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Abstract 
 
Geochemical mapping is a technique rooted in mineral exploration but now has found 
worldwide application in studies of the urban environment. Such studies, involving 
multi-disciplinary teams including geochemists, have to present their results in a way 
that non-geochemists can comprehend. A legislatively driven demand for urban 
geochemical data in connection with the need to identify contaminated land and 
subsequent health risk assessments has given rise to a greater worldwide interest in 
the urban geochemical environment. The aims and objectives of some urban studies 
are reviewed and commonly used terms such as baseline and background are defined. 
Geochemists need to better consider what is meant by the term “urban”. Whilst the 
unique make up of every city precludes a single recommended approach to a 
geochemical mapping strategy more should be done to standardise the sampling and 
analytical methods. How (from a strategic and presentational point of view) and why 
we do geochemical mapping studies is discussed. 
 

Introduction 
Geochemical mapping is a technique developed in the 1950s to give information on 

the spatial distribution of chemical elements and compounds at the Earth’s surface. Its 

origins go back to the Soviet Union (Fersman, 1939) and subsequently applied 

elsewhere for the purposes of mineral exploration, for example Lovering et al. (1950) 

and Hawkes & Bloom (1955).  Regional mapping also found application to issues 

concerning the environment and health (e.g. Thornton & Webb, 1979 and Plant & 

Moore, 1979). Regional geochemical maps are considered to be a national asset for 

resource evaluation and environmental management and many national surveys have 

been undertaken around the world, for example, Johnson et al., 2005 (United 

Kingdom); Muchsin et al., 1997 (Sumatra, Indonesia); Sewell, 1999 (Hong Kong); 

Reimann et al., 1998 (Barents Region); Vrana et al., 1997 (Slovak Republic) and 

recently on a continental scale Salminen et al., 2005, (Europe). Procedures for 

regional geochemical mapping are now well established and recommended guidelines 

documented (Darnley et al., 1995). 
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These regional geochemical mapping surveys, particularly ones conducted before the 

1990s, generally avoided urban areas as their principal aim was one of mineral 

exploration. Surveys avoided the anthropogenic contamination so as to better attribute 

anomalies to nature’s own form of “natural contamination”, namely metalliferous 

mineralisation. The British Geological Survey’s (BGS) Geochemical Baseline Survey 

of the Environment (G-BASE) Project illustrates this point well. Regional 

geochemical samples were collected from Scotland mainly during the 1970s but not 

from large urban areas such as Glasgow. As a result there was an empty region in the 

data for the city of Glasgow, surrounded by a halo of high heavy metal concentrations 

(Figure 1) which at the time was attributed to diffuse pollution around the city.  It was 

not until 2001 that the city of Glasgow was systematically sampled (Fordyce et al., In 

Prep). 

 

In the 1980s there was a growing awareness of health risks in urban areas that could 

be related to the contamination of the environments. For example, the Environmental 

Geochemistry Research Group at Imperial College, London, built on its expertise in 

geochemical mapping and became involved in projects examining sources, processes 

and effects for some heavy metals (Thornton et al., 1994). Increased environmental 

awareness and the increased funding for such work, connected with a decline in 

exploration interest in developed countries, led to more geochemical mapping studies 

being done in urban areas.  

 

A legislatively driven demand for urban geochemical data in connection with the need 

to identify contaminated land and subsequent health risk assessments has given rise to 

a greater worldwide interest in the urban geochemical environment. Examples of such 

investigations are listed in Table 1; this does not seek to be a comprehensive list of all 

surveys done but a representative selection that indicates the methodology in use 

along with the aims and objectives of such investigations. The importance of knowing 

this contextual data is discussed later. 

Review of urban geochemical mapping studies 
A literature search for papers on urban geochemical mapping reveals how in the last 

decade there have been an increasing number of environmental and geochemical 
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studies of urban areas. Studies of urban areas from Europe predominate with an 

increasing number of studies reported from Asia in recent years. This is probably a 

reflection of the fact that many cities of Europe have inherited a long industrial 

history and an associated legacy of contamination. A similar summary from a trace 

element perspective is reported in the review of Wong et al. (2006). This review also 

has a discussion of the development of the discipline of Urban Environmental 

Geochemistry and attributes the term “urban geochemistry” to Thornton used to 

describe research activities concerning the role of the geochemist at the interface of 

environmental geochemistry and urban pollution (Thornton, 1991). 

 

Wong et al. (2006) show that Pb continues to be one of the most studied and reported 

elements. Other potentially toxic elements (PTE) such as As, Cd, Cr, Cu, Ni, and Zn 

also commonly feature in urban geochemical mapping. Analytical techniques are used 

that produce multiple element determinations for a single sample, e.g. X-ray 

fluorescence spectrometry (XRFS), inductively coupled plasma atomic emission 

spectrometry (ICP-AES) or inductively coupled plasma mass spectrometry (ICP-MS). 

However, such methods, depending on what (if any) extraction technique is used, will 

give results of varying value according to the strength of the extraction and 

predominant mineralogical characteristics of the sample. This is of fundamental 

importance to end users of the data who, for example, may wish to know how 

bioaccessible a particular element is. Certain elements such as Hg and Se, although as 

important as the previously mentioned PTEs, are less frequently reported simply 

because the analytical methodology requires greater effort and thus expense. Similarly 

organic compounds, although of equal if not greater importance to the quality of the 

urban environment, are less frequently reported because researchers with traditional 

links to regional and exploration mapping do not have the experience, facilities or 

budget to tackle the more complex field of organic analysis.  

 

Table 1 shows many common aims and objectives, including: 

 establishing a baseline for the urban environment 

 satisfying the legislative-driven demand for geochemical information on the 

urban chemical environment 

 identifying/locating polluted areas 
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 assess the contribution of parent materials and anthropogenic activity to the 

geochemical baseline 

 assess risks to other compartments of the urban environment (e.g. groundwater) 

 identify sources of PTEs 

 

There is diversity in the detailed sampling and analytical methodologies, which has 

consequences when it comes to comparing urban baselines (see later discussion). 

