50 research outputs found

    Motor deficits and recovery in rats with unilateral spinal cord hemisection mimic the Brown-Séquard syndrome

    Get PDF
    Cervical incomplete spinal cord injuries often lead to severe and persistent impairments of sensorimotor functions and are clinically the most frequent type of spinal cord injury. Understanding the motor impairments and the possible functional recovery of upper and lower extremities is of great importance. Animal models investigating motor dysfunction following cervical spinal cord injury are rare. We analysed the differential spontaneous recovery of fore- and hindlimb locomotion by detailed kinematic analysis in adult rats with unilateral C4/C5 hemisection, a lesion that leads to the Brown-Séquard syndrome in humans. The results showed disproportionately better performance of hindlimb compared with forelimb locomotion; hindlimb locomotion showed substantial recovery, whereas the ipsilesional forelimb remained in a very poor functional state. Such a differential motor recovery pattern is also known to occur in monkeys and in humans after similar spinal cord lesions. On the lesioned side, cortico-, rubro-, vestibulo- and reticulospinal tracts and the important modulatory serotonergic, dopaminergic and noradrenergic fibre systems were interrupted by the lesion. In an attempt to facilitate locomotion, different monoaminergic agonists were injected intrathecally. Injections of specific serotonergic and noradrenergic agonists in the chronic phase after the spinal cord lesion revealed remarkable, although mostly functionally negative, modulations of particular parameters of hindlimb locomotion. In contrast, forelimb locomotion was mostly unresponsive to these agonists. These results, therefore, show fundamental differences between fore- and hindlimb spinal motor circuitries and their functional dependence on remaining descending inputs and exogenous spinal excitation. Understanding these differences may help to develop future therapeutic strategies to improve upper and lower limb function in patients with incomplete cervical spinal cord injurie

    Validity and reliability of the 2-minute walk test in individuals with spinal cord injury

    Full text link
    STUDY DESIGN Multicentre-observational study. OBJECTIVES The 6-minute walk test (6mWT) is an established assessment of walking function in individuals with spinal cord injury (SCI). However, walking 6 min can be demanding for severely impaired individuals. The 2-minute walk test (2mWT) could be an appropriate alternative that has already been validated in other neurological disorders. The aim of this study was to assess construct validity and test-rest reliability of the 2mWT in individuals with SCI. In addition, the influence of walking performance on sensitivity to change of the 2mWT was assessed. SETTING Swiss Paraplegic Center Nottwil, Switzerland; Balgrist University Hospital, Zürich, Switzerland. METHODS Fifty individuals (aged 18-79) with SCI (neurological level of injury: C1-L3, AIS: A-D) were assessed on two test days separated by 1 to 7 days. The first assessment consisted of a 2mWT familiarization, followed by a 2mWT and 10-meter walk test (10MWT) (including the Walking Index for Spinal Cord Injury (WISCI II)) in randomized order. The second assessment consisted of 2mWT and 6mWT in randomized order. Tests were separated by at least 30 min of rest. RESULTS The interclass correlation coefficient between the 2mWT assessed on the first and second test day was excellent (r = 0.980, p < 0.001). The 2mWT correlated very strongly with the 6mWT (r = 0.992, p < 0.001) and the 10MWT (r = 0.964, p < 0.001), and moderately with the WISCI II (r = 0.571, p < 0.001). Sensitivity to change was slightly affected by walking performance. CONCLUSION The 2mWT is a valid and reliable alternative to the 6mWT to measure walking function in individuals with SCI. TRIAL REGISTRATION NCT04555759

    Back seat driving: hindlimb corticospinal neurons assume forelimb control following ischaemic stroke

