9 research outputs found

    BigDataBench: a Big Data Benchmark Suite from Internet Services

    Full text link
    As architecture, systems, and data management communities pay greater attention to innovative big data systems and architectures, the pressure of benchmarking and evaluating these systems rises. Considering the broad use of big data systems, big data benchmarks must include diversity of data and workloads. Most of the state-of-the-art big data benchmarking efforts target evaluating specific types of applications or system software stacks, and hence they are not qualified for serving the purposes mentioned above. This paper presents our joint research efforts on this issue with several industrial partners. Our big data benchmark suite BigDataBench not only covers broad application scenarios, but also includes diverse and representative data sets. BigDataBench is publicly available from http://prof.ict.ac.cn/BigDataBench . Also, we comprehensively characterize 19 big data workloads included in BigDataBench with varying data inputs. On a typical state-of-practice processor, Intel Xeon E5645, we have the following observations: First, in comparison with the traditional benchmarks: including PARSEC, HPCC, and SPECCPU, big data applications have very low operation intensity; Second, the volume of data input has non-negligible impact on micro-architecture characteristics, which may impose challenges for simulation-based big data architecture research; Last but not least, corroborating the observations in CloudSuite and DCBench (which use smaller data inputs), we find that the numbers of L1 instruction cache misses per 1000 instructions of the big data applications are higher than in the traditional benchmarks; also, we find that L3 caches are effective for the big data applications, corroborating the observation in DCBench.Comment: 12 pages, 6 figures, The 20th IEEE International Symposium On High Performance Computer Architecture (HPCA-2014), February 15-19, 2014, Orlando, Florida, US

    P2-Na0.67 Alx Mn1-x O2 : Cost-Effective, Stable and High-Rate Sodium Electrodes by Suppressing Phase Transitions and Enhancing Sodium Cation Mobility.

    Get PDF
    Sodium layered P2-stacking Na0.67 MnO2 materials have shown great promise for sodium-ion batteries. However, the undesired Jahn-Teller effect of the Mn4+ /Mn3+ redox couple and multiple biphasic structural transitions during charge/discharge of the materials lead to anisotropic structure expansion and rapid capacity decay. Herein, by introducing abundant Al into the transition-metal layers to decrease the number of Mn3+ , we obtain the low cost pure P2-type Na0.67 Alx Mn1-x O2 (x=0.05, 0.1 and 0.2) materials with high structural stability and promising performance. The Al-doping effect on the long/short range structural evolutions and electrochemical performances is further investigated by combining in situ synchrotron XRD and solid-state NMR techniques. Our results reveal that Al-doping alleviates the phase transformations thus giving rise to better cycling life, and leads to a larger spacing of Na+ layer thus producing a remarkable rate capability of 96 mAh g-1 at 1200 mA g-1

    Highly-stable P2-Na 0.67 MnO 2 electrode enabled by lattice tailoring and surface engineering

    Get PDF
    Abstract(#br)One of the key challenges of sodium ion batteries is to develop sustainable, low-cost and high capacity cathodes, and this is the reason that layered sodium manganese oxides have attracted so much attention. However, the undesired phase transitions and poor electrolyte-electrode interfacial stability facilitate their capacity decay and limit their practical applications. Herein, we design a novel Al 2 O 3 @Na 0.67 Zn 0.1 Mn 0.9 O 2 electrode to mitigate these problems, by taking the advantages of both structural stabilization and surface passivation via Zn 2+ substitution and Al 2 O 3 atomic layered deposition (ALD), respectively. Long-range and local structural analyses during charging/discharging processes indicate that P2-P2’ phase transformation can be suppressed by substituting proper amount of Mn 3+ Jahn-Teller centers with Zn 2+ , whereas excessive Zn 2+ leads to P2-OP4 structure transition at low sodium contents and facilitates the electrode degradations. Furthermore, the homogeneous and robust cathode electrolyte interphase (CEI) layers formed on the Al 2 O 3 -coated electrodes effectively hinder the organic electrolytes from further decomposition. Therefore, our synergetic strategy of Zn 2+ substitution and ALD surface engineering remarkably boosts the cycling performance of P2-Na 0.67 MnO 2 and provides some new insights into the designing of highly stable cathode electrodes for sustainable sodium ion batteries