These are issues such as the defined depth for a topsoil and the method of 

compositing samples at a single site to give a more “representative” sample. 

 

Studies can be classified into one of two categories namely systematic urban mapping 

or targeted urban mapping. The characteristics of each class are generalised and 

summarised in Table 2. Systematic surveys usually provide the catalyst and resources 

for subsequent targeted studies and are more constrained as to what sample media 

they can use. If they cover an entire urban area the sample media has to be something 

that is found everywhere and if the urban area is to be placed in the context of a 

region then it should be the same as that which the regional survey has used. Soils are 

probably the most ubiquitous of sample media and are most frequently used in urban 

surveys. The final point of the summary table considers the type of organisation likely 

to carry out such a survey. This is very much linked to who finances the investigation. 

Finding funding for an urban survey can be every bit as challenging as agreeing on 

the scientific methodology. The funding process is made more complicated because 

urban studies require a multi-disciplinary approach and it is very difficult 

coordinating the funding across a diversity of organisations.  

 
There is a whole area of data not covered by the classification of  Table 2 or 

considered in the summary of Table 1, namely commercial site survey reports. These 

are produced by consultants and are generally only seen by the customers. These too 

generate geochemical information but much of this information is considered 

confidential and never gets further than the client. 

 

There is also a terminology used in urban geochemical mapping that to non-

geochemists would appear confusing and even amongst geochemists themselves 

evokes a divergence of opinions. A feature of urban environmental studies is the 
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inherent multi-disciplinary approach involving, in addition to geochemists, health 

workers, social scientists, policy makers, city planners and administrative authorities. 

It is important that as geochemists we use our terminology with clarity and 

consistency. 

Some Definition of Terms 
Urban area.  We can envisage our environment in terms of two end-points on a line. 

At one end we have the idea of a pristine environment totally unaffected by human 

activity - there can be few places on earth that are actually in this state (Yin et al. 

2006). At the other end-point we have intense anthropogenic activity that has a 

likelihood of leading to contamination. All regions of the earth can be plotted on this 

line with urban areas lying towards the contaminated end point. As geochemical 

sampling strategies for urban and rural areas will be different it is important that 

geochemists have a means of defining what an urban area is. A search of the internet 

reveals a great range of definitions and one can only conclude that there is no single 

definition that meets the needs of all users. Social scientists tend to use population 

numbers or population density to define urban areas though thresholds will vary from 

country to country. In the United Kingdom one definition of an urban area is a 

settlement having a population >10,000 (Countryside Agency, 2004). The US Census 

Bureau defines urbanised areas as having a population > 50,000 (US Census Bureau, 

1995).  

 

Few of the studies listed in Table 1 give their criteria for defining urban areas. 

Physical scientists generally approach definitions of urbanisation from the standpoint 

of the built environment (Long et al., 2001). The UK Soil and Herbage Pollutant 

Survey (Wood et al., 2007) define urban as being an area which is ≥90 per cent 

urbanised/built up though offers no explanation as what is meant by urbanised or built 

up. A similar method of using built up areas to define an urban area is employed by 

the G-BASE project (see Figure 2 ). The “built up” ornament on the 1:50,000 scale 

(UK) Ordnance Survey topographic maps is used to define the urban boundary.  

 

In some instances the urban boundary may simply be an administrative one and 

projects are constrained to working with this boundary because collaborating partners 

(e.g. a city council) are restricted to working within it. 
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Urban boundaries tend to be transitional and generally move outwards over relatively 

short periods of time as settlements grow so it is important to put urban definitions 

into a historical context. Metropolitan areas, conurbations, urban clusters, urban 

centres are terms that are used loosely and should be used with care as they have a 

more specific meaning than the more general term of “urban area”. In urban 

geochemical mapping studies it is important to target areas where there has been some 

degree of associated anthropogenic activity. Such areas might include extra-urban 

industrial sites which can be considered as a “built up” area but where resident 

population is absent or very low. Purely industrial sites could be classified as a 

separate category to urban sites as was done in the UK soil and herbage pollutant 

survey (Woods et al., 2007). 

 

It would not be helpful for geochemists to work to a single definition of an urban area. 

Every human settlement has its own unique set of characteristics which will give rise 

to a unique geochemical baseline. The important thing is that urban geochemical 

studies report the criteria used (as discussed above) to define the spatial extent of the 

investigation.  

 

Geochemical Baseline.  The term geochemical baseline is now in widespread use in 

the geochemical literature. This is a reflection of the shift away from geochemical 

mapping's previously principal use in mineral exploration to environmental 

applications. The processes driving the need for geochemical baselines are described 

in global initiatives such as the FOREGS (Forum of European Geological Surveys) 

European geochemical baseline project  (Plant et al., 1997, and Salminen et al., 1998). 

The International Geological Correlation Programme (IGCP) Project 259 "The global 

geochemical database for environmental and resource management" (Darnley et al., 

1995) ended in 1994 and was succeeded by IGCP Project 360. For the IGCP project 

internationally agreed protocols and procedures for geochemical baseline mapping 

were developed. Salminen & Tarvainen (1997) attribute the official introduction of 

the term geochemical baseline to the IGCP 360 project.  However, as discussed by 

Salminen & Gregorauskiene (2000), the term geochemical baseline was not well 

defined.  
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Tidball et al. (1974) used the term baseline in connection with sagebrush and soils 

from Montana Wyoming, USA and this was a statistical definition based on the 

central 95% of recorded values. Another earlier use of the term baseline in the context 

of geochemical mapping is that of Davenport et al. (1993) applied to geochemical 

mapping in Newfoundland and Labrador as a measurement of environmental change.  

 

The following definition of a geochemical baseline is based on that used by the Forum 

of European Geological Surveys (FOREGS) Geochemical Baseline Mapping Group: 

“A Geochemical baseline is the concentration at a specific point in time of a 

chemical parameter (element, species or compound) in a sample of geological 

material. It is a fluctuating surface rather than a given value”. 

 

The geochemical baseline of element/compound X can be defined as a function of the 

methodology used to determine it: 

Baseline X = f {A, B, C, D}  
for 1 to n samples from different locations at a specified point in time where A is a 

defined media type, B a documented sampling method, C a documented sample 

preparation protocol, and D a documented analytical method. 

