319 research outputs found

    Optimal Multiuser Transmit Beamforming: A Difficult Problem with a Simple Solution Structure

    Full text link
    Transmit beamforming is a versatile technique for signal transmission from an array of NN antennas to one or multiple users [1]. In wireless communications, the goal is to increase the signal power at the intended user and reduce interference to non-intended users. A high signal power is achieved by transmitting the same data signal from all antennas, but with different amplitudes and phases, such that the signal components add coherently at the user. Low interference is accomplished by making the signal components add destructively at non-intended users. This corresponds mathematically to designing beamforming vectors (that describe the amplitudes and phases) to have large inner products with the vectors describing the intended channels and small inner products with non-intended user channels. While it is fairly easy to design a beamforming vector that maximizes the signal power at the intended user, it is difficult to strike a perfect balance between maximizing the signal power and minimizing the interference leakage. In fact, the optimization of multiuser transmit beamforming is generally a nondeterministic polynomial-time (NP) hard problem [2]. Nevertheless, this lecture shows that the optimal transmit beamforming has a simple structure with very intuitive properties and interpretations. This structure provides a theoretical foundation for practical low-complexity beamforming schemes. (See this lecture note for the complete abstract/introduction)Comment: Accepted for publication as lecture note in IEEE Signal Processing Magazine, 11 pages, 3 figures. The results can be reproduced using the following Matlab code: https://github.com/emilbjornson/optimal-beamformin

    Robust Monotonic Optimization Framework for Multicell MISO Systems

    Full text link
    The performance of multiuser systems is both difficult to measure fairly and to optimize. Most resource allocation problems are non-convex and NP-hard, even under simplifying assumptions such as perfect channel knowledge, homogeneous channel properties among users, and simple power constraints. We establish a general optimization framework that systematically solves these problems to global optimality. The proposed branch-reduce-and-bound (BRB) algorithm handles general multicell downlink systems with single-antenna users, multiantenna transmitters, arbitrary quadratic power constraints, and robustness to channel uncertainty. A robust fairness-profile optimization (RFO) problem is solved at each iteration, which is a quasi-convex problem and a novel generalization of max-min fairness. The BRB algorithm is computationally costly, but it shows better convergence than the previously proposed outer polyblock approximation algorithm. Our framework is suitable for computing benchmarks in general multicell systems with or without channel uncertainty. We illustrate this by deriving and evaluating a zero-forcing solution to the general problem.Comment: Published in IEEE Transactions on Signal Processing, 16 pages, 9 figures, 2 table

    Optimality Properties, Distributed Strategies, and Measurement-Based Evaluation of Coordinated Multicell OFDMA Transmission

    Full text link
    The throughput of multicell systems is inherently limited by interference and the available communication resources. Coordinated resource allocation is the key to efficient performance, but the demand on backhaul signaling and computational resources grows rapidly with number of cells, terminals, and subcarriers. To handle this, we propose a novel multicell framework with dynamic cooperation clusters where each terminal is jointly served by a small set of base stations. Each base station coordinates interference to neighboring terminals only, thus limiting backhaul signalling and making the framework scalable. This framework can describe anything from interference channels to ideal joint multicell transmission. The resource allocation (i.e., precoding and scheduling) is formulated as an optimization problem (P1) with performance described by arbitrary monotonic functions of the signal-to-interference-and-noise ratios (SINRs) and arbitrary linear power constraints. Although (P1) is non-convex and difficult to solve optimally, we are able to prove: 1) Optimality of single-stream beamforming; 2) Conditions for full power usage; and 3) A precoding parametrization based on a few parameters between zero and one. These optimality properties are used to propose low-complexity strategies: both a centralized scheme and a distributed version that only requires local channel knowledge and processing. We evaluate the performance on measured multicell channels and observe that the proposed strategies achieve close-to-optimal performance among centralized and distributed solutions, respectively. In addition, we show that multicell interference coordination can give substantial improvements in sum performance, but that joint transmission is very sensitive to synchronization errors and that some terminals can experience performance degradations.Comment: Published in IEEE Transactions on Signal Processing, 15 pages, 7 figures. This version corrects typos related to Eq. (4) and Eq. (28