    Unraveling (electro)-chemical stability and interfacial reactions of Li 10 SnP 2 S 12 in all-solid-state Li batteries

    Get PDF
    Abstract(#br)Li 10 SnP 2 S 12 (LSPS) with high ionic conductivity and moderate price is a promising solid electrolyte for all-solid-state batteries. However, the instability of LSPS and LSPS/electrodes interfaces would cause poor cycle performance issues in the LSPS-based all-solid-state batteries, which have not been well understood. Herein, we address and unravel the decomposition products of LSPS and their Li + transfer characteristics, especially on the surface of LSPS/electrodes by using solid-state nuclear magnetic resonance (ss NMR) spectroscopy coupled with X-ray photoelectron spectroscopy (XPS). The results reveal that the high mechanical energy during ball-milling process leads to the decomposition of LSPS into Li 4 SnS 4 and Li 3 PS 4 . During charge/discharge cycling, specific capacity fading of batteries originates from the formation of new interfacial layer at LSPS/Acetylene black cathode and LSPS/Li metal anode interfaces. Furthermore, our results demonstrate that the rough and porous morphology of the interface formed after cycling, rather than the decomposition products, is the critical factor which results in the increases of the interfacial resistance at LSPS/Li interface and serious formation of Li dendrite. Our results highlight the significant roles of (electro)chemical and interfacial stability of sulfide solid electrolyte in the development of all-solid-state batteries

    Stabilizing Li<sub>10</sub>SnP<sub>2</sub>S<sub>12</sub>/Li Interface via an in Situ Formed Solid Electrolyte Interphase Layer

    No full text
    Despite the extremely high ionic conductivity, the commercialization of Li<sub>10</sub>GeP<sub>2</sub>S<sub>12</sub>-type materials is hindered by the poor stability against Li metal. Herein, to address that issue, a simple strategy is proposed and demonstrated for the first time, i.e., in situ modification of the interface between Li metal and Li<sub>10</sub>SnP<sub>2</sub>S<sub>12</sub> (LSPS) by pretreatment with specific ionic liquid and salts. X-ray photoelectron spectroscopy and electrochemical impedance spectroscopy results reveal that a stable solid electrolyte interphase (SEI) layer instead of a mixed conducting layer is formed on Li metal by adding 1.5 M lithium bis­(trifluoromethanesulfonyl)­imide (LiTFSI)/<i>N</i>-propyl-<i>N</i>-methyl pyrrolidinium bis­(trifluoromethanesulfonyl)­imide (Pyr<sub>13</sub>TFSI) ionic liquid, where ionic liquid not only acts as a wetting agent but also improves the stability at the Li/LSPS interface. This stable SEI layer can prevent LSPS from directly contacting the Li metal and further decomposition, and the Li/LSPS/Li symmetric cell with 1.5 M LiTFSI/Pyr<sub>13</sub>TFSI attains a stable cycle life of over 1000 h with both the charge and discharge voltages reaching about 50 mV at 0.038 mA cm<sup>–2</sup>. Furthermore, the effects of different Li salts on the interfacial modification is also compared and investigated. It is shown that lithium bis­(fluorosulfonyl) imide (LiFSI) salt causes the enrichment of LiF in the SEI layer and results in a higher resistance of the cell upon a long cycling life

    Understanding the failure process of sulfide-based all-solid-state lithium batteries via operando nuclear magnetic resonance spectroscopy

    No full text
    All-solid-state lithium batteries performance is affected by the solid electrolyte interphase (SEI) and electrically disconnected (“dead”) Li metal. Here, via operando NMR measurements, the authors quantify the Li metal in the SEI and “dead” regions using various inorganic solid-state electrolytes
    corecore