 

Defining the baseline as a function in this way emphasises the need to standardise 

methodologies. One baseline can only be truly compared with another if all the 

methods used are the same. However, there are techniques that can be used to level 

and normalise one baseline data set with another (Darnley et al., 1995). The UK 

G-BASE project has been baseline mapping since the late 1960s during which time 

analytical methods have changed, yet the project is still able to produce a seamless 

geochemical baseline for regional and urban areas as a result of its data conditioning 

procedures (Johnson et al., 2005 and Johnson et al., In Press).  

 

The geochemical baseline is defined at a specific point in time. For regional 

geochemical mapping in areas of little anthropogenic activity, with the exception of 

catastrophic events such as volcanic eruptions or extensive flooding, the baseline 

changes slowly in response to natural changes in an order of magnitude of decades or 

centuries. Changes to the urban geochemical baseline as a result of constant 
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anthropogenic activity would be anticipated as being more rapid so the time 

component is a more important factor. 

 

The formal definition of a baseline makes the concept appear more complicated than 

it is. A geochemical baseline simply reports the chemical state of the surface 

environment exactly as it is with no interpretation or partitioning of the data. A 

baseline is often qualified by a term based on the sampling medium or region of 

sampling, e.g. urban soil geochemical baseline or regional stream sediment 

geochemical baseline. 

 

Background. Another frequently used term is geochemical background, a term 

familiar to those with experience in geochemical exploration in which it was 

important to partition the geochemical baseline into a background and anomaly. In the 

context of the urban environment the geochemical background can be defined as: 

“A relative measure to distinguish between natural element or compound 

concentrations and anthropogenically-influenced concentrations in real sample 

collectives” (Matschullat et al., 2000). This can be expressed as a simple equation: 

 

BASELINE = BACKGROUND + Anthropogenic Contribution 

 

This is a simplification because the background may be made up of many contributing 

geochemical populations (caused by variations in underlying parent material, for 

example) and the anthropogenic contribution can also be from multiple sources. 

Definition of the background enables us to quantify the urban contamination. (see 

later section). Background, unlike a baseline, is determined by interpreting or 

modelling the data. 

 

Guideline or Intervention values. Urban geochemical mapping studies will often put 

their data for potentially toxic elements or compounds in the context of guideline or 

intervention values in order to delineate areas where there is a potential risk to health. 

In the UK Contaminated Land Exposure Assessment (CLEA) soil guideline values 

(SGV) (DEFRA-EA, 2002a) are now often cited (see Table 3). Other 

guideline/intervention values are cited for other countries as part of legislation for 

identifying contaminated land that might pose a risk to health (cite Jaana Java’s New 

 8



Orlean’s SEGH presentation if in this volume). SGVs represent an intervention value 

which if exceeded indicate potentially unacceptable risks to site users. If the SGVs are 

exceeded then this might suggest that further investigations and/or remedial action 

may be required to protect human health.  Such guideline or intervention values are 

determined by establishing authoritative health criteria values for each contaminant 

through a review of scientific literature. 

 

How we do Urban Geochemical Mapping Studies 
Table 1 gives an indication of the methods used for urban geochemical mapping and 

more details of methodology can be found in the cited references. This section on how 

we do geochemical mapping studies is more concerned with strategy and presentation 

than the details of methods. In connection with strategy, the first point that must be 

emphasised is that no two urban areas are the same and any strategy for mapping an 

urban area must consider the history of urbanisation and industrialisation in addition 

to its geographical setting. Opportunities for soil sampling in an intensively built up 

area such as Hong Kong will be far fewer than say in Nottingham (UK) where houses 

are more likely to have gardens. Similarly, a shallow dry stony soil, say from a 

Mediterranean region, will be more easily collected with a trowel or spade than a well 

developed soil from the northern temperate zone that can easily be collected with a 

1 m soil auger. Whilst it is useful to have a generic guide to geochemical mapping 

(Darnley et al. 1995), methodology for urban areas cannot be too prescriptive in order 

to account for the diversity of conditions that go into the make up of an urban 

environment. 

 

Whilst it may be difficult to compare urban areas on a continental scale it is desirable 

to be able to compare them on a national scale. Any strategy for sampling an urban 

area must be designed with the end users of the data in mind. For example, if the 

urban baseline is to be used to define contaminated land that poses a risk to health 

then the geochemical baseline mapping should use the same sample media and 

analytical methodology that has been used to define the legislative guideline values. 

There is little point using, for example, roadside dust determined following a weak 

acid extraction if health risks have to be put into the context of soil guideline values 

for total element concentrations. Conversely, it is an important role of targeted 
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geochemical mapping to highlight the inappropriateness of guideline/intervention 

values based on total element concentrations when it is the bioaccessible fraction of 

an element that may be more important when considering the impact on human 

health. 

 

This section opened with a statement that recommendations for urban geochemical 

mapping should not be too prescriptive on account of the diversity of urban make up 

particularly on a continental scale. However, there is a need for guidelines on how to 

conduct urban sampling and subsequent chemical analyses. Table 1 summarises some 

of the more important aspects of the methodologies and these are categorised as 

follows. 

Sampling and Analytical Strategy 
Sample Media. Soil is the most widely used sample media particularly for systematic 

sampling of complete urban areas. As many targeted studies have been in connection 

with vehicle pollution, roadside dust is also a frequently reported sample medium. 

Drainage sediments are not as widely used as in non-urban studies mainly on account 

of their artificial and inaccessible nature (e.g. underground water culverts) in built-up 

environments. Studies that have used drainage sediments (e.g. Fordyce et al. 2004) are 

able to better consider movement of contaminants between the different urban 

environmental compartments. Tree bark and attic/house dusts (e.g. Tye et al. 2006) 

can be used for targeted studies involving atmospheric transport of contaminants. 

Atmospheric levels of elements and compounds are rarely reported in geochemical 

journals and research tends to be done by other disciplines. This point illustrates the 

need for greater inter-disciplinary cooperation particularly in studying the movement 

of chemicals and compounds between the different compartments of the urban 

environment which will be represented by different sample media. 

