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Modeling of Wide-Band MIMO Radio Channels
Based on NLoS Indoor Measurements

Kai Yu, Student Member, IEEE, Mats Bengtsson, Member, IEEE, Björn Ottersten, Fellow, IEEE, Darren McNamara,
Peter Karlsson, and Mark Beach

Abstract—In this paper, we first verify a previously proposed
Kronecker-structure-based narrow-band model for nonline-of-
sight (NLoS) indoor multiple-input–multiple-output (MIMO)
radio channels based on 5.2-GHz indoor MIMO channel mea-
surements. It is observed that, for the narrow-band case, the
measured channel coefficients are complex Gaussian distributed
and, consequently, we focus on a statistical description using
the first- and second-order moments of MIMO radio channels.
It is shown that the MIMO channel covariance matrix can be
well approximated by the Kronecker product of the covariance
matrices, seen from the transmitter and receiver, respectively.
A narrow-band model for NLoS indoor MIMO channels is thus
verified by these results. As for the wide-band case, it is observed
that the average power-delay profile of each element of the channel
impulse response matrix fits the exponential decay curve and that
the Kronecker structure of the second-order moments can be
extended to each channel tap. A wide-band MIMO channel model
is then proposed, combining a simple COST 259 single-input–
single-output channel model and the Kronecker structure. Monte
Carlo simulations are used to generate indoor MIMO channel
realizations according to the models discussed. The results are
compared with the measured data using the channel capacity and
good agreement is found.

Index Terms—Antenna arrays, channel capacity, channel
modeling, measured channel data, multipath channels, multiple-
input–multiple-output (MIMO) channels.

I. INTRODUCTION

I T IS well known that using antenna arrays at both transmitter
and receiver over a multiple-input–multiple-output (MIMO)

channel can provide a very high channel capacity as long as
the environment has sufficiently rich scattering. Under these cir-
cumstances, the channel matrix elements have low correlation
and the channel realizations are high rank, leading to a substan-
tial increase in channel capacity. In [1]–[3], the channel capacity
for MIMO systems has been investigated theoretically. Many
MIMO channel-measurement campaigns have been carried out
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recently, trying to characterize the MIMO channel and/or the
corresponding capacity (see [4]–[11]).

Several techniques have been proposed to utilize the spatial
and polarization diversity of MIMO communication chan-
nels. These techniques can be divided into two main groups
[12], [13]: space–time coding and spatial multiplexing. The
space–time coding, in general, assumes no knowledge on the
propagation channel at the transmitter. At the receiver, the
structure of the space–time code is used to correct the errors.
Examples of space–time block coding can be found in [14] and
[15] and space–time trellis codes have been discussed in [16].
In [17] and [18], space–time block codes are improved by using
nonperfect channel information at the transmitter. The spatial
multiplexing, on the other hand, attempts to utilize parallel
spatial subchannels by exploiting channel information at the
receiver. It is well known [1], [19] that when the transmitter
has full knowledge about the channel, by using waterfilling
[20] to allocate the power for each transmit element, maximum
channel capacity can be achieved.

Since the channel capacity is determined by the radio
propagation conditions of MIMO channel, there is, of course,
great interest in characterizing and modeling MIMO radio
channels for different environments. With the help of accu-
rate MIMO radio channel models, high-performance MIMO
communication systems can be designed and system perfor-
mance can be accurately predicted. Furthermore, accurate
MIMO radio channel models can assist in the design of space–
time codes or spatial multiplexing techniques under different
scenarios. Several channel models have been reported for
single-input–single-output (SISO) channels, e.g., [21]–[26].
The single-input–multiple-output (SIMO) and multiple-input–
single-output (MISO) channels have also been studied and dif-
ferent models have been proposed (see [27] and the references
therein). Extending these models to the MIMO case, however,
is not straightforward, since the spatial characteristics now
have to be considered at both ends, either directly or indirectly.

In the field of MIMO channel modeling, a so-called one-ring
model has been proposed and investigated in [28]. In [29], a
distributed scattering model has been reported in order to ex-
plain the pinhole phenomenon [30] that may appear in outdoor
scenarios. A model based on channel power correlation coeffi-
cients has been presented in [31] and is extended to include the
complex valued correlation matrix in [32]. For a detailed review
on MIMO wireless channel models, see [33]. However, models
based on experimental data are still rare. To the authors’ knowl-
edge, no wide-band MIMO channel model based on measured
MIMO data has been published until now.