    Get PDF
    Whereas large injuries to the brain lead to considerable irreversible functional impairments, smaller strokes or traumatic lesions are often associated with good recovery. This recovery occurs spontaneously, and there is ample evidence from preclinical studies to suggest that adjacent undamaged areas (also known as peri-infarct regions) of the cortex ‘take over' control of the disrupted functions. In rodents, sprouting of axons and dendrites has been observed in this region following stroke, while reduced inhibition from horizontal or callosal connections, or plastic changes in subcortical connections, could also occur. The exact mechanisms underlying functional recovery after small- to medium-sized strokes remain undetermined but are of utmost importance for understanding the human situation and for designing effective treatments and rehabilitation strategies. In the present study, we selectively destroyed large parts of the forelimb motor and premotor cortex of adult rats with an ischaemic injury. A behavioural test requiring highly skilled, cortically controlled forelimb movements showed that some animals recovered well from this lesion whereas others did not. To investigate the reasons behind these differences, we used anterograde and retrograde tracing techniques and intracortical microstimulation. Retrograde tracing from the cervical spinal cord showed a correlation between the number of cervically projecting corticospinal neurons present in the hindlimb sensory-motor cortex and good behavioural recovery. Anterograde tracing from the hindlimb sensory-motor cortex also showed a positive correlation between the degree of functional recovery and the sprouting of neurons from this region into the cervical spinal cord. Finally, intracortical microstimulation confirmed the positive correlation between rewiring of the hindlimb sensory-motor cortex and the degree of forelimb motor recovery. In conclusion, these experiments suggest that following stroke to the forelimb motor cortex, cells in the hindlimb sensory-motor area reorganize and become functionally connected to the cervical spinal cord. These new connections, probably in collaboration with surviving forelimb neurons and more complex indirect connections via the brainstem, play an important role for the recovery of cortically controlled behaviours like skilled forelimb reachin

    Reliability of patient-specific gait profiles with inertial measurement units during the 2-min walk test in incomplete spinal cord injury

    Get PDF
    Most established clinical walking tests assess specific aspects of movement function (velocity, endurance, etc.) but are generally unable to determine specific biomechanical or neurological deficits that limit an individual's ability to walk. Recently, inertial measurement units (IMU) have been used to collect objective kinematic data for gait analysis and could be a valuable extension for clinical assessments (e.g., functional walking measures). This study assesses the reliability of an IMU-based overground gait analysis during the 2-min walk test (2mWT) in individuals with spinal cord injury (SCI). Furthermore, the study elaborates on the capability of IMUs to distinguish between different gait characteristics in individuals with SCI. Twenty-six individuals (aged 22-79) with acute or chronic SCI (AIS: C and D) completed the 2mWT with IMUs attached above each ankle on 2 test days, separated by 1 to 7 days. The IMU-based gait analysis showed good to excellent test-retest reliability (ICC: 0.77-0.99) for all gait parameters. Gait profiles remained stable between two measurements. Sensor-based gait profiling was able to reveal patient-specific gait impairments even in individuals with the same walking performance in the 2mWT. IMUs are a valuable add-on to clinical gait assessments and deliver reliable information on detailed gait pathologies in individuals with SCI

    Study protocol: short against long antibiotic therapy for infected orthopedic sites - the randomized-controlled SALATIO trials

    Full text link
    BACKGROUND: Few studies address the appropriate duration of post-surgical antibiotic therapy for orthopedic infections; with or without infected residual implants. We perform two similar randomized-clinical trials (RCT) to reduce the antibiotic use and associated adverse events. METHODS: Two unblinded RCTs in adult patients (non-inferiority with a margin of 10%, a power of 80%) with the primary outcomes "remission" and "microbiologically-identical recurrences" after a combined surgical and antibiotic therapy. The main secondary outcome is antibiotic-related adverse events. The RCTs allocate the participants between 3 vs. 6 weeks of post-surgical systemic antibiotic therapy for implant-free infections and between 6 vs. 12 weeks for residual implant-related infections. We need a total of 280 episodes (randomization schemes 1:1) with a minimal follow-up of 12 months. We perform two interim analyses starting approximately after 1 and 2 years. The study approximatively lasts 3 years. DISCUSSION: Both parallel RCTs will enable to prescribe less antibiotics for future orthopedic infections in adult patients

    Minimum toe clearance: probing the neural control of locomotion

    Full text link
    Minimum toe clearance (MTC) occurs during a highly dynamic phase of the gait cycle and is associated with the highest risk of unintentional contact with obstacles or the ground. Age, cognitive function, attention and visual feedback affect foot clearance but how these factors interact to influence MTC control is not fully understood. We measured MTC in 121 healthy individuals aged 20-80 under four treadmill walking conditions; normal walking, lower visual field restriction and two Stroop colour/word naming tasks of two difficulty levels. Competition for cognitive and attentional resources from the Stroop task resulted in significantly lower mean MTC in older adults, with the difficult Stroop task associated with a higher frequency of extremely low MTC values and subsequently an increased modelled probability of tripping in this group. While older adults responded to visual restriction by markedly skewing MTC distributions towards higher values, this condition was also associated with frequent, extremely low MTC values. We reveal task-specific, age-dependent patterns of MTC control in healthy adults. Age-related differences are most pronounced during heavy, distracting cognitive load. Analysis of critically-low MTC values during dual-task walking may have utility in the evaluation of locomotor control and fall risk in older adults and patients with motor control deficits