Soil Sampling Depth. Urban soil sampling tends to use a depth rather than horizon 

based approach on account of the poor development of soil horizons in many urban 

soils. Surface soils or “topsoils” are generally collected from 0-10 cm but may or may 

not include the surface organic litter or root zone. “Deep” or “Profile” soils are 

generally collected from >35 cm usually for the purpose of establishing a relationship 

with parent material or using results in the context of a regional baseline. 
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Soil Fraction. Use of the <2 mm fraction of soil samples is now widespread, although 

some studies have reported finer fractions mainly to be consistent with earlier regional 

work. Gentle disaggregation of samples to make sure fine particles are not lost 

because they are aggregated is an essential part of the sample preparation process, and 

may make a significant difference to results if not carried out.  

Soil Representativity. It is generally accepted that the origin and history of urban soils 

leads to a greater heterogeneity than in non-urban areas and sampling strategies 

usually involve sampling at a higher density to capture more of the between site 

variability. In order to deal with “within site” variability most investigations will 

create a composited sample though procedures vary both in the number of composite 

samples (generally 3 to 9 sub-samples) or the area and shape of sampling zone (see 

Table 1).  

 

In urban areas the G-BASE project collects four duplicate pairs (i.e. eight samples) 

from every one hundred sites and these are split in the laboratory to give replicates. 

Using nested ANOVA analysis the variance “between sites”, “within sites” and 

“within samples” can be quantified (Johnson et al., In Press). A successful sampling 

and analytical  strategy would expect at least 80% of the variance to be attributed to 

“between sites” (Ramsey et al. 1992). It is important that urban studies should 

quantify variance for each analyte in this way, particularly studies collecting small 

amounts of material, say for example in soils over a very restricted (several 

centimetres) depth of sampling.  

 

A nested sampling investigation by the G-BASE project  to look at the optimum soil 

sampling density (Rawlins & Brown, 2002) has also provided information on element 

variance captured over varying distances. This work showed that elements associated 

with anthropogenic contamination require shorter sampling intervals to capture their 

variance than do the geogenic elements (that is those elements associated with the 

underlying parent material). 

 

Sample Analysis. The most significant divergence in reporting geochemical data from 

urban areas relates as to whether results are total analyses (XRFS or neutron 

activation (NA)), near total (four acid attack (Hydrofluoric Acid (HF), Perchloric 

Acid (HClO4), Nitric Acid (HNO3) and Hydrochloric Acid (HCl)) during extraction 
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procedure), or partial (great variety of methods designed to identify various 

components of a total analyses, particularly relating to bioaccessibility). It is very 

important that the method of analysis is borne in mind when comparing urban 

baselines and when the data is placed in the context of guideline/intervention values. 

 

Presenting Baseline Data 
An important component of urban geochemical mapping studies is how we present 

our baseline data. The increasing number of urban investigations has coincided with a 

period of growth in the power of desktop computing and the availability of more user-

friendly Geographical Information System (GIS) software applications such as 

ArcGIS and MapInfo. An important outcome of urban geochemical studies is a GIS 

project in which the multi-disciplinary components can be represented in the different 

layers and readily interrogated. The GIS is dependent on a well constructed and 

quality controlled digital data set. The importance of geochemical databases cannot be 

underestimated, they enforced a high degree of data standardisation and preserve the 

results for use in future investigations. The G-BASE project contributes its results to 

the corporate BGS Geochemistry Database (Coats & Harris, 1995), a database 

containing some half-a-million samples and eight million analyte determinations. 

Given that a geochemical sample costs something between US $100 – $200 to collect, 

prepare and analyse such a database is an asset of considerable value. 

 

In publications the baseline data can simply be presented as a table of data or more 

satisfactorily as a geochemical map or interpolated image. A baseline is data 

presented with the minimum of interpretation and the interpolated geochemical 

images such as that shown in Figure 1 based on a percentile classification is a 

common form of presentation. Care has to be taken in the presentation of geochemical 

data for urban areas as lack of understanding as to what an interpolated images shows 

can lead to property being blighted unreasonably particularly if inappropriate gridding 

parameters have been used. For this reason the G-BASE project prefers to present 

baseline geochemical data for urban areas as classified symbol maps (Figure 3) and it 

is repeatedly emphasised that the nature of the survey is one of investigating regional 

trends rather than site specific investigations. 
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Baseline data can be informatively presented in a graphical manner and techniques 

used to give visual comparisons between different urban baselines. Histograms, box 

and whisker plots (Figure 4) and cumulative frequency probability plots are a few 

examples (Figure 5). The box and whisker plot can be used to classify baseline data 

(e.g. by underlying parent material) to aid interpretation. The cumulative frequency 

probability plot (Sinclair, 1976) is particularly informative because it not only gives 

an immediate visual impression of the data range and multi-modal distribution  but it 

can also be used to partition data to establish background and contaminated areas. 

 

Why we do urban Geochemical Mapping Studies 
According to the 2005 revision of the United Nations World Urbanisation prospects 

report (UN, 2006) 3.2 billion people lived in urban areas in 2005, a figure which will 

grow by 2008 to surpass to world’s rural population. Sixty percent of the world’s 

population is expected to live in cities by 2030. In developed countries with a history 

of urbanisation and industrialisation going back many centuries the percentage of 

urban population is higher, as is the legacy of industrial contamination. This legacy 

arose from times when we were unaware as to the many health impacts of 

urbanisation combined with an attitude that economic development was more 

important than the quality of life and health of the population. It is because we now 

live in more enlightened times in which we and responsible governments are 

concerned about our health, the quality of our lives and environmental sustainability 

that we do urban geochemical mapping studies. 

 

The American Minerals Information Institute1 estimates that every American will 

need 3.7 million pounds (1.68 x 106 kg) of minerals, metals and fuels during their 

lifetime. If one imagines several generations and ponders where the materials come 

from, where they are processed and where they are used and disposed of, then it is no 

surprise that anthropogenic activity significantly modifies the chemical environment 

of urban areas. 

 

Urban areas are associated with many problems that impact on human health and life. 

