474 research outputs found
Higher arc nucleus-to-cytoplasm ratio during sleep in the superficial layers of the mouse cortex
The activity-regulated cytoskeleton associated protein Arc is strongly and quickly upregulated by neuronal activity, synaptic potentiation and learning. Arc entry in the synapse is followed by the endocytosis of glutamatergic AMPA receptors (AMPARs), and its nuclear accumulation has been shown in vitro to result in a small decline in the transcription of the GluA1 subunit of AMPARs. Since these effects result in a decline in synaptic strength, we asked whether a change in Arc dynamics may temporally correlate with sleep-dependent GluA1 down-regulation. We measured the ratio of nuclear to cytoplasmic Arc expression (Arc Nuc/Cyto) in the cerebral cortex of EGFP-Arc transgenic mice that were awake most of the night and then perfused immediately before lights on (W mice), or were awake most of the night and then allowed to sleep (S mice) or sleep deprived (SD mice) for the first 2 h of the light phase. In primary motor cortex (M1), neurons with high levels of nuclear Arc (High Arc cells) were present in all mice, but in these cells Arc Nuc/Cyto was higher in S mice than in W mice and, importantly, ~15% higher in S mice than in SD mice collected at the same time of day, ruling out circadian effects. Greater Arc Nuc/Cyto with sleep was observed in the superficial layers of M1, but not in the deep layers. In High Arc cells, Arc Nuc/Cyto was also ~15%β30% higher in S mice than in W and SD mice in the superficial layers of primary somatosensory cortex (S1) and cingulate cortex area 1 (Cg1). In High Arc Cells of Cg1, Arc Nuc/Cyto and cytoplasmic levels of GluA1 immunoreactivities in the soma were also negatively correlated, independent of behavioral state. Thus, Arc moves to the nucleus during both sleep and wake, but its nuclear to cytoplasmic ratio increases with sleep in the superficial layers of several cortical areas. It remains to be determined whether the relative increase in nuclear Arc contributes significantly to the overall decline in the strength of excitatory synapses that occurs during sleep. Similarly, it remains to be determined whether the entry of Arc into specific synapses is gated by sleep
The Application Design of Interactive Multimedia of IT-based Mathematics Learning on Strengtening Students' Characters
This research aims to develop interactive multimedia application of Coordinate System-based on the strengthening of Grade VIII Junior High studentsβ characters. The development model used in this study refers to the 4-D model proposed by Thiagarajan, Semmel and Semmel consisting of Define, Design, Develop, and Disseminate stages. Product development was tested on 20 students and field test was conducted in three junior high schools namely SMPN 3 Gorontalo, SMPN 1 Kabila Bone Bolango District and SMPN 11 Gorontalo City. The results of this study indicate that interactive multimedia Coordinate System that has been developed: (1) Categorized valid and feasible according to the expert; (2) Multimedia interactive coordinate system is easy to use and improves learners' response in learning. In addition, the implementation of learning by using multimedia coordinate system is in very good criteria, (3) Multimedia can improve the activity and learning outcomes of learners which based on observations obtained the percentage of student activities by 89.75% for limited and average trial class percentage for the field trial class of 94.87% with very good criteria.Students' learning outcomes provide classical completeness data for the limited trial class of 87.50% and field trial classes obtained by an average percentage of 89.33% with very good criteria, (4) Improving character based on the above, the interactive Multimedia coordinate system developed has been said to be valid, practical and effective so that it can be used in the process of Mathematics learning at grade VIII Junior High School
Synaptic activity-responsive element (SARE):A unique genomic structure with an unusual sensitivity to neuronal activity
Formation of a new memory requires plasticity at the synaptic level. However, it has also been shown that the consolidation and the maintenance of such a new memory involve processes that necessitate active mRNA at the nucleus of the cell. How can robust changes in synaptic efficacy specifically drive new transcription and translation of new gene transcripts, and thus transform an otherwise transient plasticity into a long-lasting and stable one? In this article, we highlight the conceptual advance that was gained by the discovery of a potent Synaptic Activity-Responsive Element (SARE) found βΌ7 kb upstream of the transcription initiation site of the neuronal immediate early gene Arc. The unique genomic structure of SARE, which contained adjacent and cooperative binding sites for three major activity-dependent transcription factors within a 100-bp locus, was associated with an unusual responsiveness to neuronal stimuli. Taken together, these findings shed light on a new class of transcriptional sensor with enhanced sensitivity to synaptic activity
Subcellular heterogeneity of ryanodine receptor properties in ventricular myocytes with low T-tubule density
Rationale:
In ventricular myocytes of large mammals, not all ryanodine receptor (RyR) clusters are associated with T-tubules (TTs); this fraction increases with cellular remodeling after myocardial infarction (MI).
