115 research outputs found

    Hybrid plasmonic photoreactors as visible light-mediated bactericides

    Full text link
    Photocatalytic compounds and complexes, such as tris(bipyridine)ruthenium(II), [Ru(bpy)3]2+, have recently attracted attention as light-mediated bactericides that can help to address the need for new antibacterial strategies. We demonstrate in this work that the bactericidal efficacy of [Ru(bpy)3]2+ and the control of its antibacterial function can be significantly enhanced through combination with a plasmonic nanoantenna. We report strong, visible light-controlled bacterial inactivation with a nanocomposite design that incorporates [Ru(bpy)3]2+ as a photocatalyst and a Ag nanoparticle (NP) core as a light-concentrating nanoantenna into a plasmonic hybrid photoreactor. The hybrid photoreactor platform is facilitated by a self-assembled lipid membrane that encapsulates the Ag NP and binds the photocatalyst. The lipid membrane renders the nanocomposite biocompatible in the absence of resonant illumination. Upon illumination, the plasmon-enhanced photoexcitation of the metal-to-ligand charge-transfer band of [Ru(bpy)3]2+ prepares the reactive excited state of the complex that oxidizes the nanocomposite membrane and increases its permeability. The photooxidation induces the release of [Ru(bpy)3]2+, Ag+, and peroxidized lipids into the ambient medium, where they interact synergistically to inactivate bacteria. We measured a 7 order of magnitude decrease in Gram-positive Arthrobacter sp. and a 4 order of magnitude decrease in Gram-negative Escherichia coli colony forming units with the photoreactor bactericides after visible light illumination for 1 h. In both cases, the photoreactor exceeds the bactericidal standard of a log reduction value of 3 and surpasses the antibacterial effect of free Ag NPs or [Ru(bpy)3]2+ by >4 orders of magnitude. We also implement the inactivation of a bacterial thin film in a proof-of-concept study.Accepted manuscrip

    Template-Guided Self-Assembly of Discrete Optoplasmonic Molecules and Extended Optoplasmonic Arrays

    Get PDF
    The integration of metallic and dielectric building blocks into optoplasmonic structures creates new electromagnetic systems in which plasmonic and photonic modes can interact in the near-, intermediate- and farfield. The morphology-dependent electromagnetic coupling between the different building blocks in these hybrid structures provides a multitude of opportunities for controlling electromagnetic fields in both spatial and frequency domain as well as for engineering the phase landscape and the local density of optical states. Control over any of these properties requires, however, rational fabrication approaches for well-defined metal-dielectric hybrid structures. Template-guided self-assembly is a versatile fabrication method capable of integrating metallic and dielectric components into discrete optoplasmonic structures, arrays, or metasurfaces. The structural flexibility provided by the approach is illustrated by two representative implementations of optoplasmonic materials discussed in this review. In optoplasmonic atoms or molecules optical microcavities (OMs) serve as whispering gallery mode resonators that provide a discrete photonic mode spectrum to interact with plasmonic nanostructures contained in the evanescent fields of the OMs. In extended hetero-nanoparticle arrays in-plane scattered light induces geometry-dependent photonic resonances that mix with the localized surface plasmon resonances of the metal nanoparticles.We characterize the fundamental electromagnetic working principles underlying both optoplasmonic approaches and review the fabrication strategies implemented to realize them.United States. Department of Energy. Office of Basic Energy Science. Division of Materials Sciences and Engineering (DOE DE-SC0010679

    Femtosecond photonic viral inactivation probed using solid-state nanopores

    Full text link
    We report on detection of virus inactivation using femtosecond laser radiation by measuring the conductance of a solid state nanopore designed for detecting single particles. Conventional methods of assaying for viral inactivation based on plaque forming assays require 24–48 h for bacterial growth. Nanopore conductance measurements provide information on morphological changes at a single virion level.We show that analysis of a time series of nanopore conductance can quantify the detection of inactivation, requiring only a few minutes from collection to analysis. Morphological changes were verified by dynamic light scattering. Statistical analysis maximizing the information entropy provides a measure of the log reduction value. This work provides a rapid method for assaying viral inactivation with femtosecond lasers using solid-state nanopores.First author draf

    Quantum optical coherence tomography of a biological sample

    Full text link
    Quantum optical coherence tomography (QOCT) makes use of an entangled-photon light source to carry out dispersion-immune axial optical sectioning. We present the first experimental QOCT images of a biological sample: an onion-skin tissue coated with gold nanoparticles. 3D images are presented in the form of 2D sections of different orientations.Comment: 16 Pages, 6 Figure

    Femtosecond Photonic Viral Inactivation Probed Using Solid-State Nanopores

    Full text link
    We report on the detection of inactivation of virus particles using femtosecond laser radiation by measuring the conductance of a solid state nanopore designed for detecting single virus particles. Conventional methods of assaying for viral inactivation based on plaque forming assays require 24-48 hours for bacterial growth. Nanopore conductance measurements provide information on morphological changes at a single virion level. We show that analysis of a time series of nanopore conductance can quantify the detection of inactivation, requiring only a few minutes from collection to analysis. Morphological changes were verified by Dynamic Light Scattering (DLS). Statistical analysis maximizing the information entropy provides a measure of the Log-reduction value. Taken together, our work provides a rapid method for assaying viral inactivation with femtosecond lasers using solid-state nanopores.Comment: 6 Figures with caption