Why should resources be spent on doing geochemical mapping when, say for 
                                                 
1 www.mii.org 
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example, a bigger priority might be preventing people getting run over and killed by 

cars on city street? Geochemists must be able to justify their reasons for doing such 

investigations if they are to expect support for their work. Mapping that just shows an 

urban area is contaminated by anthropogenic activity, something that can easily be 

predicted, is insufficient reason alone. Outcomes must demonstrate that the work 

leads to an improvement in the health and quality of life of the local population and a 

more sustainable local environment. 

 

Part of the problem is a general lack of understanding amongst the general public and 

those responsible for their urban environment of the impact of the chemical 

environment on human health and the quality of life. Chemical hazards are not seen in 

the same way as physical hazards. People notice subsiding buildings, the damage to 

property through flooding, earthquake and volcanic eruptions, hazards that effect 

property. They are not so aware of the silent and less visible effects of cancer causing 

radon and arsenic, or the mental impairment through excessive exposure to lead or 

mercury or even a lack of iodine in the diet. Chemical hazards impact more directly 

on people than property so it might be expected that people should be more 

concerned. Geochemists must learn to communicate the hazards of the chemical 

environment in a way people can understand. After all, the risks of the chemical 

environment are more predictable than events such as hurricanes, flooding and 

earthquakes and more readily mitigated. 

 

Unfortunately, it takes catastrophic events to highlight the importance of knowing the 

geochemical baseline, events such as the Chernobyl (Ukraine) nuclear accident in 

1986, the flooding of New Orleans (USA) in 2005, or the Buncefield oil refinery fire 

(UK) in 2005. All these events have used pre-event baseline information to assess and 

understand the post-catastrophe impact. If not a catastrophic event it usually takes 

legislation before urban authorities believe they have a requirement for geochemical 

data. There was a significant increase in the licencing of G-BASE baseline data by 

local authorities following the introduction of the Environmental Protection Act Part 

IIA (DETR, 2000) in the UK in April 2000. 

 

There is little doubt that some of the pioneering work done by the founders of the 

Society for Environmental Geochemistry and Health, particularly with regard to lead 
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in the urban environment, has resulted in a more healthy urban environment and 

greater protection of our children from lead poisoning. Geochemical mapping studies 

will continue to bring new issues to the forefront, e.g. Arsenic and Polychlorinated 

Biphenyls (PCBs) (Reference to Rolf Ottensen’s work in Norway presented at SEGH 

New Orleans conference if included in this volume). 

 

Targeted urban studies have a role to identify and understand the chemical hazards of 

our urban environment whilst the systematic studies can help policy makers and 

legislators to use more appropriate intervention values. By systematic surveying we 

can identify areas at risk that otherwise would not have been predicted (e.g. 

contaminated fenland in NW England, Breward (2004)). Systematic surveys also have 

the potential to estimate levels of diffuse pollution added to the urban environment 

through anthropogenic activity (Rawlins et al., 2005) and can demonstrate 

anthropogenic impact by subtracting the extra-urban baseline (used to define natural 

background) away from the urban baseline (Tarvainan et al., 2006 or Jaana Java’s 

New Orlean’s SEGH presentation if in this volume). 

 

The purpose of urban geochemical mapping is a long term goal to understand and 

improve our knowledge of the urban environment rather than to have short-term 

outcomes. A cost benefit analysis would demonstrate that the money saved nationally 

on the need to inappropriately remediate land defined as contaminated by poor 

legislation would far outweigh the cost of carrying out a national urban geochemical 

survey. Such mapping provides the information to give more appropriate 

guideline/intervention values. For example, the UK Association of Geotechnical and 

Geoenvironmental Specialists (AGS) estimate that over a fifteen year period (2001-

2016) remediation of brownfield sites is likely to cost within the range £2billion to 

£6.75billion (US $ 4 to US $ 13.5billion) (AGS, 2006). A substantial proportion of 

the sites where remediation is taking place fall into the category where concentrations 

of toxic compounds such as lead and arsenic fall slightly above the SGV. A 

significant cost for risks that might be considered tolerable or minimal. 
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Conclusions 
1. Geochemical studies of urban environments have grown in importance relative to 

the historical application of geochemical mapping to mineral exploration. 

2. The last decade has seen an increase in urban geochemical mapping particularly in 

Europe where a long industrial history has left a legacy of contamination in many 

cities. 

3. Whilst the diversity of the make up of urban areas worldwide would prevent an 

overly prescriptive approach to urban geochemical mapping, it is important that 

there are guidelines more detailed than the generic recommendations of Darnley et 

al. (1995) to assist in greater standardisation of methodologies in urban studies. An 

estimation of  the anthropogenic contribution to the baseline is more easily done if 

an urban survey uses the same methods as employed in the regional baseline 

mapping. 

4. Urban geochemical mapping studies can generally be classified as either being 

systematic surveys or targeted surveys. The former tend to be done by national 

organisations and will involve 100s or 1000s of samples. The targeted surveys are 

more likely to be done by university and research institutes. 

5. Urban studies require a multi-disciplinary approach and geochemists must learn to 

communicate their work and results to non-geochemists in a more comprehensible 

manner. Definitions of what an urban area is, geochemical baseline and 

background, and guideline/intervention values need to be used with greater clarity. 

6. Urban geochemical studies need to have better defined outcomes than just 

demonstrating that an urban area is contaminated. They should have a long term 

goal of improving the health, quality of life and sustainability of the environment. 

7. It is unfortunate that it takes catastrophic events or legislation to demonstrate the 

value of baseline geochemical data. Geochemists need to do more to highlight the 

risks of the chemical environment which are less obvious, though more 

controllable than physical hazards. 

