1,727 research outputs found
About the detection of gravitational wave bursts
Several filtering methods for the detection of gravitational wave bursts in
interferometric detectors are presented. These are simple and fast methods
which can act as online triggers. All methods are compared to matched filtering
with the help of a figure of merit based on the detection of supernovae signals
simulated by Zwerger and Muller.Comment: 5 pages, proceedings of GWDAW99 (Roma, Dec. 1999), to appear in Int.
J. Mod. Phys.
An efficient filter for detecting gravitational wave bursts in interferometric detectors
Typical sources of gravitational wave bursts are supernovae, for which no accurate models exist. This calls for search methods with high efficiency and robustness to be used in the data analysis of foreseen interferometric detectors. A set of such filters is designed to detect gravitational wave burst signals. We first present filters based on the linear fit of whitened data to short straight lines in a given time window and combine them in a non linear filter named ALF. We study the performances and efficiencies of these filters, with the help of a catalogue of simulated supernova signals. The ALF filter is the most performant and most efficient of all filters. Its performance reaches about 80% of the Optimal Filter performance designed for the same signals. Such a filter could be implemented as an online trigger (dedicated to detect bursts of unknown waveform) in interferometric detectors of gravitational waves
Egc: A Time-Frequency Augmented Template-Based Method For Gravitational Wave Burst Search In Ground-Based Interferometers
The detection of burst-type events in the output of ground gravitational wave detectors is particularly challenging. The potential variety of astrophysical waveforms, as proposed by simulations and analytic studies in general relativity and the discrimination of actual signals from instrumental noise both are critical issues. Robust methods that achieve reasonable detection performances over a wide range of signals are required. We present here a hybrid burst-detection pipeline related to time–frequency transforms while based on matched filtering to provide robustness against noise characteristics. Studies on simulated noise show that the algorithm has a detection efficiency similar to other methods over very different waveforms and particularly good timing even for low amplitude signals: no bias for most tested waveforms and an average accuracy of 1.1 ms (down to 0.1 ms in the best case). Time–frequency-type parameters, useful for event classification, are also derived for noise spectral densities unfavourable to standard time–frequency algorithms
A First Comparison Between LIGO and Virgo Inspiral Search Pipelines
This article reports on a project that is the first step the LIGO Scientific
Collaboration and the Virgo Collaboration have taken to prepare for the mutual
search for inspiral signals. The project involved comparing the analysis
pipelines of the two collaborations on data sets prepared by both sides,
containing simulated noise and injected events. The ability of the pipelines to
detect the injected events was checked, and a first comparison of how the
parameters of the events were recovered has been completed.Comment: GWDAW-9 proceeding
A first comparison of search methods for gravitational wave bursts using LIGO and Virgo simulated data
We present a comparative study of 6 search methods for gravitational wave
bursts using simulated LIGO and Virgo noise data. The data's spectra were
chosen to follow the design sensitivity of the two 4km LIGO interferometers and
the 3km Virgo interferometer. The searches were applied on replicas of the data
sets to which 8 different signals were injected. Three figures of merit were
employed in this analysis: (a) Receiver Operator Characteristic curves, (b)
necessary signal to noise ratios for the searches to achieve 50 percent and 90
percent efficiencies, and (c) variance and bias for the estimation of the
arrival time of a gravitational wave burst.Comment: GWDAW9 proceeding
Prescribing pathways to triple therapy: a multi-country, retrospective observational study of adult patients with chronic obstructive pulmonary disease
Introduction Maintenance treatment strategies in COPD recommend inhaled corticosteroid (ICS) + long-acting muscarinic antagonist (LAMA) + long-acting β2-agonist (LABA) triple therapy after initial dual therapy. Little is known about how treatment pathways to triple therapy vary across countries in clinical practice. Methods This multi-country, retrospective cohort study (conducted 1 January 2005–1 May 2016) included patients with a COPD diagnosis, and (UK only) evidence of smoking history, or (France, Italy, Germany, and Australia) an indicator confirming COPD diagnosis, a first instance of triple therapy recorded during the study period and ≥ 12 months of data prior to this date. Treatment pathways to triple therapy were analyzed in patients whose first instance of triple therapy was on or after the initial COPD diagnosis. The proportion of patients who initiated triple therapy prior to initial COPD diagnosis was also estimated. Meta-analyses of the main results were performed. Results In 130,729 patients across all countries, mean age (standard deviation) ranged from 63.4 (10.4) years (Germany) to 69.8 (9.9) years (Italy), and median time (interquartile range) from initial COPD diagnosis to first prescription of triple therapy ranged from 16.9 (5.7–36.2) months (Australia) to 42.5 (13.9–87.4) months (UK). ICS + LABA was the most common treatment pathway prior to triple therapy in the UK, Germany, and Italy (27.3%–31.6%); no previous maintenance therapy prior to triple therapy was the most common pathway in France and Australia (32.5% and 37.9%, respectively). Meta-analyses provided a pooled estimate of 20.4% (95% confidence interval: 13.8%–29.1%) for the proportion of patients initiating triple therapy at or before initial COPD diagnosis. Conclusions In this retrospective cohort study, treatment pathways to triple therapy were diverse within and between countries. The differing impact of treatments may affect quality of life and disease control in patients with COPD. Further analyses should investigate factors influencing pathways to triple therapy