0018-9545/04$20.00 © 2004 IEEE
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Fig. 1. Measurement scenario for the NLoS indoor MIMO channels.

This paper reports results based on data measured by the Uni-
versity of Bristol, Bristol, U.K., as part of the European Union
IST Smart Antenna Technology in Universal Broadband Wire-
less Networks (SATURN) project. First, a Kronecker-structure-
based narrow-band MIMO channel model is verified. We then
further extend this model to the wide-band case based on the
same sets of data. These two models have been assumed in sev-
eral papers [34]–[36] in order to analyze channel capacity, sim-
ulate MIMO system, and predict its performance. This paper
is organized as follows. Section II gives a brief description of
the whole measurement including the measurement scenario,
the measurement equipments, and the corresponding param-
eter settings. A least-squares Kronecker factorization method
is described in Section III and will be used in the following
sections. Section IV analyzes the measured data and verifies a
statistical narrow-band channel model for the nonline-of-sight
(NLoS) indoor MIMO radio channels. In Section V, the mea-
sured wide-band NLoS indoor MIMO channel realizations are
studied and a wide-band MIMO channel model is proposed. Fi-
nally, the conclusions and discussion are given in Section VI.

II. MEASUREMENT DESCRIPTION

The measurement site was the Merchant Venturers Building,
University of Bristol. The general layout of the test site includes
office rooms, computer labs, corridors, and open spaces. The en-
tire set of measurements includes 15 transmitter locations and
three receiver locations. Both line-of-sight (LoS) and NLoS sce-
narios were measured [37]. In this paper, we focus on mod-
eling an NLoS scenario as shown in Fig. 1, which includes five
transmit positions and one receive position. In this figure, the
arrow at each transmitter location indicates the orientation of
the transmit array. The transmitter was located in a computer
laboratory and the receiver was located in a large modern office
with cubicles.

The Medav RUSK BRI vector sounder was used during the
measurements, with eight-element uniform linear arrays at both

the transmit and receive sides. The transmit elements were om-
nidirectional and can transmit up to 27 dBm to the receiver. The
receive elements had a beamwidth of 120 (for pictures, see [4]).
The distance between two neighboring antenna elements was

for both arrays. There was feedback from the receiver to
the transmitter by a cable in order to synchronize the transmitter
and receiver.

The measurements were centered at 5.2 GHz. To measure
the channel realizations, a periodic multifrequency signal with
120-MHz bandwidth was sent out by the transmit elements and
was captured by the receive elements. For each transmitter and
receiver pair, the signal-to-noise ratio (SNR) was above 20 dB.
The receiver downconverted the received signal to 80 MHz,
which was sampled at 320 MHz. The wide-band channel re-
sponse was then estimated and saved in the frequency domain.
During the measurements, the maximum expected channel ex-
cess delay was set as 800 ns, corresponding to 97 frequency sub-
channels.

For each transmit element, one “vector snapshot” (i.e., one
measurement from each receive element) was taken by the re-
ceiver through switching control circuitry. One MIMO snapshot
included eight vector snapshots since there were eight transmit
elements. The overall sampling time for one MIMO snapshot
was 102.4 s, which is well within the coherence time of this
indoor scenario.

For each transmitter and receiver pair, one complete measure-
ment includes 199 time blocks with 16 MIMO snapshots within
each block; hence, there were, overall 3184, complete MIMO
snapshots for each frequency subchannel. Since the time delay
between two neighboring blocks was 26.624 ms, this means
that the total time for one complete measurement was 5.3 s. In
total, five complete measurements were conducted for the mea-
sured NLoS scenarios. During the measurements, people were
moving around both at the transmitter and receiver as normal.

It is observed that even though people were moving around
during the measurements, the time variations on a single link of
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each narrow-band subchannel are still very small, leading to a
low mobility scenario. Therefore, in this paper, pairs of two and
three neighboring elements have been used as examples, with
different subsets of elements being selected in order to get suf-
ficiently many MIMO channel realizations to analyze the sta-
tistics of the measured channel. The idea is that small dislo-
cations of the antenna arrays (corresponding to selecting dif-
ferent subsets of the eight element array) give different MIMO
channel realizations with the same statistics. Furthermore, in
the narrow-band case, the snapshots from different frequency
subchannels are also treated as different channel realizations.
Note that we only focus on modeling the channel with mod-
erate array sizes. For large array sizes, a physical model appears
to be a good candidate, since the physical parameters are easier
to identify using antenna arrays with large aperture. In the fol-
lowing sections, unless otherwise stated, the data measured at
Tx13-Rx3 are used as an example. Similar results are found for
the other four transmitter locations (see Fig. 1).

