76 research outputs found

    Iron isotope tracing of mantle heterogeneity within the source regions of oceanic basalts

    Get PDF
    Mineralogical variations in the Earth's mantle and the relative proportions of peridotitic versus enriched and potentially crustally-derived pyroxenitic domains within the mantle have important implications for mantle dynamics, magma generation, and the recycling of surface material back into the mantle. Here we present iron (Fe) stable isotope data (δ 57Fe, deviation in 57Fe/54Fe from the IRMM-014 standard in parts per thousand) for peridotite and garnet–pyroxenite xenoliths from Oahu, Hawaii and explore Fe isotopes as tracer of both peridotitic and pyroxenitic components in the source regions of oceanic basalts. The pyroxenites have δ 57Fe values that are heavy (0.10 to 0.27‰) relative to values for mid-ocean ridge and ocean island basalts (MORB; OIB; View the MathML source) and the primitive mantle (PM; View the MathML source). Pyroxenite δ 57Fe values are positively correlated with bulk pyroxenite titanium and heavy rare earth element (REE) abundances, which can be interpreted in terms of stable isotope fractionation during magmatic differentiation and pyroxene cumulate formation. In contrast, the peridotites have light δ 57Fe values (−0.34 to 0.14‰) that correlate negatively with degree of melt depletion and radiogenic hafnium isotopes, with the most depleted samples possessing the most radiogenic Hf isotope compositions and lightest δ 57Fe values. While these correlations are broadly consistent with a scenario of Fe isotope fractionation during partial melting, where isotopically heavy Fe is extracted into the melt phase, leaving behind low-δ 57Fe peridotite residues, the extent of isotopic variation is far greater than predicted by partial melting models. One possibility is derivation of the samples from a heterogeneous source containing both light-δ 57Fe (relative to PM) and heavy-δ 57Fe components. While pyroxenite is a viable explanation for the heavy-δ 57Fe component, the origin of the depleted light-δ 57Fe component is more difficult to explain, as melting models predict that even large (>30%) degrees of melt extraction do not generate strongly fractionated residues. Multiple phases of melt extraction or other processes, such as metasomatism, melt percolation or the assimilation of xenocrystic olivine with light δ 57Fe values may need to be invoked to explain these light δ 57Fe values; a caveat to this is that these processes must either preserve, or generate correlations between δ 57Fe and Hf isotopes. Published variations in δ 57Fe in mantle melting products, such as MORB and OIB, are also greater than predicted by melting models assuming derivation from δ 57Fe-homogeneous mantle. For example, OIB from the Society and Cook-Austral islands, which have radiogenic Pb and Sr isotope compositions indicative of recycled components such as subduction modified, low-Pb oceanic crust and terrigenous sediments have heavy mean δ 57Fe values (∼0.21‰) significantly distinct to those of other OIB and MORB, which could explained by the presence of heavy-δ57Fe pyroxenite cumulate or pyroxenitic melt components, whereas large degree partial melts, such as komatiites and boninites, display light Fe-isotopic compositions which may reflect sampling of refractory, light-δ57Fe mantle components. Iron stable isotopes may therefore provide a powerful new means of fingerprinting mineralogical variations within the Earth's mantle and identifying the mineralogy of depleted and enriched components within the source regions of volcanic rocks

    H Diffusion in Olivine and Pyroxene from Peridotite Xenoliths and a Hawaiian Magma Speedometer

    Get PDF
    Hydrogen is present as a trace element in olivine and pyroxene and its content distribution in the mantle results from melting and metasomatic processes. Here we examine how these H contents can be disturbed during decompression. Hydrogen was analyzed by FTIR in olivine and pyroxene of spinel peridotite xenoliths from Salt Lake Crater (SLC) nephelinites which are part of the rejuvenated volcanism at Oahu (Hawaii) [1,2]. H mobility in pyroxene resulting from spinel exsolution during mantle upwelling Most pyroxenes in SLC peridotites exhibit exsolutions, characterized by spinel inclusions. Pyroxene edges where no exsolution are present have less H then their core near the spinel. Given that H does not enter spinel [3], subsolidus requilibration may have concentrated H in the pyroxene adjacent to the spinel exsolution during mantle upwelling. H diffusion in olivine during xenolith transport by its host magma and host magma ascent rates Olivines have lower water contents at the edge and near fractures compared to at their core, while the concentrations of all other chemical elements appear homogeneous. This suggests that some of the initial water has diffused out of the olivine. Water loss from the olivine is thought to occur during host-magma ascent and xenolith transport to the surface [4-6]. Diffusion modeling matches best the data when the initial water content used is that measured at the core of the olivines, implying that mantle water contents are preserved at the core of the olivines. The 3225 cm(sup -1) OH band at times varies independantly of other OH bands, suggesting uneven H distribution in olivine defects likely acquired during mantle metasomatism just prior to eruption and unequilibrated. Diffusion times (1-48 hrs) combined with depths of peridotite equilibration or of magma start of degassing allow to calculate ascent rates for the host nephelinite of 0.1 to 27 m/s