    Probing Corticospinal Control During Different Locomotor Tasks Using Detailed Time-Frequency Analysis of Electromyograms

    Get PDF
    Locomotion relies on the fine-tuned coordination of different muscles which are controlled by particular neural circuits. Depending on the attendant conditions, walking patterns must be modified to optimally meet the demands of the task. Assessing neuromuscular control during dynamic conditions is methodologically highly challenging and prone to artifacts. Here we aim at assessing corticospinal involvement during different locomotor tasks using non-invasive surface electromyography. Activity in tibialis anterior (TA) and gastrocnemius medialis (GM) muscles was monitored by electromyograms (EMGs) in 27 healthy volunteers (11 female) during regular walking, walking while engaged in simultaneous cognitive dual tasks, walking with partial visual restriction, and skilled, targeted locomotion. Whereas EMG intensity of the TA and GM was considerably altered while walking with partial visual restriction and during targeted locomotion, dual-task walking induced only minor changes in total EMG intensity compared to regular walking. Targeted walking resulted in enhanced EMG intensity of GM in the frequency range associated with Piper rhythm synchronies. Likewise, targeted walking induced enhanced EMG intensity of TA at the Piper rhythm frequency around heelstrike, but not during the swing phase. Our findings indicate task- and phase-dependent modulations of neuromuscular control in distal leg muscles during various locomotor conditions in healthy subjects. Enhanced EMG intensity in the Piper rhythm frequency during targeted walking points toward enforced corticospinal drive during challenging locomotor tasks. These findings indicate that comprehensive time-frequency EMG analysis is able to gauge cortical involvement during different movement programs in a non-invasive manner and might be used as complementary diagnostic tool to assess baseline integrity of the corticospinal tract and to monitor changes in corticospinal drive as induced by neurorehabilitation interventions or during disease progression

    Analyzing a Single Nucleotide Polymorphism (SNP) in Schizophrenia: A meta-analysis approach

    Get PDF
    Human arm swing looks and feels highly automated, yet it is increasingly apparent that higher centres, including the cortex, are involved in many aspects of locomotor control. The addition of a cognitive task increases arm swing asymmetry during walking, but the characteristics and mechanism of this asymmetry are unclear. We hypothesized that this effect is lateralized and a Stroop word-colour naming task—primarily involving left hemisphere structures—would reduce right arm swing only. We recorded gait in 83 healthy subjects aged 18–80 walking normally on a treadmill and while performing a congruent and incongruent Stroop task. The primary measure of arm swing asymmetry—an index based on both three-dimensional wrist trajectories in which positive values indicate proportionally smaller movements on the right—increased significantly under dual-task conditions in those aged 40–59 and further still in the over-60s, driven by reduced right arm flexion. Right arm swing attenuation appears to be the norm in humans performing a locomotor-cognitive dual-task, confirming a prominent role of the brain in locomotor behaviour. Women under 60 are surprisingly resistant to this effect, revealing unexpected gender differences atop the hierarchical chain of locomotor control

    Mechanisms of Recovery in Incomplete Spinal Cord Injury

    Full text link

    Recurrent Syncope Due to Carotid Sinus Hypersensitivity in Cerebral Atherosclerosis

    No full text
    A 62-year-old female with a history of stroke due to cerebral arteriosclerosis suffered from recurrent fainting (&lt;10 s) provoked by rapid head movements up to four times per month for at least two years. There was no evidence of new strokes in repeated MRI and no high-grade vertebral artery stenosis on catheter angiography. Electroencephalography and cardiovascular workup were normal. Because fainting was head-position triggered, carotid massage was performed, demonstrating transient sinus arrest and carotid sinus syndrome (CSS) was diagnosed. After pacemaker implantation, episodes disappeared. Based on this case we discuss the diagnostic approach and also potential pitfalls and limitations of CSS
    corecore