III. LEAST-SQUARES KRONECKER FACTORIZATION

In [38] and [39], a least-squares Kronecker factorization
method has been introduced to approximate a complex valued
matrix with the Kronecker product of two complex valued
matrices and optimally (with suitable dimensions). This
method will be used in the following two sections to factorize
the measured MIMO channel covariance matrices. A brief
description of the least-squares Kronecker factorization method
is given as follows.

The original problem boils down to solving the minimization
problem

(1)

where denotes the Frobenius norm and is the Kronecker
product.

This can be solved by rearranging the positions of the ma-
trix elements, which leads to a permuted version of the original
problem [38], i.e.,

(2)

where denotes transpose, is the vec-operator and
is the permuted matrix. Note that the original problem

(1) and its permuted version (2) are equivalent since the Frobe-
nius norm is not affected by permutation. More details on how to
find the permuted version of the original problem can be found
in the Appendix.

The well-known solution to this least-squares rank-one ap-
proximation of in (2) can easily be obtained using the
singular value decomposition (SVD) [40], i.e.,

vec (3)

vec (4)

where denotes the complex conjugate, is the largest
singular value of , and are the left and right
singular vector associated with , and is an arbitrary
scalar. Although, in general, and are not unique

[41], it can be shown [39] that the solution and can always
be chosen to be Hermitian positive definite if is Hermitian
positive definite.

IV. NARROW-BAND MIMO CHANNEL MODEL

In this section, we focus on modeling MIMO radio channels
from a narrow-band system perspective, i.e., we assume that the
channel has a constant response over the entire system band-
width. Note that the narrow-band MIMO channel model verified
in this section can also be seen as a special case of the wide-band
MIMO channel model, which will be presented in the next sec-
tion, with only a single tap.

A. Capacity and Second-Order Moments

Assume there are transmit elements and receive ele-
ments. For a narrow-band MIMO channel, the input–output re-
lationship can be expressed in the baseband as

(5)

where is the transmitted signal, is the received signal, and
is additive white Gaussian noise (AWGN). The channel matrix

here is an matrix.
For a fixed channel realization, the channel capacity, under

the constraint that the transmitter has no channel state infor-
mation and the transmitted power is equally allocated to each
transmit element, can be expressed as [2]

bits/s/Hz (6)

where denotes Hermitian transpose, is the nor-
malized channel matrix, and is the average SNR at each re-
ceiver branch. To calculate the channel capacity and statistics,
the measured channel matrices should be correctly normal-
ized. We use the same normalization factor for all the measured
channel realizations such that

(7)

where denotes the expected value, which averages over all
measured MIMO channel realizations for a specific transmitter
and receiver pair.

Define the normalized transmitter, receiver, and channel co-
variance matrices as

for (8)

for (9)

(10)

where is the th row of , is the th column of , and
is the channel matrix normalized according to (7). It was con-
jectured in [28] and [42] that the normalized MIMO channel
covariance matrix can be well approximated by the Kronecker
product of the covariance matrices at the transmitter and re-
ceiver, i.e.,

(11)
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Fig. 2. Histogram of the envelope of one channel coefficient for an NLoS
indoor MIMO scenario and a Rayleigh pdf (normalized).

Below, this Kronecker structure will be verified from the mea-
sured data. Note that in [43], the same structure was proposed
where the amplitude correlation was verified using the wireless
system engineering (WiSE) ray-tracing simulator.

B. Measurement Results

1) Distribution of the Channel Coefficients: First, we inves-
tigate the distribution of the channel coefficients. Fig. 2 shows
the normalized histogram of the envelope of one channel coef-
ficient along with a Rayleigh probability density function (pdf).
It is clearly observed that the envelope of the channel coeffi-
cient has a good fit with a Rayleigh distribution. By plotting
the cumulative density function (cdf) in Fig. 3, the phase of
the channel coefficient appears to be uniformly distributed over

. Furthermore, the factor is estimated as the ratio of
the specular power and the power of multipath components [44],
[45]. The corresponding results are smaller than 30 dB for all
five data sets, which proves that no dominant components exist
for these measured scenarios. We conclude that the channel co-
efficients for these measured NLoS indoor MIMO scenarios ap-
pear to be zero-mean complex Gaussian.