    Iron isotope tracing of mantle heterogeneity within the source regions of oceanic basalts

    Get PDF
    Mineralogical variations in the Earth's mantle and the relative proportions of peridotitic versus enriched and potentially crustally-derived pyroxenitic domains within the mantle have important implications for mantle dynamics, magma generation, and the recycling of surface material back into the mantle. Here we present iron (Fe) stable isotope data (δ57Fe, deviation in 57Fe/54Fe from the IRMM-014 standard in parts per thousand) for peridotite and garnet–pyroxenite xenoliths from Oahu, Hawaii and explore Fe isotopes as tracer of both peridotitic and pyroxenitic components in the source regions of oceanic basalts. The pyroxenites have δ57Fe values that are heavy (0.10 to 0.27‰) relative to values for mid-ocean ridge and ocean island basalts (MORB; OIB; View the MathML sourceδFe57∼0.16‰) and the primitive mantle (PM; View the MathML sourceδFe57∼0.04‰). Pyroxenite δ57Fe values are positively correlated with bulk pyroxenite titanium and heavy rare earth element (REE) abundances, which can be interpreted in terms of stable isotope fractionation during magmatic differentiation and pyroxene cumulate formation. In contrast, the peridotites have light δ57Fe values (−0.34 to 0.14‰) that correlate negatively with degree of melt depletion and radiogenic hafnium isotopes, with the most depleted samples possessing the most radiogenic Hf isotope compositions and lightest δ57Fe values. While these correlations are broadly consistent with a scenario of Fe isotope fractionation during partial melting, where isotopically heavy Fe is extracted into the melt phase, leaving behind low-δ57Fe peridotite residues, the extent of isotopic variation is far greater than predicted by partial melting models. One possibility is derivation of the samples from a heterogeneous source containing both light-δ57Fe (relative to PM) and heavy-δ57Fe components. While pyroxenite is a viable explanation for the heavy-δ57Fe component, the origin of the depleted light-δ57Fe component is more difficult to explain, as melting models predict that even large (>30%) degrees of melt extraction do not generate strongly fractionated residues. Multiple phases of melt extraction or other processes, such as metasomatism, melt percolation or the assimilation of xenocrystic olivine with light δ57Fe values may need to be invoked to explain these light δ57Fe values; a caveat to this is that these processes must either preserve, or generate correlations between δ57Fe and Hf isotopes. Published variations in δ57Fe in mantle melting products, such as MORB and OIB, are also greater than predicted by melting models assuming derivation from δ57Fe-homogeneous mantle. For example, OIB from the Society and Cook-Austral islands, which have radiogenic Pb and Sr isotope compositions indicative of recycled components such as subduction modified, low-Pb oceanic crust and terrigenous sediments have heavy mean δ57Fe values (∼0.21‰∼0.21‰) significantly distinct to those of other OIB and MORB, which could explained by the presence of heavy-δ57Fe pyroxenite cumulate or pyroxenitic melt components, whereas large degree partial melts, such as komatiites and boninites, display light Fe-isotopic compositions which may reflect sampling of refractory, light-δ57Fe mantle components. Iron stable isotopes may therefore provide a powerful new means of fingerprinting mineralogical variations within the Earth's mantle and identifying the mineralogy of depleted and enriched components within the source regions of volcanic rocks