    Receive Combining vs. Multi-Stream Multiplexing in Downlink Systems with Multi-Antenna Users

    Full text link
    In downlink multi-antenna systems with many users, the multiplexing gain is strictly limited by the number of transmit antennas NN and the use of these antennas. Assuming that the total number of receive antennas at the multi-antenna users is much larger than NN, the maximal multiplexing gain can be achieved with many different transmission/reception strategies. For example, the excess number of receive antennas can be utilized to schedule users with effective channels that are near-orthogonal, for multi-stream multiplexing to users with well-conditioned channels, and/or to enable interference-aware receive combining. In this paper, we try to answer the question if the NN data streams should be divided among few users (many streams per user) or many users (few streams per user, enabling receive combining). Analytic results are derived to show how user selection, spatial correlation, heterogeneous user conditions, and imperfect channel acquisition (quantization or estimation errors) affect the performance when sending the maximal number of streams or one stream per scheduled user---the two extremes in data stream allocation. While contradicting observations on this topic have been reported in prior works, we show that selecting many users and allocating one stream per user (i.e., exploiting receive combining) is the best candidate under realistic conditions. This is explained by the provably stronger resilience towards spatial correlation and the larger benefit from multi-user diversity. This fundamental result has positive implications for the design of downlink systems as it reduces the hardware requirements at the user devices and simplifies the throughput optimization.Comment: Published in IEEE Transactions on Signal Processing, 16 pages, 11 figures. The results can be reproduced using the following Matlab code: https://github.com/emilbjornson/one-or-multiple-stream

    Proof of concept for eradication of vancomycin resistant Enterococcus faecium from broiler farms

    Get PDF
    BACKGROUND - Vancomycin resistant enterococci (VRE) in Swedish broiler production has been shown to persist at farms between batches. The aim of this study was therefore to determine the possibility to eliminate VRE by disinfection of compartments in broiler houses as a proof of concept. FINDINGS - VRE could not be detected in environmental samples from the disinfected test compartments in the broiler houses but was detected in environmental samples from the control compartments. The proportion of broilers colonized with VRE decreased in both the test and the control compartments. CONCLUSIONS - The results are promising and show that the occurrence of VRE in broiler houses can be reduced by adequate cleaning and disinfection with a combination of steam and formaldehyde

    A Pilot Study in Sweden on Efficacy of Benzylpenicillin, Oxytetracycline, and Florfenicol in Treatment of Acute Undifferentiated Respiratory Disease in Calves

    Get PDF
    Bovine respiratory disease (BRD) is a major indication for antibiotic treatment of cattle worldwide and some of the antibiotics used belong to classes of highest priority among those listed by WHO as critically important for human medicine. To preserve the efficacy of "newer" antibiotics, it has been suggested that "older" drugs should be revisited and used when possible. In this pilot study, we evaluated the efficacy of benzylpenicillin (PEN), oxytetracycline (OTC), and florfenicol (FLO) for treatment of naturally occurring BRD on two farms raising calves for slaughter. Farm personnel selected calves for enrolment, assigned calves to one of the three regimens in a systematically random manner, treated the calves, and registered the results. Overall, 117 calves were enrolled in the study. Nineteen calves relapsed in BRD before slaughter and were retreated (16.2%) and three died (2.6%). For PEN, treatment response rates after 30 days, 60 days, and until slaughter were 90.2%, 87.8%, and 80.5%, respectively; for OTC, 90.0%, 85.0%, and 85.0%, respectively; and for FLO, 86.1%, 83.3%, and 77.8%, respectively. There were no statistically significant differences in relapse, mortality, or response rates between the three treatment regimens. This indicates that PEN, OTC, and FLO were equally effective for treatment of BRD but the results need to be confirmed in a more elaborate study with a higher statistical power. The findings support the current recommendations from the Swedish Veterinary Association and the Medical Products Agency to use benzylpenicillin as a first line antibiotic for treatment of calves with undifferentiated respiratory disease in Sweden. Due to differences in the panorama of infectious agents and presence of acquired antibiotic resistance, the findings might not be applicable in other geographical areas