2) Second-Order Moments: It is well known that a com-
plex Gaussian random process is completely characterized by its
first- and second-order moments [46]. To investigate the second-
order statistics for these NLoS indoor scenarios, we define the
following narrow-band model error to evaluate the difference
between two matrices and :

(12)

Fig. 3. The cdf of the phase of one channel coefficient for an NLoS indoor
MIMO scenario and the uniform distribution curve over [��; �].

For a 2 2 setup, the estimated transmit, receive, and channel
covariance matrices for Tx13-Rx3 are shown at the bottom of
the page and as follows:

where the indicates a sample estimate of the corresponding
quantities in (8)–(10). Clearly, the correlation at the receive side
is much higher than the correlation at the transmit side. This
could be due to the fact that the transmit elements were om-
nidirectional while the receive elements could only receive the
signal within 120 range and, therefore, more scatterers can be
“seen” at the transmitter than at the receiver. We also note that,
for different transmit locations, the corresponding covariance
matrices have small differences.

In order to see how well the estimated MIMO channel covari-
ance matrix can be approximated by a Kronecker product
of , , we use the least-squares Kronecker factorization
method to factorize optimally into two Hermitian positive
definite submatrices and and compare the results with the
sample covariance estimates. Here, since in (3) and (4) is an
arbitrary scalar, the least-squares method has been used to find

, which minimizes the differences between , and ,
, respectively. From the measured data, we investigate two

narrow-band model errors, i.e., the error from the least-squares
Kronecker factorization and the error from the sample covari-
ance estimates. The results from the data measured between
Tx13-Rx3 are listed in the first two rows of Table I. We also



YU et al.: MODELING OF WIDE-BAND MIMO RADIO CHANNELS BASED ON NLOS INDOOR MEASUREMENTS 659

TABLE I
NARROW-BAND MODEL ERRORS (Tx13–Rx3)

TABLE II
NARROW-BAND MODEL ERRORS (3 � 3 SETUP)

Fig. 4. Narrow-band model errors with two transmit antenna elements and 1–8
receive antenna elements.

note that the differences between the matrices , and the co-
variance matrices , are small, as shown in the last two
rows of Table I.

For the other transmitter locations, similar narrow-band
model errors have been found. Table II lists the narrow-band
model errors for all five transmitter locations with a 3 3
setup.

From Tables I and II, it is clearly shown that the MIMO
channel covariance matrix can be well modeled as shown in
(11). The narrow-band model errors are well below 10% and
the model errors from the sample estimates are close to those
from the optimal Kronecker factorization. Reasonably small
narrow-band model errors are found with the number of antenna
elements up to five at both ends. However, the narrow-band
model error increases when the number of antenna elements
increases. Fig. 4 shows that with two transmit antenna elements,
increasing the number of receive antenna elements will also in-
crease the narrow-band model errors. Similar observations are
found when the number of transmit antenna elements increases.
One possible explanation is that fewer channel realizations
are obtained from the spatial averaging when the number of
antenna elements increases. Nevertheless, it is fair to conclude

Fig. 5. The cdf of the narrow-band channel capacity from the measured
data, narrow-band channel model, and i.i.d. MIMO channel. Power is equally
allocated to the transmit elements and the SNR at the receive side is 20 dB.

that this Kronecker structure of the channel covariance matrix
(11) is suitable for arrays with a moderate number of elements
under these conditions.

C. Narrow-Band MIMO Channel Model

Given a complex Gaussian channel and the Kronecker
structure of MIMO channel covariance matrix (11), the MIMO
channel matrix can be modeled as [28], [34]

(13)

where the stochastic matrix contains independent
and identically distributed (i.i.d.) elements and
is defined such that .

Using the well-known properties of the Kronecker product
[47], it is easy to show that the MIMO channel covariance ma-
trix of (13) can be decoupled as in (11). This means that given a
zero-mean complex Gaussian process and its second-order mo-
ments (11), the MIMO channel model (13) is uniquely deter-
mined since a complex Gaussian process is completely specified
by its first- and second-order moments. However, if the channel
is not Gaussian, then the channel model is not unique. A simple
example can be found in [48], which shows that a low-rank
channel model can generate exactly the same second-order mo-
ments (11).