Implications for the Origin of GRB 051103 from LIGO Observations
We present the results of a LIGO search for gravitational waves (GWs) associated with GRB 051103, a short-duration hard-spectrum gamma-ray burst whose electromagnetically determined sky position is coincident with the spiral galaxy M81, which is 3.6Mpc from Earth. Possible progenitors for short-hard GRBs include compact object mergers and soft gamma repeater (SGR) giant flares. A merger progenitor would produce a characteristic GW signal that should be detectable at the distance of M81, while GW emission from an SGR is not expected to be detectable at that distance. We found no evidence of a GW signal associated with GRB 051103. Assuming weakly beamed gamma-ray emission with a jet semi-angle of 30. we exclude a binary neutron star merger in M81 as the progenitor with a confidence of 98%. Neutron star-black hole mergers are excluded with > 99% confidence. If the event occurred in M81 our findings support the hypothesis that GRB 051103 was due to an SGR giant flare, making it the most distant extragalactic magnetar observed to date
Inference of proto-neutron star properties in core-collapse supernovae from a gravitational-wave detector network
The next Galactic core-collapse supernova (CCSN) will be a unique opportunity
to study within a fully multi-messenger approach the explosion mechanism
responsible for the formation of neutron stars and stellar-mass black holes.
State-of-the-art numerical simulations of those events reveal the complexity of
the gravitational-wave emission which is highly stochastic. This challenges the
possibility to infer the properties of the compact remnant and of its
progenitor using the information encoded in the waveforms. In this paper we
take further steps in a program we recently initiated to overcome those
difficulties. In particular we show how oscillation modes of the proto-neutron
star, highly visible in the gravitational-wave signal, can be used to
reconstruct the time evolution of their physical properties. Extending our
previous work where only the information from a single detector was used we
here describe a new data-analysis pipeline that coherently combines
gravitational-wave detectors' data and infers the time evolution of a
combination of the mass and radius of the compact remnant. The performance of
the method is estimated employing waveforms from 2D and 3D CCSN simulations
covering a progenitor mass range between 11\, and
40\, and different equations of state for both a network of
up to five second-generation detectors and the proposed third-generation
detectors Einstein Telescope and Cosmic Explorer. Our study shows that it will
be possible to infer PNS properties for CCSN events occurring in the vicinity
of the Milky Way, up to the Large Magellanic Cloud, with the current generation
of gravitational-wave detectors
A First Assessment of the Corrections for the Consistency of the IAU2000 and IAU2006 Precession-Nutation Models
The Earth precession-nutation model endorsed by resolutions of each the International Astronomical Union and the International Union of Geodesy and Geophysics is composed of two theories developed independently, namely IAU2006 precession and IAU2000A nutation. The IAU2006 precession was adopted to supersede the precession part of the IAU 2000A precession-nutation model and tried to get the new precession theory dynamically consistent with the IAU2000A nutation. However, full consistency was not reached, and slight adjustments of the IAU2000A nutation amplitudes at the micro arcsecond level were required to ensure consistency. The first set of formulae for these corrections derived by Capitaine et al. (Astrophys 432(1):355–367, 2005), which was not included in IAU2006 but provided in some standards and software for computing nutations. Later, Escapa et al. showed that a few additional terms of the same order of magnitude have to be added to the 2005 expressions to get complete dynamical consistency between the official precession and nutation models. In 2018 Escapa and Capitaine made a joint review of the problem and proposed three alternative ways of nutation model and its parameters to achieve consistency to certain different extents, although no estimation of their respective effects could be worked out to illustrate the proposals. Here we present some preliminary results on the assessment of the effects of each of the three sets of corrections suggested by Escapa and Capitaine (Proceedings of the Journées, des Systémes de Référence et de la Rotation Terrestre: Furthering our Knowledge of Earth Rotation, Alicante, 2018) by testing them in conjunction with the conventional celestial pole offsets given in the IERS EOP14C04 time series.The four first authors were partially supported by Spanish Project AYA2016-79775-P (AEI/FEDER, UE)
The Yet-Unobserved Multi-Messenger Gravitational-Wave Universe
Observations with next-generation ground-based detectors further enhanced with multi-messenger (electromagnetic and neutrino) detections will allow us to probe new extreme astrophysics. Target sources included: core-collapse supernovae, continuous emission from isolated or accreting neutron stars, and bursts from magnetars and other pulsars
- …