20 research outputs found

    Mapping the aerosol over Eurasia from the Zotino Tall Tower

    Get PDF
    The present study covers more than 5 yr corresponding to more than 40 000 hours of particle and gas data measured at the Siberian tall tower Zotino Tall Tower (ZOTTO) (60.8%26deg%3BN; 89.35%26deg%3BE). Extrapolated along 10-d back trajectories, the ZOTTO measurements cover large parts of the Eurasian land mass. Mapping the extrapolated ZOTTO data points to major anthropogenic source regions and Siberian fire regions, consistent with emission data for CO and vegetation fires. Middle East mid-latitude sources stand out strongly and possibly emissions from Northern China may be seen at times from ZOTTO. The maps of measured light scattering and absorption characteristics support the interpretation of different source types. Three clusters of substantially different submicrometer particle size distributions were found, the maps of which also could be related to major aerosol source regions

    Urban geochemical mapping studies : how and why we do them

    Get PDF
    Geochemical mapping is a technique rooted in mineral exploration but has now found worldwide application in studies of the urban environment. Such studies, involving multidisciplinary teams including geochemists, have to present their results in a way that nongeochemists can comprehend. A legislatively driven demand for urban geochemical data in connection with the need to identify contaminated land and subsequent health risk assessments has given rise to a greater worldwide interest in the urban geochemical environment. Herein, the aims and objectives of some urban studies are reviewed and commonly used terms such as baseline and background are defined. Geochemists need to better consider what is meant by the term urban. Whilst the unique make up of every city precludes a single recommended approach to a geochemical mapping strategy, more should be done to standardise the sampling and analytical methods. How (from a strategic and presentational point of view) and why we do geochemical mapping studies is discussed. Keywords Background - Baseline - Geochemical mapping - Heavy metals - Pollution - Soil - Urba

    Geochemistry of european bottled water

    No full text
    In Europe, ca. 1900 "mineral water" brands are officially registered and bottled for drinking. Bottled water is groundwater and is rapidly developing into the main supply of drinking water for the general population of large parts of Europe. This book is the first state of the art overview of the chemistry of groundwaters from 40 European countries from Portugal to Russia, measured on 1785 bottled water samples from 1247 wells representing 884 locations plus additional 500 tap water samples acquired in 2008 by the network of EuroGeoSurveys experts all across Europe. In contrast to previously available data sets, all chemical data were measured in a single laboratory, under strict quality control with high internal and external reproducibility, affording a single high quality, internally consistent dataset. More than 70 parameters were determined on every sample using state of the art analytical techniques with ultra low detection limits (ICPMS, ICPOES, IC) at a single hydrochemical lab facility. Because of the wide geographical distribution of the water sources, the bottled mineral, drinking and tap waters characterized herein may be used for obtaining a first estimate of "groundwater geochemistry" at the scale of the European Continent, a dataset previously unavailable in this completeness, quality and coverage. This new data set allows, for the first time, to present a comprehensive internally consistent, overview of the natural distribution and variation of the determined chemical elements and additional state parameters of groundwater at the European scale. Most elements show a very wide range \u2013 usually 3 to 4 but up to 7 orders of magnitude \u2013 of natural variation of their concentration. Data are interpreted in terms of their origin, considering hydrochemical parameters, such as the influence of soil, vegetation cover and mixing with deep waters, as well as other factors (bottling effects, leaching from bottles). Chapters are devoted to comparing the bottled water data with those of European tap water and previously published datasets and discussing the implications of water chemistry for health. The authors also provide an overview of the legal framework, that any bottled water sold in the European Union must comply with. It includes a comprehensive compilation of current drinking water action levels in European countries, limiting values of the European Drinking/Mineral/Natural Mineral Water directives (1998/83/EC, 2003/40/EC, 2009/54/EC) and legislation in effect in 26 individual European Countries, and for comparison those of the FAO and in effect in the US (EPA, maximum contaminant level)
    corecore