8. Baseline data for urban areas, particularly if used in the context of the regional 

baseline, can be used to assist policy makers and legislators create better legislation 

with more appropriate guideline/intervention values. 
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Figure 1: Figure showing a regional geochemical map for Scotland based on 
samples collected in the 1970s (from the G-BASE project) 
 
<<<<<IN COLOUR>>>> 
 

 
 

Regional geochemical mapping 
originally deliberately avoided 
urban areas. The inset shows an 
area of no data because the city of 
Glasgow was avoided during initial 
regional mapping. It was 2001 
before soils in Glasgow were 
sampled. 
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Figure 2: A figure that shows how the G-BASE project defines areas for urban 
geochemical mapping 
 
<<<< can be done in Black & White>>>> 
 
1:50,000 scale Ordnance Survey topographic maps are used to define urban areas. An urban 
boundary is drawn around the parts of the map showing a predominantly built-up ornament. 
(Background grid is 1 km intervals on reduced coloured map reproduced here in greyscale). 
 

 
This map is based upon Ordnance Survey topographic material. © Crown Copyright. All rights 
reserved. OS licence No. 100017897/2007 
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<<<Figures 3 & 4 can be presented in Black & White>>>> 
Figure 3: Classified symbol plot for lead in surface soils from Derby (UK) 
 

 
 
Figure 4: Example of a box and whisker plot. Mean is shown by square symbol, 25th  
(Q1) and 75th (Q3) percentiles define bottom and top of box, median (50th percentile) is the line 
across the box. Lower whisker extends to (Q1 – 1.5(Q1-Q3)) and upper whisker extends to (Q3 + 
1.5(Q1-Q3)). 
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Figure 5: Lead in topsoils from Derby, UK. An example of a cumulative 
probability plot 
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Reference Location Aims/Objective 
Sample 
Media Sampling Method Analytical Method 

Ahmed et al. 
(2007) 

Dhaka, 
Bangladesh 

Assess present environmental conditions and  describe the possible 
sources of trace metals, esp. PB & Zn, in street dusts of Dhaka 

RDS 
(<1mm)(59) 

Collected from pavement edges with 
plastic pan & brush 

XRFS & NAA 

Al-Khashman 
(2007) 

Amman, 
Jordan 

Define essential characteristics of metal levels and sources of metal 
pollution in street dust samples 

RDS 
<2mm(120) 

Collected from pavement edges 
either side of road with  pan & brush. 
2 sub-samples composited 

conc. HNO3 extraction followed by 
determination of Fe, Cu, Cd, Pb, Zn 
& Ni. + organic matter 

Barraclough 
(2007) 

Urban sites, UK Baseline against which intensive local surveys can be assessed S(0-5) <?mm 
(78) 

Sampled with Eijkelkamp coring kit. 
3 sub-samples composited from 
20m square 

AqRE followed by ICP-MS /OES  & 
CV-AAS for As, Cd, Cr, Cu, Pb, Mn, 
Hg, Ni, Pt, Sn, Ti, V & Zn, + pH & 
LOI, +range of organic 
determinations 

Biasioli et al. 
2006 

Torino, Italy To evaluate the influence of a large city on its soils and on the 
surrounding ones with reference to some soil properties and heavy 
metal content 

S(0-
20)<2mm(70) 

From parks and roadside. 
Composite of 4 sub-samples taken 
at corners of 1m square with spade 

AqRE followed by AAS. CEC, pH 
and organic C also determined 

Birke & Rauch 
(2000) 

Berlin, 
Germany 

Development of a scientific basis for recognition and evaluation of 
polluted areas a priority project of Fedral Government 

S(0-20)<2mm 
(4000) 

Densely populated and industrial 
areas sampled at a density of 40 
samples per km2.  

41 trace & 11 major elements plus 
pH & TOC. Mainly by XRFS 

Bityukova et 
al. (2000) 

Tallinn, Estonia Important contribution to the characterisation of the state of the 
environment 

S(0-10)<1mm 
(532) 

Sampling on 2 km grid. Each sample 
collected from a square of 15x15 cm 

XRFS (13 - 21 elements); 198 S 
from Tallin also determined by OES 
(22 elements) 

Carrez et al. 
(2006) 

Manchester, 
UK 

Determine spatial variability in road deposited sediment across the 
city centre focusing on the coarser fraction which is likely to impact 
surface water quality 

RDS<2mm(100) 
also <63µm 
fraction studied 

4 samples per km2 over 25 km2 
area.  Used dust pan & brush. 

Digested in 0.5 M HCl followed by 
AAS determination of Cu, Fe, Mn, 
Pb & Zn + LOI. 

Diawara et al. 
(2006) 

Pueblo, 
Colorado, USA 

Address concerns about environmental contamination S(0-5)<2mm 
(66) 

Four transects, 3 km apart, every 2 
km along transect giving 33 
sampling sites. Two 25 x 25 cm 
collection areas 

4 acid extraction, Cd & Pb by ICP-
MS, As and Hg by AAS. 

Duzgoren-
Aydin et al. 
(2006) 

Guangzhou, 
China 

Determine the distribution and level of heavy metal contamination in 
different urban settings to identify potential sources and to provide 
guidance for planning remedial actions 

Road dust (15); 
tunnel ceiling 
dust (2); & 
gulley seds (13) 
(all <2mm) 

30 composited samples from 14 
sites.Road and tunnel dust collected 
with plastic dustpan & brush. Gulley 
sediments with plastic scoop. 

HF/HNO3 digestion followed by ICP-
MS (18 elements) 

Fordyce et al. 
(2005) (use 
Nice reference 
if published in 
this volume) 

21 cites, Great 
Britain 

Provide overview of the urban geochemical signature and because 
they are collected as part of natinal baseline mapping soils can be 
assessed for extent of urban contamination. Direct relevance to UK 
land use planning, urban regeneration and contaminated land 
legislative regimes 

S(5-20)<2mm  
S(35-50)<2mm 
(pre-2000 used 
<150µm for 
deep soil)) 
(>17000) 

Soil samples collected with 1 m 
stainless steel Dutch auger. Each 
sample a composite of 5 sub-
samples collected at corners & 
centre of 20m square. Density of 4 
samples per km2. 

46 elements by XRFS (earliest 
urban sampling only 18 elements) 

Grzebisz et al. 
(2002) 

Poznan, 
Poland 

Identify heavy metals with dangerous environmental load and to 
define areas of their environmental impact. 

S(0-20)<?mm 
(350) 

350 randomly chosen soil sites over 
261 km2.  