Objective:
To characterize RyR functional properties in relation to TT proximity, at baseline and after MI.
Methods:
Myocytes were isolated from left ventricle of healthy pigs (CTRL) or from the area adjacent to a myocardial infarction (MI). Ca2+ transients were measured under whole-cell voltage clamp during confocal linescan imaging (fluo-3) and segmented according to proximity of TTs (sites of early Ca2+ release, F>F50 within 20 ms) or their absence (delayed areas). Spontaneous Ca2+ release events during diastole, Ca2+ sparks, reflecting RyR activity and properties, were subsequently assigned to either category.
Results:
In CTRL, spark frequency was higher in proximity of TTs, but spark duration was significantly shorter. Block of Na+/Ca2+ exchanger (NCX) prolonged spark duration selectively near TTs, while block of Ca2+ influx via Ca2+ channels did not affect sparks properties. In MI, total spark mass was increased in line with higher SR Ca2+ content. Extremely long sparks (>47.6 ms) occurred more frequently. The fraction of near-TT sparks was reduced; frequency increased mainly in delayed sites. Increased duration was seen in near-TT sparks only; Ca2+ removal by NCX at the membrane was significantly lower in MI.
Conclusion:
TT proximity modulates RyR cluster properties resulting in intracellular heterogeneity of diastolic spark activity. Remodeling in the area adjacent to MI differentially affects these RyR subpopulations. Reduction of the number of sparks near TTs and reduced local NCX removal limit cellular Ca2+ loss and raise SR Ca2+ content, but may promote Ca2+ waves
Efflux Protein Expression in Human Stem Cell-Derived Retinal Pigment Epithelial Cells
Retinal pigment epithelial (RPE) cells in the back of the eye nourish photoreceptor cells and form a selective barrier that influences drug transport from the blood to the photoreceptor cells. At the molecular level, ATP-dependent efflux transporters have a major role in drug delivery in human RPE. In this study, we assessed the relative expression of several ATP-dependent efflux transporter genes (MRP1, -2, -3, -4, -5, -6, p-gp, and BCRP), the protein expression and localization of MRP1, MRP4, and MRP5, and the functionality of MRP1 efflux pumps at different maturation stages of undifferentiated human embryonic stem cells (hESC) and RPE derived from the hESC (hESC-RPE). Our findings revealed that the gene expression of ATP-dependent efflux transporters MRP1, -3, -4, -5, and p-gp fluctuated during hESC-RPE maturation from undifferentiated hESC to fusiform, epithelioid, and finally to cobblestone hESC-RPE. Epithelioid hESC-RPE had the highest expression of MRP1, -3, -4, and P-gp, whereas the most mature cobblestone hESC-RPE had the highest expression of MRP5 and MRP6. These findings indicate that a similar efflux protein profile is shared between hESC-RPE and the human RPE cell line, ARPE-19, and suggest that hESC-RPE cells are suitable in vitro RPE models for drug transport studies. Embryonic stem cell model might provide a novel tool to study retinal cell differentiation, mechanisms of RPE -derived diseases, drug testing and targeted drug therapy
Dilated Cardiomyopathy with Increased SR Ca2+ Loading Preceded by a Hypercontractile State and Diastolic Failure in the Ξ±1CTG Mouse
Mice over-expressing the Ξ±1βsubunit (pore) of the L-type Ca2+ channel (Ξ±1CTG) by 4months (mo) of age exhibit an enlarged heart, hypertrophied myocytes, increased Ca2+ current and Ca2+ transient amplitude, but a normal SR Ca2+ load. With advancing age (8β11 mo), some mice demonstrate advanced hypertrophy but are not in congestive heart failure (NFTG), while others evolve to frank dilated congestive heart failure (FTG). We demonstrate that older NFTG myocytes exhibit a hypercontractile state over a wide range of stimulation frequencies, but maintain a normal SR Ca2+ load compared to age matched non-transgenic (NTG) myocytes. However, at high stimulation rates (2β4 Hz) signs of diastolic contractile