119 research outputs found

    Mathematical modelling of polyamine metabolism in bloodstream-form trypanosoma brucei: An application to drug target identification

    Get PDF
    © 2013 Gu et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are creditedThis article has been made available through the Brunel Open Access Publishing Fund.We present the first computational kinetic model of polyamine metabolism in bloodstream-form Trypanosoma brucei, the causative agent of human African trypanosomiasis. We systematically extracted the polyamine pathway from the complete metabolic network while still maintaining the predictive capability of the pathway. The kinetic model is constructed on the basis of information gleaned from the experimental biology literature and defined as a set of ordinary differential equations. We applied Michaelis-Menten kinetics featuring regulatory factors to describe enzymatic activities that are well defined. Uncharacterised enzyme kinetics were approximated and justified with available physiological properties of the system. Optimisation-based dynamic simulations were performed to train the model with experimental data and inconsistent predictions prompted an iterative procedure of model refinement. Good agreement between simulation results and measured data reported in various experimental conditions shows that the model has good applicability in spite of there being gaps in the required data. With this kinetic model, the relative importance of the individual pathway enzymes was assessed. We observed that, at low-to-moderate levels of inhibition, enzymes catalysing reactions of de novo AdoMet (MAT) and ornithine production (OrnPt) have more efficient inhibitory effect on total trypanothione content in comparison to other enzymes in the pathway. In our model, prozyme and TSHSyn (the production catalyst of total trypanothione) were also found to exhibit potent control on total trypanothione content but only when they were strongly inhibited. Different chemotherapeutic strategies against T. brucei were investigated using this model and interruption of polyamine synthesis via joint inhibition of MAT or OrnPt together with other polyamine enzymes was identified as an optimal therapeutic strategy.The work was carried out under a PhD programme partly funded by Prof. Ray Welland, School of Computing Science, University of Glasgo

    Epigenetic control of nuclear architecture

    Get PDF
    The cell nucleus is a highly structured compartment where nuclear components are thought to localize in non-random positions. Correct positioning of large chromatin domains may have a direct impact on the localization of other nuclear components, and can therefore influence the global functionality of the nuclear compartment. DNA methylation of cytosine residues in CpG dinucleotides is a prominent epigenetic modification of the chromatin fiber. DNA methylation, in conjunction with the biochemical modification pattern of histone tails, is known to lock chromatin in a close and transcriptionally inactive conformation. The relationship between DNA methylation and large-scale organization of nuclear architecture, however, is poorly understood. Here we briefly summarize present concepts of nuclear architecture and current data supporting a link between DNA methylation and the maintenance of large-scale nuclear organization

    Untargeted Metabolomics Reveals a Lack Of Synergy between Nifurtimox and Eflornithine against Trypanosoma brucei

    Get PDF
    A non-targeted metabolomics-based approach is presented that enables the study of pathways in response to drug action with the aim of defining the mode of action of trypanocides. Eflornithine, a polyamine pathway inhibitor, and nifurtimox, whose mode of action involves its metabolic activation, are currently used in combination as first line treatment against stage 2, CNS-involved, human African trypanosomiasis (HAT). Drug action was assessed using an LC-MS based non-targeted metabolomics approach. Eflornithine revealed the expected changes to the polyamine pathway as well as several unexpected changes that point to pathways and metabolites not previously described in bloodstream form trypanosomes, including a lack of arginase activity and N-acetylated ornithine and putrescine. Nifurtimox was shown to be converted to a trinitrile metabolite indicative of metabolic activation, as well as inducing changes in levels of metabolites involved in carbohydrate and nucleotide metabolism. However, eflornithine and nifurtimox failed to synergise anti-trypanosomal activity in vitro, and the metabolomic changes associated with the combination are the sum of those found in each monotherapy with no indication of additional effects. The study reveals how untargeted metabolomics can yield rapid information on drug targets that could be adapted to any pharmacological situation

    Neonatal Fc Receptor: From Immunity to Therapeutics

    Get PDF
    The neonatal Fc receptor (FcRn), also known as the Brambell receptor and encoded by Fcgrt, is a MHC class I like molecule that functions to protect IgG and albumin from catabolism, mediates transport of IgG across epithelial cells, and is involved in antigen presentation by professional antigen presenting cells. Its function is evident in early life in the transport of IgG from mother to fetus and neonate for passive immunity and later in the development of adaptive immunity and other functions throughout life. The unique ability of this receptor to prolong the half-life of IgG and albumin has guided engineering of novel therapeutics. Here, we aim to summarize the basic understanding of FcRn biology, its functions in various organs, and the therapeutic design of antibody- and albumin-based therapeutics in light of their interactions with FcRn

    Subcellular distributions of calcium/calmodulin-stimulated and guanine nucleotide-regulated adenylate cyclase activities in the cerebral cortex

