312 research outputs found
PERIPHERAL INTERACTIONS : QUASI PROJECTILE-PARTICLE AND PARTICLE-PARTICLE CORRELATIONS
Quasi projectile-particle et particle-particle coincidence measurements in intermediate energy heavy ions interactions are reviewed and their interpretation is discussed
Extraction of the coupling constant from NN scattering data
We reexamine Chew's method for extracting the coupling constant from
np differential cross section measurements. Values for this coupling are
extracted below 350 MeV, in the potential model region, and up to 1 GeV. The
analyses to 1~GeV have utilized 55 data sets. We compare these results to those
obtained via mapping techniques. We find that these two methods give
consistent results which are in agreement with previous Nijmegen
determinations.Comment: 12 pages of text plus 2 figures. Revtex file and postscript figures
available via anonymous FTP at ftp://clsaid.phys.vt.edu/pub/n
Indication of asymptotic scaling in the reactions H, He and
It is shown that the differential cross sections of the reactions and measured at c.m.s.scattering angle
in the interval of the deuteron beam energy 0.5 - 1.2 GeV demonstrate the
scaling behaviour,, which follows from constituent
quark counting rules. It is found also that the differential cross section of
the elastic scattering at follows
the scaling regime at beam energies 0.5 - 5 GeV. These data are
parameterized here using the Reggeon exchange.Comment: 6 pages, Latex, 2 eps figures; final version accepted by Pis'ma v
ZHETF, corrected and completed reference
Angular momentum sharing in dissipative collisions
Light charged particles emitted by the projectile-like fragment were measured
in the direct and reverse collision of Nb and Sn at 25 AMeV. The
experimental multiplicities of Hydrogen and Helium particles as a function of
the primary mass of the emitting fragment show evidence for a correlation with
net mass transfer. The ratio of Hydrogen and Helium multiplicities points to a
dependence of the angular momentum sharing on the net mass transfer.Comment: 8 pages, 2 figure
reaction at intermediate energies
The reaction is considered at the energies between 200 MeV and
520 MeV. The Alt-Grassberger-Sandhas equations are iterated up to the lowest
order terms over the nucleon-nucleon t-matrix. The parameterized wave
function including five components is used. The angular dependence of the
differential cross section and energy dependence of tensor analyzing power
at the zero scattering angle are presented in comparison with the
experimental data
Determination of the pion-nucleon coupling constant and scattering lengths
We critically evaluate the isovector GMO sum rule for forward pion-nucleon
scattering using the recent precision measurements of negatively charged
pion-proton and pion-deuteron scattering lengths from pionic atoms. We deduce
the charged-pion-nucleon coupling constant, with careful attention to
systematic and statistical uncertainties. This determination gives, directly
from data a pseudoscalar coupling constant of
14.11+-0.05(statistical)+-0.19(systematic) or a pseudovector one of 0.0783(11).
This value is intermediate between that of indirect methods and the direct
determination from backward neutron-proton differential scattering cross
sections. We also use the pionic atom data to deduce the coherent symmetric and
antisymmetric sums of the negatively charged pion-proton and pion-neutron
scattering lengths with high precision. The symmetric sum gives
0.0012+-0.0002(statistical)+-0.0008 (systematic) and the antisymmetric one
0.0895+-0.0003(statistical)+-0.0013(systematic), both in units of inverse
charged pion-mass. For the need of the present analysis, we improve the
theoretical description of the pion-deuteron scattering length.Comment: 27 pages, 5 figures, submitted to Phys. Rev. C, few modifications and
clarifications, no change in substance of the pape
Quasi-Elastic Scattering in the Inclusive (He, t) Reaction
The triton energy spectra of the charge-exchange C(He,t) reaction
at 2 GeV beam energy are analyzed in the quasi-elastic nucleon knock-out
region. Considering that this region is mainly populated by the charge-exchange
of a proton in He with a neutron in the target nucleus and the final proton
going in the continuum, the cross-sections are written in the distorted-wave
impulse approximation. The t-matrix for the elementary exchange process is
constructed in the DWBA, using one pion- plus rho-exchange potential for the
spin-isospin nucleon- nucleon potential. This t-matrix reproduces the
experimental data on the elementary pn np process. The calculated
cross-sections for the C(He,t) reaction at to triton
emission angle are compared with the corresponding experimental data, and are
found in reasonable overall accord.Comment: 19 pages, latex, 11 postscript figures available at
[email protected], submitted to Phy.Rev.
Multifragmentation threshold in ^{93}Nb+{nat}Mg collisions at 30 MeV/nucleon
We analyzed the on reaction at 30 MeV/nucleon in the aim
of disentangling binary sequential decay and multifragmentation decay close to
the energy threshold, i.e. MeV/nucleon. Using the backtracing
technique applied to the statistical models GEMINI and SMM we reconstruct
simulated charge, mass and excitation energy distributions and compare them to
the experimental ones. We show that data are better described by SMM than by
GEMINI in agreement with the fact that multifragmentation is responsible for
fragment production at excitation energies around 3 MeV/nucleon.Comment: 16 pages, 12 figures, 5 tables Soumis \`a Nuclear Physics
Non-Hermitian SUSY Hydrogen-like Hamiltonians with real spectra
It is shown that the radial part of the Hydrogen Hamiltonian factorizes as
the product of two not mutually adjoint first order differential operators plus
a complex constant epsilon. The 1-susy approach is used to construct
non-hermitian Hamiltonians with hydrogen spectra. Other non-hermitian
Hamiltonians are shown to admit an extra `complex energy' at epsilon. New
self-adjoint hydrogen-like Hamiltonians are also derived by using a 2-susy
transformation with complex conjugate pairs epsilon, (c.c) epsilon.Comment: LaTeX2e file, 13 pages, 6 EPS figures. New references added. The
present is a reorganized and simplified versio
Recommended from our members
E4 ligase–specific ubiquitination hubs coordinate DNA double-strand-break repair and apoptosis
Multiple protein ubiquitination events at DNA double-strand breaks (DSBs) regulate damage recognition, signaling and repair. It has remained poorly understood how the repair process of DSBs is coordinated with the apoptotic response. Here, we identified the E4 ubiquitin ligase UFD-2 as a mediator of DNA-damage-induced apoptosis in a genetic screen in Caenorhabditis elegans. We found that, after initiation of homologous recombination by RAD-51, UFD-2 forms foci that contain substrate-processivity factors including the ubiquitin-selective segregase CDC-48 (p97), the deubiquitination enzyme ATX-3 (Ataxin-3) and the proteasome. In the absence of UFD-2, RAD-51 foci persist, and DNA damage-induced apoptosis is prevented. In contrast, UFD-2 foci are retained until recombination intermediates are removed by the Holliday-junction-processing enzymes GEN-1, MUS-81 or XPF-1. Formation of UFD-2 foci also requires proapoptotic CEP-1 (p53) signaling. Our findings establish a central role of UFD-2 in the coordination between the DNA-repair process and the apoptotic response
- …