    Transition-Metal Ion Exchange Using Poly(ethylene glycol) Oligomers as Solvents

    Get PDF
    Poly(ethylene glycol) oligomers have been found to be effective as alternative solvents for the ion exchange of Mn2þ , Fe2 þ , and Co2þ into hydrated and dehydrated Zeolite X (Na80Al80Si112- O384 3 nH2O). When attempted in aqueous solutions, the exchange of these cations quickly leads to destruction of the zeolite structure within 1-2 exchange cycles. However, in PEG oligomer solvents, the structure can be maintained and exchanges of 48% (Co2þ ), 80% (Mn2þ ), and 91% (Fe2þ ) are observed after one cycle under hydrated conditions. When rigorous steps are taken to remove all water from the zeolite before exchange, absorption of the oligomers into the zeolite pores is promoted, which hinders ion exchange; a maximum of 6% exchange is seen under dehydrated conditions. However, improved catalytic efficiency toward NO decomposition is observed for these samples, with turnover frequencies of 0.0237 s-1 for Dehyd Na/Mn-X oligomer, 0.0213 s-1 for Dehyd Na/Fe-X oligomer, and 0.0190 s-1 for Dehyd Na/Co-X oligomer. Use of these PEG oligomers as reaction media has also been expanded to the ion exchange of layered oxides such as Dion-Jacobson perovskite phases

    Mg isotope systematics during magmatic processes: Inter-mineral fractionation in mafic to ultramafic Hawaiian xenoliths

    Get PDF
    © 2018 Elsevier Ltd Observed differences in Mg isotope ratios between bulk magmatic rocks are small, often on a sub per mill level. Inter–mineral differences in the 26Mg/24Mg ratio (expressed as δ26Mg) in plutonic rocks are on a similar scale, and have mostly been attributed to equilibrium isotope fractionation at magmatic temperatures. Here we report Mg isotope data on minerals in spinel peridotite and garnet pyroxenite xenoliths from the rejuvenated stage of volcanism on Oahu and Kauai, Hawaii. The new data are compared to literature data and to theoretical predictions to investigate the processes responsible for inter–mineral Mg isotope fractionation at magmatic temperatures. Theory predicts up to per mill level differences in δ26Mg between olivine and spinel at magmatic temperatures and a general decrease in Δ26Mgolivine-spinel (=δ26Mgolivine – δ26Mgspinel) with increasing temperature, but also with increasing Cr# in spinel. For peridotites with a simple petrogenetic history by melt depletion, where increasing depletion relates to increasing melting temperatures, Δ26Mgolivine-spinel should thus systematically decrease with increasing Cr# in spinel. However, most natural peridotites, including the Hawaiian spinel peridotites investigated in this study, are overprinted by variable extents of melt-rock reaction, which disturb the systematic primary temperature and compositionally related olivine–spinel Mg isotope systematics. Diffusion, subsolidus re-equilibration, or surface alteration may further affect the observed olivine–spinel Mg isotope fractionation in peridotites, making Δ26Mgolivine-spinel in peridotites a difficult–to–apply geothermometer. The available Mg isotope data on clinopyroxene and garnet suggest that this mineral pair is a more promising geothermometer, but its application is restricted to garnet–bearing igneous (garnet pyroxenites) and metamorphic rocks (eclogites). Although the observed δ26Mg variation is on a sub per mill range in bulk magmatic rocks, the clearly resolvable inter–mineral Mg isotope differences imply that crystallization or preferential melting of isotopically distinct minerals such garnet, spinel, and clinopyroxene should cause Mg isotope fractionation between bulk melt and residue. Calculated Mg isotope variations during partial mantle melting indeed predict differences between melt and residue, but these are analytically resolvable only for melting of mafic lithologies, that is, garnet pyroxenites. Contributions from garnet pyroxenite melts may thus account for some of the isotopically light δ26Mg observed in ocean island basalts and trace lithological mantle heterogeneity. Consequently, applications for high-temperature Mg isotope fractionations are promising and diverse, and recent advances in analytical precision may allow the full petrogenetic potential inherent in the sub per mill variations in δ26Mg in magmatic rocks to be exploited

    The composition and distribution of the rejuvenated component across the Hawaiian plume: Hf-Nd-Sr-Pb isotope systematics of Kaula lavas and pyroxenite xenoliths

    Get PDF
    Rejuvenated volcanism refers to the reemergence of volcanism after a hiatus of 0.5-2 Ma following the voluminous shield building stage of Hawaiian volcanoes. The composition of the rejuvenated source and its distribution relative to the center of the plu

    Implications of eocene-age philippine sea and forearc basalts for initiation and early history of the izu-bonin-mariana arc