Using Monte Carlo computer simulations, 1000 channel re-
alizations are generated and the cdf of the simulated channel
capacity is compared with that from the measured data. The re-
sults for the 2 2 and 3 3 cases are given in Fig. 5. As a ref-
erence, the capacity for the i.i.d. channel is also included. From
this figure, it is shown that the channel capacity obtained from
the measured channel can be well simulated by the model.

V. WIDE-BAND MIMO CHANNEL MODEL

The narrow-band channel model described in the previous
section assumes that the system bandwidth is narrow enough so
that the frequency response can be treated as a complex valued
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scalar over the whole bandwidth, the so-called frequency-flat
channel. In many communication systems, however, the band-
width is significant and the channel is frequency dependent due
to the multipath characteristics of the propagation channels.
Such frequency-selective channels may cause intersymbol
interference (ISI). Therefore, it is of great importance to have
accurate wide-band MIMO channel models in order to predict
wide-band MIMO channel capacity and to evaluate different
methods proposed to solve the ISI problem. In this section,
we present a wide-band MIMO channel model that combines
a simple COST 259 SISO channel model with the Kronecker
structure of the second-order moments. The wide-band channel
model will be used to simulate a MIMO channel with 120-MHz
bandwidth and the channel capacity will be compared with that
from the measured data.

A. Wide-Band Channel Capacity

Consider a wide-band MIMO system with transmit ele-
ments and receive elements. The baseband input–output re-
lationship is given by

(14)

where is the transmitted signal, is the received signal,
is AWGN, and denotes convolution. Each element of the

channel impulse response matrix is the impulse response
from a transmit antenna to a receive antenna.

When the transmitted power is equally allocated to each
transmit element and frequency subchannel, the wide-band
channel capacity can be expressed as [3], [49]

bits/s (15)

where is the overall bandwidth of the MIMO channel,
is the normalized frequency response matrix of each

narrow-band subchannel, and is the average SNR at each
receiver branch over the entire bandwidth. Here, we normalize
the frequency response of every narrow-band subchannel using
a common factor such that

(16)

B. Average Power-Delay Profile and Root-Mean-Square (rms)
Delay Spread

As stated in Section II, the measured data were stored in the
frequency domain and, therefore, we use the inverse Fourier
transform to regenerate the MIMO channel impulse response
matrix. Hanning windowing is used to lower the sidelobe ef-
fects.

To show how the received power changes according to a fixed
time delay reference, the average power-delay profile is found
by averaging the instantaneous power-delay profiles over the
whole measurement time.

The rms delay spread is a measure of how dispersive the
channel is. It is defined as the square root of the second cen-
tral moment and can be calculated as [45]

(17)

where

(18)

and

(19)

are the first (also called “mean excess delay”) and second mo-
ments of the instantaneous power-delay profile, respectively.
Here, is the tap index, is the complex tap amplitude, and

is the time delay relative to the first detected signal.

C. Second-Order Moments

For a wide-band MIMO channel, the normalized transmit,
receive, and channel covariance matrices associated with the th
tap are defined as

for (20)

for (21)

(22)

where is the th row of , is the th column of , and
is the th tap of the channel impulse response matrix and is

normalized according to (7). It is of great interest to see whether
the Kronecker structure (11) can be extended to each channel
tap, i.e., if

(23)

Note that this extension of the Kronecker structure has also been
discussed and filed in the Third Generation Partnership Project
(3GPP) meetings [50].

D. Measurement Results

1) Average Power-Delay Profile and rms Delay
Spread: The average power-delay profile of one element
of the channel impulse response matrix is shown in Fig. 6. It is
observed that the curve fits the exponential decay curve quite
well. Similar observations were reported in [26] and [51]–[53]. It
is further observed that the power-delay profile varies from one
transmit location to another and, therefore, is location depen-
dent. The rms delay spread is calculated for each instantaneous
power-delay profile by setting the threshold to be 20 dB below
the peak power [45]. Fig. 7 shows the cdf of the measured rms
delay spread. The mean rms delay spread is 36.7 ns in this case.
For the other transmitter locations, the mean rms delay spread
varies between 30 to 40 ns. These numbers are consistent with
the rms values reported in [45], [54], and [55].

Based on the channel variations shown above, assume that
each channel tap is independent zero-mean complex Gaussian.
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Fig. 6. Average power-delay profile of one element of the channel impulse
response matrix.