AqRE followed by AAS for Cd, Pb, 
Cu & Zn 

Kelly & 
Thornton 
(1996) 

Wolverhampton 
& London, 
England 

Assess the influence of urbanisation and industrial activity in Britain 
on the heavy metal content of topsoils 

S(0-15)< 2mm 
(509)  

4 samples per km2 composite of 9 
sub-samples from a 4 m2 grid 

HNO3/HCLO4/HCl extraction 
followed by ICP-AES (25 elements). 
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Lee et al. 
(2006) 

Hong Kong To assess and compare metal contamination in soils of urban, sub-
urban, and country park areas of Hong Kong. To evaluate the 
relationship between heavy metals and their possible sources using 
GIS. To identify anthropogenic sources of PB using isotopic 
composition analysis. 

S(0-10)<2mm 
(298) 

80 km2 cells. 5 samples per cell 
(urban), 2 per cell (sub-urban). 9 
composited sub-samples using 
stainless steel hand auger on 2 x 2m 
grid 

AqRE extraction followed by ICP-
AES 12 elements)  and Hg by 
flameless AAS. Pb isotopes using 
ICP-MS. 

Ljung et al. 
(2006) 

Uppsala, 
Sweden 

Attempts to make a distinction between soil metal contents derived 
from natural sources and metal contents that are a result of 
anthropogenic activities 

S(0-5)<2mm      
S(5-10)<2mm    
S10-20)<2mm 

5 sub-samples within 1 m2 collected 
using stainless steel auger. 75 soils 
from 25 sites 

AqRE  and analysis of Al, As, Cd, 
Cr, Cu, Fe, Hg, Mn, Ni, Pb, W & Zn 
by ICP-AES and/or ICP-MS,+ LOI & 
pH. 

Loredo et al. 
(2003) 

Mieres, Spain Study of soils and street dust in historical industrial city (Hg mining 
and metallurgical activities). 

S(0-20)<2mm 
(18) Street 
dust<2mm (48) 

3 km2 area. Soils composed of 5 
bulked sub-samples collected on 2m 
cross pattern. Stainless steel 
"equipment" used to dig holes and 
sampling with plastic utensils.  

AqRE followed by ICP-MS (27 
elements)  and Hg by flameless 
AAS 

Madrid et al. 
(2006) 

Aveiro, 
Glasgow; 
Ljubljana, 
Seville, Torino, 
& Uppsala 

Soil quality is currently a topic of considerable importance in Europe, 
as consultation progresses on development of a Thematic strategy 
on the Protection of Soil under the 6th Environmental Action 
Programme of the European Community. The URBSOIL project is 
aimed at assessing the role of urban soils as a source and sink for 
pollutants. 

S(0-10)<2mm 
(160)               
S(10-20)<2mm 

Each city had sampling grid of at 
least 25 points ( 50 x 50 m) apart. 
Samples collected with a trowel or 
plastic lined corer 

AqRE followed by determination of 
Cu, Cr, Ni, Pb, Zn by ICP-MS or -
AES+ pH & LOI 

Manta et al. 
(2002) 

Palermo, Italy Assess the distribution of heavy metals in the urban environment, 
discriminate natural and anthropogenic contributions, and identify 
possible sources of pollution 

S(0-10)<2mm 
(70) 

Topsoils from green areas of 
Palermo. 3 sub-samples from 20 x 
20 cm area 

XRFS (major elements)  + pH , LOI 
and CEC. Also AqRE followed by 
AAS/ICP-MS for trace elements. Hg 
by direct mercury analyser 

Markus & 
McBratney 
(1996) 

Glebe, Sydney, 
Australia 

Primary aim was to determine the total concentration and spatial 
distribution of Pb, Zn, Cu and Cd in the topsoil of Glebe and 
concentrations were compared with environmental investigation 
limits 

S(0-10)<2mm 
(219) 

One site per 100 x 100 m cell taken 
at random. Two samples from each 
site taken 1 m apart to determine 
spatial variability. 10 cm auger used 

AqRE followed by AAS 
determination of Pb, Zn, Cu and Cd. 
pH also determined 

McAlister et al. 
(2005) 

Rio Janeiro, 
Brazil 

 To assess the nature and extent of the health risks relating to 
"heavy metal", sewage and vehicle pollution.  

RDS<63µm Sweeping large area of road from 
pavement towards centre of road 

Selective extraction procedure 
followed by AAS for heavy metals. 
Oxalate (C2O4

- ) determined by ion 
chromatograph. pH + organic C 
determined 

Mielke (1994) New Orleans, 
USA 

Map lead in the soils of New Orleans S(0-2.5) 
(surface 
scrape). USGS 
#10 sieve 
(<2mm) (3704) 

Roadside soils (within 1 m of street), 
houseside (1m of house matched 
with roadside sample) and open 
spaces away from streets and 
houses 

Digestion with 1M HNO3 followed by 
determination of Pb by AAS 

Norra et al. 
(2006) 

Pforzheim, 
Germany 

Evaluate the application of mineralogical investigations to urban 
geochemical soil surveys. To investigate the impact of urbanization 
on the mineralogical composition of soil. 

S(0-5)<2mm 
(58) 

Composite of 3 samples taken 1 m 
sided triangle 

21 elements by XRFS plus pH and 
total C 

Ordóñez et al. 
(2003) 

Avilés, Spain Attempts to differentiate between metals produced naturally and 
those produced as a result of industry and those distributed in 
relation to traffic movements. 

S(0-15)< 2mm 
(40)  Street 
dust<2mm 
(112) 

5 soil subsamples collected on 10m 
cross pattern using plastic trowel. 
Dust collected with plastic utensils 

AqRE followed by ICP-MS (27 
elements)  and Hg by flameless 
AAS 
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Ottesen & 
Langedall 
(2001) 

Trondheim, 
Norway 

To assess whether emissions have elevated certain elements and 
provide a database for environmental risk evaluation. Also provides 
background for further community planning 

S(0-2)<2mm 
(314) 

Soils collected at density of 4.5 
samples per km2. 