    Get PDF
    Whole-rock isotope ratio (Hf, Nd, Pb, Sr) and trace element data for basement rocks at ocean drilling Sites U1438, 1201 and 447 immediately west of the KPR (Kyushu-Palau Ridge) are compared to those of FAB (forearc basalts) previously interpreted to be the initial products of IBM subduction volcanism. West-of-KPR basement basalts (drill sites U1438, 1201, 447) and FAB occupy the same Hf-Nd and Pb-Pb isotopic space and share distinctive source characteristics with εHf mostly >16.5 and up to εHf =19.8, which is more radiogenic than most Indian mid-ocean ridge basalts (MORB). Lead isotopic ratios are depleted, with ²⁰⁶Pb/²⁰⁴Pb = 17.8-18.8 accompanying relatively high ²⁰⁸Pb/²⁰⁴Pb, indicating an Indian-MORB source unlike that of West Philippine Basin plume basalts. Some Sr isotopes show affects of seawater alteration, but samples with ⁸⁷Sr/⁸⁶Sr8.0 appear to preserve magmatic compositions and also indicate a common source for west-of-KPR basement and FAB. Trace element ratios resistant to seawater alteration (La/Yb, Lu/Hf, Zr/Nb, Sm/Nd) in west-of-KPR basement are generally more depleted than normal MORB and so also appear similar to FAB. At Site U1438, only andesite sills intruding sedimentary rocks overlying the basement have subduction-influenced geochemical characteristics (εNd ∼6.6, εHf ∼13.8, La/Yb > 2.5, Nd/Hf ∼9). The key characteristic that unites drill site basement rocks west of KPR and FAB is the nature of their source, which is more depleted in lithophile trace elements than average MORB but with Hf, Nd, and Pb isotope ratios that are common in MORB. The lithophile element-depleted nature of FAB has been linked to initiation of IBM subduction in the Eocene, but Sm-Nd model ages and errorchron relationships in Site U1438 basement indicate that the depleted character of the rocks is a regional characteristic that was produced well prior to the time of subduction initiation and persists today in the source of modern IBM arc volcanic rocks with Sm/Nd>0.34 and εNd ∼9.0

    Mg isotope systematics during magmatic processes: Inter-mineral fractionation in mafic to ultramafic Hawaiian xenoliths

    Get PDF
    Observed differences in Mg isotope ratios between bulk magmatic rocks are small, often on a sub per mill level. Inter–mineral differences in the 26Mg/24Mg ratio (expressed as δ26Mg) in plutonic rocks are on a similar scale, and have mostly been attributed to equilibrium isotope fractionation at magmatic temperatures. Here we report Mg isotope data on minerals in spinel peridotite and garnet pyroxenite xenoliths from the rejuvenated stage of volcanism on Oahu and Kauai, Hawaii. The new data are compared to literature data and to theoretical predictions to investigate the processes responsible for inter–mineral Mg isotope fractionation at magmatic temperatures. Theory predicts up to per mill level differences in δ26Mg between olivine and spinel at magmatic temperatures and a general decrease in Δ26Mgolivine-spinel (=δ26Mgolivine – δ26Mgspinel) with increasing temperature, but also with increasing Cr# in spinel. For peridotites with a simple petrogenetic history by melt depletion, where increasing depletion relates to increasing melting temperatures, Δ26Mgolivine-spinel should thus systematically decrease with increasing Cr# in spinel. However, most natural peridotites, including the Hawaiian spinel peridotites investigated in this study, are overprinted by variable extents of melt-rock reaction, which disturb the systematic primary temperature and compositionally related olivine–spinel Mg isotope systematics. Diffusion, subsolidus re-equilibration, or surface alteration may further affect the observed olivine–spinel Mg isotope fractionation in peridotites, making Δ26Mgolivine-spinel in peridotites a difficult–to–apply geothermometer. The available Mg isotope data on clinopyroxene and garnet suggest that this mineral pair is a more promising geothermometer, but its application is restricted to garnet–bearing igneous (garnet pyroxenites) and metamorphic rocks (eclogites). Although the observed δ26Mg variation is on a sub per mill range in bulk magmatic rocks, the clearly resolvable inter–mineral Mg isotope differences imply that crystallization or preferential melting of isotopically distinct minerals such garnet, spinel, and clinopyroxene should cause Mg isotope fractionation between bulk melt and residue. Calculated Mg isotope variations during partial mantle melting indeed predict differences between melt and residue, but these are analytically resolvable only for melting of mafic lithologies, that is, garnet pyroxenites. Contributions from garnet pyroxenite melts may thus account for some of the isotopically light δ26Mg observed in ocean island basalts and trace lithological mantle heterogeneity. Consequently, applications for high-temperature Mg isotope fractionations are promising and diverse, and recent advances in analytical precision may allow the full petrogenetic potential inherent in the sub per mill variations in δ26Mg in magmatic rocks to be exploited