    Adaptive on-chip control of nano-optical fields with optoplasmonic vortex nanogates

    Full text link
    A major challenge for plasmonics as an enabling technology for quantum information processing is the realization of active spatio-temporal control of light on the nanoscale. The use of phase-shaped pulses or beams enforces specific requirements for on-chip integration and imposes strict design limitations. We introduce here an alternative approach, which is based on exploiting the strong sub-wavelength spatial phase modulation in the near-field of resonantly-excited high-Q optical microcavities integrated into plasmonic nanocircuits. Our theoretical analysis reveals the formation of areas of circulating powerflow (optical vortices) in the near-fields of optical microcavities, whose positions and mutual coupling can be controlled by tuning the microcavities parameters and the excitation wavelength. We show that optical powerflow though nanoscale plasmonic structures can be dynamically molded by engineering interactions of microcavity-induced optical vortices with noble-metal nanoparticles. The proposed strategy of re-configuring plasmonic nanocircuits via locally-addressable photonic elements opens the way to develop chip-integrated optoplasmonic switching architectures, which is crucial for implementation of quantum information nanocircuits.Comment: 11 pages, 5 figure

    Monitoring the Size and Lateral Dynamics of ErbB1 Enriched Membrane Domains through Live Cell Plasmon Coupling Microscopy

    Get PDF
    To illuminate the role of the spatial organization of the epidermal growth factor receptor (ErbB1) in signal transduction quantitative information about the receptor topography on the cell surface, ideally on living cells and in real time, are required. We demonstrate that plasmon coupling microscopy (PCM) enables to detect, size, and track individual membrane domains enriched in ErbB1 with high temporal resolution. We used a dendrimer enhanced labeling strategy to label ErbB1 receptors on epidermoid carcinoma cells (A431) with 60 nm Au nanoparticle (NP) immunolabels under physiological conditions at 37°C. The statistical analysis of the spatial NP distribution on the cell surface in the scanning electron microscope (SEM) confirmed a clustering of the NP labels consistent with a heterogeneous distribution of ErbB1 in the plasma membrane. Spectral shifts in the scattering response of clustered NPs facilitated the detection and sizing of individual NP clusters on living cells in solution in an optical microscope. We tracked the lateral diffusion of individual clusters at a frame rate of 200 frames/s while simultaneously monitoring the configurational dynamics of the clusters. Structural information about the NP clusters in their membrane confinements were obtained through analysis of the electromagnetic coupling of the co-confined NP labels through polarization resolved PCM. Our studies show that the ErbB1 receptor is enriched in membrane domains with typical diameters in the range between 60–250 nm. These membrane domains exhibit a slow lateral diffusion with a diffusion coefficient of  = |0.0054±0.0064| µm2/s, which is almost an order of magnitude slower than the mean diffusion coefficient of individual NP tagged ErbB1 receptors under identical conditions

    Improved Learning and Memory in Aged Mice Deficient in Amyloid β-Degrading Neutral Endopeptidase

    Get PDF
    BACKGROUND: Neutral endopeptidase, also known as neprilysin and abbreviated NEP, is considered to be one of the key enzymes in initial human amyloid-beta (Abeta) degradation. The aim of our study was to explore the impact of NEP deficiency on the initial development of dementia-like symptoms in mice. METHODOLOGY/PRINCIPAL FINDINGS: We found that while endogenous Abeta concentrations were elevated in the brains of NEP-knockout mice at all investigated age groups, immunohistochemical analysis using monoclonal antibodies did not detect any Abeta deposits even in old NEP knockout mice. Surprisingly, tests of learning and memory revealed that the ability to learn was not reduced in old NEP-deficient mice but instead had significantly improved, and sustained learning and memory in the aged mice was congruent with improved long-term potentiation (LTP) in brain slices of the hippocampus and lateral amygdala. Our data suggests a beneficial effect of pharmacological inhibition of cerebral NEP on learning and memory in mice due to the accumulation of peptides other than Abeta degradable by NEP. By conducting degradation studies and peptide measurements in the brain of both genotypes, we identified two neuropeptide candidates, glucagon-like peptide 1 and galanin, as first potential candidates to be involved in the improved learning in aged NEP-deficient mice. CONCLUSIONS/SIGNIFICANCE: Thus, the existence of peptides targeted by NEP that improve learning and memory in older individuals may represent a promising avenue for the treatment of neurodegenerative diseases

    Roadmap on optical sensors

    Get PDF
    Optical sensors and sensing technologies are playing a more and more important role in our modern world. From micro-probes to large devices used in such diverse areas like medical diagnosis, defence, monitoring of industrial and environmental conditions, optics can be used in a variety of ways to achieve compact, low cost, stand-off sensing with extreme sensitivity and selectivity. Actually, the challenges to the design and functioning of an optical sensor for a particular application requires intimate knowledge of the optical, material, and environmental properties that can affect its performance. This roadmap on optical sensors addresses different technologies and application areas. It is constituted by twelve contributions authored by world-leading experts, providing insight into the current state-of-the-art and the challenges their respective fields face. Two articles address the area of optical fibre sensors, encompassing both conventional and specialty optical fibres. Several other articles are dedicated to laser-based sensors, micro- and nano-engineered sensors, whispering-gallery mode and plasmonic sensors. The use of optical sensors in chemical, biological and biomedical areas is discussed in some other papers. Different approaches required to satisfy applications at visible, infrared and THz spectral regions are also discussed
    • …
    corecore