    Full text link
    The subcellular distribution of Ca 2+ /calmodulin-stimulated adenylate cyclase activity was studied in comparison with that of guanine nucleotide-stimulated cyclase activity. The distributions of these activities were similar among the crude fractions but differed among the purified subsynaptosomal fractions. The specific activity of Ca 2+ /calmodulin-stimulated cyclase was highest in a light synaptic membrane fraction, which has few, if any, postsynaptic densities, whereas that of guanine nucleotide-stimulated cyclase was highest in a heavier synaptic membrane fraction rich in postsynaptic densities. These results suggest that the Ca 2+ /calmodulin-stimulated cyclase has, at least in part, a different cellular or subcellular location than the guanine nucleotide-stimulated cyclase.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/45402/1/11064_2004_Article_BF00965018.pd

    Antimalarial drug targets in Plasmodium falciparum predicted by stage-specific metabolic network analysis

    Get PDF

    Polyamines and cancer: old molecules, new understanding

    Full text link
    The amino-acid-derived polyamines have long been associated with cell growth and cancer, and specific oncogenes and tumour-suppressor genes regulate polyamine metabolism. Inhibition of polyamine synthesis has proven to be generally ineffective as an anticancer strategy in clinical trials, but it is a potent cancer chemoprevention strategy in preclinical studies. Clinical trials, with well-defined goals, are now underway to evaluate the chemopreventive efficacy of inhibitors of polyamine synthesis in a range of tissues

    Response differences between Ectocarpus siliculosus populations to copper stress involve cellular exclusion and induction of the phytochelatin biosynthetic pathway.

    No full text
    Some populations of brown seaweed species inhabit metal-polluted environments and can develop tolerance to metal stress, but the mechanisms by which this is accomplished are still to be elucidated. To address this, the responses of two strains of the model brown alga Ectocarpus siliculosus isolated from sites with different histories of metal contamination exposed to total copper (CuT) concentrations ranging between 0 and 2.4 μM for 10 days were investigated. The synthesis of the metal-chelator phytochelatin (PCs) and relative levels of transcripts encoding the enzymes γ-glutamylcysteine synthetase (γ-GCS), glutathione synthase (GS) and phytochelatin synthase (PCS) that participate in the PC biosynthetic pathway were measured, along with the effects on growth, and adsorption and uptake of Cu. Growth of strain LIA, from a pristine site in Scotland, was inhibited to a greater extent, and at lower concentrations, than that of Es524, isolated from a Cu-contaminated site in Chile. Concentrations of intra-cellular Cu were higher and the exchangeable fraction was lower in LIA than Es524, especially at the highest exposure levels. Total glutathione concentrations increased in both strains with Cu exposure, whereas total PCs levels were higher in Es524 than LIA; PC2 and PC3 were detected in Es524 but PC2 only was found in LIA. The greater production and levels of polymerisation of PCs in Es524 can be explained by the up-regulation of genes encoding for key enzymes involved in the synthesis of PCs. In Es524 there was an increase in the transcripts of γ-GCS, GS and PCS, particularly under high Cu exposure, whereas in LIA4 transcripts of γ-GCS1 increased only slightly, γ-GCS2 and GS decreased and PCS did not change. The consequences of higher intra-cellular concentrations of Cu, lower production of PCs, and lower expression of enzymes involved in GSH-PCs synthesis may be contributing to an induced oxidative stress condition in LIA, which explains, at least in part, the observed sensitivity of LIA to Cu. Therefore, responses to Cu exposure in E. siliculosus relate to the contamination histories of the locations from where the strains were isolated and differences in Cu exclusion and PCs production are in part responsible for the development of intra-specific resistance

    Using 2nd generation basal insulins in type 2 diabetes: Costs and savings in a comparative economic analysis in Italy, based on the BRIGHT study

    No full text
    Background and aims: To evaluate the economic impact of using 2nd generation basal insulin analogs, Glargine 300 Units/ml (Gla-300) vs Degludec 100 Units/ml (IDeg-100), in patients with type 2 diabetes (T2D). Methods and results: An economic analysis was conducted using findings from the BRIGHT study (the first controlled, head-to-head study comparing Gla-300 vs IDeg-100), and costs for the Italian National Healthcare Service (NHS). A cost-minimization analysis (CMA) and a budget impact analysis (BIA) were conducted. Only pharmacological costs were included in the analysis. The CMA estimated patient treatment costs at 24 weeks and 1 year; the BIA assessed the economic impact of treating the overall Italian population of T2D insulin-naïve patients, who initiated insulin treatment during the period September 2017–August 2018 (N = 55 318). In the BIA, four different scenarios were compared: i) all patients receive IDeg-100 (Scenario A); ii) 61% of patients receive Gla-300, 39% IDeg-100 (Scenario B); iii) 80% of patients receive Gla-300, 20% IDeg-100 (Scenario C); iv) all patients treated with Gla-300 (Scenario D). The average treatment costs per patient were lower with Gla-300 vs IDeg-100 (at 24 weeks: €129 vs €161; at 1 year: €324 vs €409, respectively). Results of the BIA showed that comparing Scenario D vs Scenario A, total savings would amount to €1.76 million at 24 weeks, €4.73 million at 1 year, €5.53 million at 2 years. Conclusion: A larger use of Gla-300 vs IDeg-100 for the treatment of T2D patients would lead to a relevant reduction of therapy costs in Italy
    • …
    corecore