comparison with
observations shows that while there is good general agreement with the data, it
is difficult to explain simultaneously the X-ray and optical data. Possible
reasons for this are discussed and the most likely one is that the standard
fireball model is incomplete and that decoupling of the X-ray and optical
emission mechanism may be needed.Comment: 5 pages, 4 figures; accepted for publication in A&
Polarization in the inner region of Pulsar Wind Nebulae
We present here the first effort to compute synthetic synchrotron
polarization maps of Pulsar Wind Nebulae (PWNe). Our goal is to highlight how
polarization can be used as an additional diagnostic tool for the flow
structure in the inner regions of these nebulae. Recent numerical simulations
suggest the presence of flow velocities ~0.5 c in the surroundings of the
termination shock, where most of the high energy emission comes from. We
construct polarization maps taking into account relativistic effects like
Doppler boosting and position angle swing. The effect of different bulk
velocities is clarified with the help of a toy-model consisting of a uniformly
emitting torus. We also present a map based on recent numerical simulations of
the entire nebula and compare it with presently available data. The comparison
with upcoming high resolution observations could provide new insight into the
inner structure of the nebula and put constraints on the geometrical properties
of the magnetic field.Comment: Accepted for publication on A&A, 6 pages, 2 figure
Upper limit on spontaneous supercurrents in SrRuO
It is widely believed that the perovskite SrRuO is an unconventional
superconductor with broken time reversal symmetry. It has been predicted that
superconductors with broken time reversal symmetry should have spontaneously
generated supercurrents at edges and domain walls. We have done careful imaging
of the magnetic fields above SrRuO single crystals using scanning Hall
bar and SQUID microscopies, and see no evidence for such spontaneously
generated supercurrents. We use the results from our magnetic imaging to place
upper limits on the spontaneously generated supercurrents at edges and domain
walls as a function of domain size. For a single domain, this upper limit is
below the predicted signal by two orders of magnitude. We speculate on the
causes and implications of the lack of large spontaneous supercurrents in this
very interesting superconducting system.Comment: 9 page
Modelling the 20th and 21st century evolution of Hoffellsjökull glacier, SE-Vatnajökull, Iceland
The Little Ice Age maximum extent of glaciers in Iceland was reached about 1890 AD and most glaciers in the country have retreated during the 20th century. A model for the surface mass balance and the flow of glaciers is used to reconstruct the 20th century retreat history of Hoffellsjökull, a south-flowing outlet glacier of the ice cap Vatnajökull, which is located close to the southeastern coast of Iceland. The bedrock topography was surveyed with radio-echo soundings in 2001. A wealth of data are available to force and constrain the model, e.g. surface elevation maps from ~1890, 1936, 1946, 1989, 2001, 2008 and 2010, mass balance observations conducted in 1936–1938 and after 2001, energy balance measurements after 2001, and glacier surface velocity derived by kinematic and differential GPS surveys and correlation of SPOT5 images. The approximately 20% volume loss of this glacier in the period 1895–2010 is realistically simulated with the model. After calibration of the model with past observations, it is used to simulate the future response of the glacier during the 21st century. The mass balance model was forced with an ensemble of temperature and precipitation scenarios derived from 10 global and 3 regional climate model simulations using the A1B emission scenario. If the average climate of 2000–2009 is maintained into the future, the volume of the glacier is projected to be reduced by 30% with respect to the present at the end of this century. If the climate warms, as suggested by most of the climate change scenarios, the model projects this glacier to almost disappear by the end of the 21st century. Runoff from the glacier is predicted to increase for the next 30–40 yr and decrease after that as a consequence of the diminishing ice-covered area
Forecasting the path of a laterally propagating dike
An important aspect of eruption forecasting is predicting the path of propagating dikes. We show how lateral dike propagation can be forecast using the minimum potential energy principle. We compare theory to observed propagation paths of dikes originating at the Bárðarbunga volcano, Iceland, in 2014 and 1996, by developing a probability distribution for the most likely propagation path. The observed propagation paths agree well with the model prediction. We find that topography is very important for the model, and our preferred forecasting model considers its influence on the potential energy change of the crust and magma. We tested the influence of topography by running the model assuming no topography and found that the path of the 2014 dike could not be hindcasted. The results suggest that lateral dike propagation is governed not only by deviatoric stresses but also by pressure gradients and gravitational potential energy. Furthermore, the model predicts the formation of curved dikes around cone-shaped structures without the assumption of a local deviatoric stress field. We suggest that a likely eruption site for a laterally propagating dike is in topographic lows. The method presented here is simple and computationally feasible. Our results indicate that this kind of a model can be applied to mitigate volcanic hazards in regions where the tectonic setting promotes formation of laterally propagating vertical intrusive sheets
- …