The following simple tapped delay line SISO channel model
proposed in the European research initiative COST 259 [51] is
used to model each elemently of the channel impulse response
matrix, i.e.,

(24)

where is the Dirac delta function, is the time spacing be-
tween neighboring taps, is the time delay, and .
The average power of the th tap is modeled as

(25)

where is the mean rms delay spread and is a normaliza-
tion factor. No Doppler frequency shift is considered here due to
the low mobility of the measured scenario. Other SISO channel
models, e.g., [24], can also be used as long as they assume that
each channel tap is independent zero-mean complex Gaussian.
This makes the wide-band MIMO channel model more flexible
to have a tradeoff between complexity and accuracy. It is impor-
tant to note that such a tradeoff always exists when modeling the
channel. We will see later that the statistical behavior of each
element of the channel impulse response matrix can be well re-
generated by this simple channel model.

2) Second-Order Moments: To measure the difference be-
tween the normalized MIMO channel covariance matrix
and the Kronecker product of two covariance matrices and

, the residual defined in (12) is used
for each tap. Furthermore, since each tap has a different power,
a wide-band model error, is defined to give different weights
to each tap according to the average power-delay profile, i.e.,

(26)

where is the average power for the th tap.

Fig. 7. The cdf of rms delay spread for one element of the channel impulse
response matrix from the measured data and wide-band channel model.

Fig. 8. Residuals of the Kronecker structure (2 � 2 case).

TABLE III
WIDE-BAND MODEL ERRORS (�)

Calculating the measured MIMO channel covariance matrix
and comparing with the Kronecker product of the covari-

ance matrices and , the results are given in Fig. 8 and
Table III. For a 2 2 case, the residuals for each tap are plotted
in Fig. 8 along with those from the optimal least-squares Kro-
necker factorization. Only 38 of 97 successive taps have been
plotted, i.e., from approximately 135 ns (the first arrived peak)
to 450 ns (the noise floor) in Fig. 6. We note that the residuals
from the sample estimates are only slightly larger than the resid-
uals from the least-squares Kronecker factorization. Table III
lists the wide-band model errors for different transmit locations
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Fig. 9. Averaged frequency correlation function.

and setups. It is shown that the wide-band model errors are
below 20% for the worst case. Therefore, we conclude that, for
each tap, the normalized MIMO channel covariance matrix can
be approximated quite well by the Kronecker structure (23). We
will see shortly that both the narrow- and wide-band MIMO
channel capacities (simulated based on the above Kronecker
structure) agree well with the measured data.

E. Wide-Band MIMO Channel Model

Combining the SISO channel model described before and the
Kronecker structure for each tap, the wide-band MIMO channel
impulse response matrix can be modeled as

(27)

where are random matrices with i.i.d. elements and
the average power of each element can be modeled as shown
in (25). Note that, in this paper, no path loss is considered; the
normalization factor in (25) is chosen such that (16) holds.

Using the model in (27), 1000 MIMO channel impulse re-
sponse matrices are generated by Monte Carlo simulations for
2 2 and 3 3 setups and the discrete Fourier transform
is used to obtain the frequency channel response. The cdf of
the rms delay spread for the simulated SISO channel is plotted
in the same figure as the measured data (see Fig. 7). The fre-
quency correlation function was estimated as

, [56], where
is the complex frequency response associated with frequency
at time and is the number of frequency subchannels. Av-
eraging over both the time and spatial domains, Fig. 9 shows
the averaged frequency correlation function from the measured
data as well as that from the simulations. Both figures show that
the simulation results match the measured data well. Finally,
the capacity of the narrow-band MIMO channel is calculated
and compared with that from the measured data (see Fig. 10).
Good agreement between the measured data and the wide-band
channel model is found.

Fig. 10. The cdf of the narrow-band channel capacity. Power is equally
allocated and the SNR at the receive side is 20 dB.

Fig. 11. The cdf of 20-MHz MIMO channel capacity. Power is equally
allocated and the SNR at the receive side is 20 dB.

F. Simulations of 120-MHz MIMO Wireless Channels

The North American IEEE 802.11a and European
HiperLAN/2 are two standards for high-speed wireless
local area networks (WLAN). Both operate in the 5-GHz
band and can provide high data rates between broadband core
networks and mobile terminals. Both the IEEE 802.11a and
HiperLAN/2 channels have 20-MHz bandwidth and use or-
thogonal frequency-division multiplexing (OFDM) technique.
More details on the IEEE 802.11a and HiperLAN/2 standards
can be found in [57] and [58].