AqRE then determination  31 
elements by ICP-AES plus some by 
AAS. + LOI 

Paterson et al. 
(1996) 

Aberdeen, 
Scotland 

Establish a baseline in order to assess the extent urban soils have 
been altered by anthropogenic influences 

S(0-10)<2mm 
(50) 

Roadside locations at least 1 m from 
road. 10 composite samples 
collected from within 2 x 5 m 
rectangle 

AqRE followed by ICP-AES for 19 
elements + pH. 

Salonen & 
Korkka-Niemi 
(2007) 

Turku, Finland To examine the influence of parent sediment material on soil 
geochemistry and to locate possible pollution sources 

S(0-5)<60µ 
(100)               
S(50-100)<60µ 
(50) 

Different glacial parent materials 
sampled. Dug with spade 4 
composite samples from 25m2 grid. 

21 elements. Conc. HNO3 
extraction. ICP-AES, AAS + LOI 

Tarvainen et 
al. (2006) 

Helsinki, 
Finland 

To provide regional environmental authorities with information on 
geological and diffuse anthropogenic baselines of different elements. 

S (pit 
profileSoil) 
<2mm (300) 

300 pits from around the Helsinki 
area to represent most common 
mineral soil types 

AqRE for mineral soils, conc. HNO3 
for humus. 30+ elements + LOI and 
pH mainly ICP-MS/AES 

Tijhuis et al. 
(2002) 

Oslo, Norway Risks from contaminated land and groundwater pollution are high 
and have a high priority in Norway. 

S(2-3)<2mm 
(c.300) 

Surface soils at one sample per km2. 
20 x 10 cm cut with spade and 
sample collected with knife 

7M HNO3 dissolution followed by  
29 elements (ICP-AES); Hg by CV-
AAS; As & Cd by GF-AAS. 

Wang et al. 
(2005) 

Xuzhou, China Assess the distribution of heavy metals, discriminate 
natural/anthropogenic contributions, and identify possible sources of 
pollution 

S(0-10)<2mm 
(21) 

A composite of 3 sub-samples over 
20 x 20 cm area. Collected with 
stainless steel spatula. 

XRFS also by 3 acid extration 
followed by ICP-AES/MS. 30 
elements reported 

Xinmin et al. 
(2006) 

Beijing, China Results from this study are very important to protect and enhance 
environmental quality. 

S(0-10) 100 
mesh sieve (21) 
Dust (20) 

Soil collected with stainless steel 
shovel made of 4 sub-samples from 
corners of a square. Dust collected 
at same time from paved road 
surface beside street with plastic 
broom and stainless steel pan 

Hg determined  using Atomic 
Fluorescence Spectrometry (AFS) 
following aqua regia extraction+pH 
& organic matter (chromic acid 
digestion method) 

Yongming et 
al. (2006) 

Xi'an, China To determine concentrations of 9 heavy metals in urban dust, 
identify natural or anthropogenicsources, and to guage the degree of 
anthropogenic influence on heavy metal contamination in urban 
dusts. 

Dust (<1mm) 
(65) 

 Dusts collected with plastic dustpan 
& brush over 1m2 area 

Four acid extraction followed by 
determination of Ag, Cr, Cu, Mn, Pb, 
Zn by AAS, As, Hg & Sb by AFS 

 
AAS Atomic Absorption Spectometry NAA Neutron Activation Analysis 

AqRE Aqua Regia Extraction PAH Polycyclic Aromatic Hydrocarbon 
CEC Cation Exchange Capacity RDS road deposited sediment 
ICP-

AES/MS/OES 
Inductively Coupled Plasma Atmic Emission Spectometry/mass spectrometry/optical 
emission spectrometry 

S soil 

LOI Loss-on-Ignition TOC Total Organic Carbon 

    XRFS X-Ray Fluorescence Spectrometry 

Depth of soil sampling given as a range in cm within brackets in sample media column. Number of samples given in italics within brackets. 
 
Table 1: Summary of  some examples of urban geochemical mapping studies from around the world 
  <<<may need some editing to fit in Journal – best on two opposite landscape pages)>>>>>> 
 



Table 2: Classification of urban geochemical mapping studies into two groups 
 
 
 

SYSTEMATIC SURVEY TARGETED SURVEY 

ENTIRE URBAN AREA TARGETED LAND USE/AREA 

INTERPRETED IN THE CONTEXT OF 
REGIONAL BASELINE 

INTERPRETED IN THE CONTEXT OF 
GUIDELINE VALUES 

UBIQUITOUS SAMPLE MEDIUM VARIETY OF SAMPLE MEDIA 

100s – 1000s samples 1s – 10s samples 

FULL RANGE OF ELEMENTS +/- 
organics 

SELECTED ELEMENTS 
inorganic/organics 

1 ~ 4 samples per km2 4 ~ 50 samples per km2 

DONE BY NATIONAL/PUBLIC 
ORGANISATIONS 

DONE BY RESEARCH 
ORGANISATIONS/UNIVERSITIES 

 
 
 
 
 
Table 3: UK CLEA Soil Guideline Values (all values in mg/kg dry weight soil). 
Compiled from DEFRA-EA (2002b-h) 
 

Pollutant Residential 
with plant 
uptake[A] 

Residential 
without plant 

uptake[B] 

Allotments[C] Commercial/ 
Industrial[D] 

Arsenic (As) 20 20 20 500 
Cadmium (Cd) 1 (pH 6)  1 (pH 6)  
 2 (pH 7) 30 2 (pH 7) 1400 
 8 (pH 8)  8 (pH 8)  
Chromium 
(Cr) 

130 200 130 5000 

Mercury 
(inorganic Hg) 

8 15 8 480 

Nickel (Ni) 50 75 50 5000 
Lead (Pb) 450 450 450 750 
Selenium (Se) 35 260 35 8000 
[A]   House with a garden and therefore the possibility of ingestion of home-grown vegetables 
[B]   House or apartment with no private garden area 
[C]   Open space used to grow fruit and vegetables 
[D]   Assumed that work takes place in a single-storey building where employees spend most time 
indoors. Does not apply to sites with 100% hard cover, such as car parks. 
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