    Effects of melting, subduction-related metasomatism, and sub-solidus equilibration on the distribution of water contents in the mantle beneath the Rio Grande Rift

    Get PDF
    The distribution of water in the upper mantle plays a crucial role in the Earth's deep water cycle, magmatism, and plate tectonics. To better constrain how these large-scale geochemical systems operate, peridotite and pyroxenite mantle xenoliths from Kilbourne Hole (KH) and Rio Puerco (RP) along the Rio Grande Rift (NM, USA) were analyzed for water, and major and trace element contents. These xenoliths sample a lithosphere whose composition was influenced by subduction and rifting, and can be used to examine the effects of melting, metasomatism, and sub-solidus equilibration on the behavior of water. The first result is that in KH xenoliths, olivines underwent negligible H loss during xenolith ascent, i.e. preserved their mantle water contents. These olivine water contents are used to calculate mantle viscosities of 0.5–184 · 1021 Pa·s. These viscosity values are more than 40 times higher than those of the asthenosphere and show that KH peridotites represent samples from the lithosphere. The preservation of olivine water contents is exceptional for off-cratonic xenoliths, and the KH peridotites provide the first estimate of the average concentration of water in Phanerozoic continental mantle lithosphere at 81 ± 30 ppm H2O. The mantle lithosphere beneath the Rio Grande rift is nevertheless heterogeneous with water contents ranging from <0.5 to 120 ppm H2O in peridotites and from 227 to 400 ppm H2O in pyroxenites. A composite KH xenolith of a harzburgite cross-cut by a clinopyroxenite vein shows this heterogeneity at the cm scale. The second contribution of this study stems from the majority of the KH peridotites and two of the RP peridotites having major and trace elements that can be explained by partial melting without any need to invoke metasomatic processes. This allows to show that, prior to modelling the water content variation of each peridotite mineral during melting, a correction for sub-solidus equilibration has to be applied to the water contents of the minerals. Sub-solidus equilibration also provides an explanation for the discrepancy between the clinopyroxene/orthopyroxene ratio of water contents in natural peridotites worldwide and in laboratory experiments on water partitioning in peridotite minerals. Finally, the cryptically metasomatized peridotites, rare at KH and abundant at RP, as well as the pyroxenites, permit to decipher the origin and water contents of the metasomatic melts that affected the continental lithosphere beneath the Rio Grande Rift. Trace element modelling of the metasomatized KH and RP peridotites are consistent with metasomatism via melts that are of subduction origin. Melts in equilibrium with peridotites contain more water at RP (∼1 wt.% H2O) than at KH (∼0.5 wt.% H2O), although this did not result in a more water-rich mantle lithosphere at RP. Rio Puerco lies within the northern Rio Grande rift, proposed to have been affected by a flat slab subduction, which may explain the more hydrous and extensive metasomatism compared to the south, where KH is located

    Shelf Inputs and Lateral Transport of Mn, Co, and Ce in the Western North Pacific Ocean

    Get PDF
    The margin of the western North Pacific Ocean releases redox-active elements like Mn, Co, and Ce into the water column to undergo further transformation through oxide formation, scavenging, and reductive dissolution. Near the margin, the upper ocean waters enriched in these elements are characterized by high dissolved oxygen, low salinity, and low temperature, and are a source of the North Pacific Intermediate Water. High dissolved concentrations are observed across the Western Subarctic Gyre, with a rapid decrease in concentrations away from the margin and across the subarctic-subtropical front. The particulate concentrations of Mn, Co, and Ce are also high in the subarctic surface ocean and enriched relative to Ti and trivalent rare earth elements. Furthermore, the particles enriched in Mn, Co, and Ce coincide at the same depth range, suggesting that these elemental cycles are coupled through microbial oxidation in the subarctic gyre as the waters travel along the margin before being subducted at the subarctic-subtropical front. Away from the margin, the Mn, Co, and Ce cycles decouple, as Mn and Ce settle out as particles while dissolved Co is preserved and transported within the North Pacific Intermediate Water into the central North Pacific Ocean
    corecore