For a system with 120-MHz bandwidth, six parallel 20 MHz
channels can be provided. We use the above wide-band channel
model to simulate a 120-MHz MIMO channel with 2 2 and 3

3 setups, where the covariance matrices for each tap at both
ends are estimated from the measured data. The corresponding
channel capacity is then calculated according to (15).

Fig. 11 shows the cdf of the capacity that one 20-MHz MIMO
channel can provide with fully used 20-MHz bandwidth. There
is a good agreement between the wide-band channel model
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Fig. 12. The cdf of 120-MHz MIMO channel capacity. Power is equally
allocated and the SNR at the receive side is 20 dB.

and the measured data. Furthermore, it is shown that, with 1%
outage probability, one 20-MHz channel can provide capacity
of approximately 170 Mbits/s (2 2 setup) and 250 Mbits/s (3

3 setup). These values match those reported in [59] well. It
is also observed that the six parallel MIMO channels that are
generated have similar capacity characteristics.

In Fig. 12, the capacity of the whole channel is plotted. Again,
it is observed that the curves from the model fit the curves from
the measured data well. The 1% outage channel capacity of
the whole 120-MHz MIMO channel is above 1100 Mbits/s and
1600 Mbits/s for 2 2 and 3 3 setups, respectively. These
numbers are higher than six times the capacity values of the
20-MHz MIMO channels shown in Fig. 11, which indicates the
existence of frequency diversity gain (also see [7]).

VI. CONCLUSION AND DISCUSSION

This paper has reported results on statistical modeling
of MIMO radio channels based on indoor measurements
at 5.2 GHz. Both narrow- and wide-band channel models
have been discussed. First, a previously proposed Kronecker
structure-based narrow-band MIMO channel model has been
verified from the measured data. It has been observed that the
channel coefficients can be modeled by complex Gaussian
variables for the measured NLoS indoor scenarios. Moreover,
the MIMO channel covariance matrix can be well approximated
by the Kronecker product of the covariance matrices seen from
both ends. Concerning modeling the wide-band channels, it
has been observed that the average power-delay profile of
each element of the channel impulse response matrix agrees an
exponential decay curve. Our investigation has also found that
the Kronecker structure of the channel covariance matrix can
be further extended to each wide-band channel tap. Therefore,
we have proposed a wide-band MIMO channel model that
combines a simple SISO channel model with the Kronecker
structure. Monte Carlo simulations have been used and good
agreement has been found by comparing the results from the
measured data and those simulated using the above models.

The verification of the Kronecker structure of channel
covariance matrix and the corresponding MIMO channel
models provides support for many previously published results

[34]–[36]. By decoupling the MIMO channel covariance
matrix, some previously reported SIMO or MISO channel
models [27] can now be used to model the covariance matrices
at both transmitter and receiver. Furthermore, one can avoid
expensive full MIMO channel measurements by measuring the
corresponding SIMO/MISO channels at both ends.

Still, some open questions remain about these two models.
For example, how to relate these two nonphysical models with
some other well-known physical models? Under what condi-
tions of the surrounding environment does the Kronecker struc-
ture of the second-order moments hold? In fact, the narrow-band
MIMO channel model (13) is a special case of the distributed
scattering model in [29]. Using the so-called ladder diagram in
electromagnetic theory, a possible explanation on the Kronecker
structure is given briefly [42] when the propagation media is dif-
fusive. Also see [48] for a heuristic derivation of the Kronecker
structure and more open problems.

APPENDIX

Finding the Permuted Version of (1): Rearranging the posi-
tions of the matrix elements to obtain a permuted version of (1)
can be done by introducing a permutation matrix such that

(28)

where and are two square matrices, and
. It is obvious that there is a one-to-one mapping between

the elements of and and that is the
corresponding permutation matrix. Then, the permuted matrix

can be obtained using the fact .
Without loss of generality, assume that is an matrix

and that is an matrix. Consequently, the dimensions for
both and are .

Let us consider the position of in and
, respectively. Recall that

...
. . .

...

It is clear that is in row and column
of . Therefore, the index of in

is

On the other hand, is in element of and
is in element of . Obviously, is in row

and column of . Therefore, the
index of in is

From the above results, the permutation matrix is given as
for and

while the rest of
the elements of are 0. Note that each row or column of has
only one element that equals 1 while the rest are 0. Therefore,

is orthonormal.
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