    Environmental contamination by vancomycin resistant enterococci (VRE) in Swedish broiler production

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Vancomycin resistant enterococci are a frequent cause of nosocomial infections and their presence among farm animals is unwanted. Using media supplemented with vancomycin an increase in the proportion of samples from Swedish broilers positive for vancomycin resistant enterococci has been detected. The situation at farm level is largely unknown. The aims of this study were to obtain baseline knowledge about environmental contamination with vancomycin resistant enterococci in Swedish broiler production and the association between environmental contamination and colonisation of birds.</p> <p>Methods</p> <p>Environmental samples were taken before, during and after a batch of broilers at three farms. Samples were cultured both qualitatively and semi-quantitatively for vancomycin resistant enterococci. In addition, caecal content from birds in the batch following at each farm was cultured qualitatively for vancomycin resistant enterococci.</p> <p>Results</p> <p>The number of samples positive for vancomycin resistant enterococci varied among the farms. Also the amount of vancomycin resistant enterococci in the positive samples and the proportion of caecal samples containing vancomycin resistant enterococci varied among the farms. Still, the temporal changes in environmental contamination followed a similar pattern in all farms.</p> <p>Conclusion</p> <p>Vancomycin resistant enterococci persist in the compartments even after cleaning and the temporal changes in environmental contamination were similar among farms. There were however differences among farms regarding both degree of contamination and proportion of birds colonized with vancomycin resistant enterococci. The proportion of colonized birds and the amount of vancomycin resistant enterococci in the compartments seems to be associated. If the factor(s) causing the differences among farms could be identified, it might be possible to reduce both the risk for colonisation by vancomycin resistant enterococci of the subsequent flock and the risk for spread of vancomycin resistant enterococci via the food chain to humans.</p

    Pareto Characterization of the Multicell MIMO Performance Region With Simple Receivers

    Full text link
    We study the performance region of a general multicell downlink scenario with multiantenna transmitters, hardware impairments, and low-complexity receivers that treat interference as noise. The Pareto boundary of this region describes all efficient resource allocations, but is generally hard to compute. We propose a novel explicit characterization that gives Pareto optimal transmit strategies using a set of positive parameters---fewer than in prior work. We also propose an implicit characterization that requires even fewer parameters and guarantees to find the Pareto boundary for every choice of parameters, but at the expense of solving quasi-convex optimization problems. The merits of the two characterizations are illustrated for interference channels and ideal network multiple-input multiple-output (MIMO).Comment: Published in IEEE Transactions on Signal Processing, 6 pages, 6 figure

    Successful Prevention of Antimicrobial Resistance in Animals—A Retrospective Country Case Study of Sweden

    Get PDF
    The misuse and overuse of antibiotics have resulted in an alarmingly high prevalence of antimicrobial resistance (AMR) in human and animal bacteria. European monitoring programmes show that AMR occurrence in food animals is lower in Sweden than in most other EU Member States and that the use of antibiotics for animals is among the lowest in Europe. In this retrospective country case study, we analysed published documents to identify factors contributing to this favourable situation. A fundamental factor identified was early insight into and sustained awareness of the risks of AMR and the need for the prudent use of antibiotics. Early and continuous access to data on antibiotic use and AMR made it possible to focus activities on areas of concern. Another factor identified was the long-term control and eradication of infectious animal diseases, including coordinated activities against endemic diseases, which reduced the need to use antibiotics. Structures and strategies for that purpose established at the national level have since proven useful in counteracting AMR as an integral part of disease prevention and control, guided by a “prevention is better than cure” approach. A third factor identified was consensus among stakeholders on the need to address AMR and their cooperation in the design and implementation of measures

    Modeling of wide-band MIMO radio channels based on NLoS indoor measurements

    Get PDF
    Link to published version (if available)
    corecore