failure appear in NFTG cells. The evolution of frank congestive failure in FTG is accompanied by a further increase in heart mass and myocyte size, and phospholamban and ryanodine receptor protein levels and phosphorylation become reduced. In FTG, the SR Ca2+ load increases and Ca2+ release following excitation, increases further. An enhanced NCX function in FTG, as reflected by an accelerated relaxation of the caffeine-induced Ca2+ transient, is insufficient to maintain a normal diastolic Ca2+ during high rates of stimulation. Although a high SR Ca2+ release following excitation is maintained, the hypercontractile state is not maintained at high rates of stimulation, and signs of both systolic and diastolic contractile failure appear. Thus, the dilated cardiomyopathy that evolves in this mouse model exhibits signs of both systolic and diastolic failure, but not a deficient SR Ca2+ loading or release, as occurs in some other cardiomyopathic models
Optimization of Time-Course Experiments for Kinetic Model Discrimination
Systems biology relies heavily on the construction of quantitative models of biochemical networks. These models must have predictive power to help unveiling the underlying molecular mechanisms of cellular physiology, but it is also paramount that they are consistent with the data resulting from key experiments. Often, it is possible to find several models that describe the data equally well, but provide significantly different quantitative predictions regarding particular variables of the network. In those cases, one is faced with a problem of model discrimination, the procedure of rejecting inappropriate models from a set of candidates in order to elect one as the best model to use for prediction
Conductance Ratios and Cellular Identity
Recent experimental evidence suggests that coordinated expression of ion channels plays a role in constraining neuronal electrical activity. In particular, each neuronal cell type of the crustacean stomatogastric ganglion exhibits a unique set of positive linear correlations between ionic membrane conductances. These data suggest a causal relationship between expressed conductance correlations and features of cellular identity, namely electrical activity type. To test this idea, we used an existing database of conductance-based model neurons. We partitioned this database based on various measures of intrinsic activity, to approximate distinctions between biological cell types. We then tested individual conductance pairs for linear dependence to identify correlations. Contrary to experimental evidence, in which all conductance correlations are positive, 32% of correlations seen in this database were negative relationships. In addition, 80% of correlations seen here involved at least one calcium conductance, which have been difficult to measure experimentally. Similar to experimental results, each activity type investigated had a unique combination of correlated conductances. Finally, we found that populations of models that conform to a specific conductance correlation have a higher likelihood of exhibiting a particular feature of electrical activity. We conclude that regulating conductance ratios can support proper electrical activity of a wide range of cell types, particularly when the identity of the cell is well-defined by one or two features of its activity. Furthermore, we predict that previously unseen negative correlations and correlations involving calcium conductances are biologically plausible
Food-dependent, exercise-induced gastrointestinal distress
Among athletes strenuous exercise, dehydration and gastric emptying (GE) delay are the main causes of gastrointestinal (GI) complaints, whereas gut ischemia is the main cause of their nausea, vomiting, abdominal pain and (blood) diarrhea. Additionally any factor that limits sweat evaporation, such as a hot and humid environment and/or body dehydration, has profound effects on muscle glycogen depletion and risk for heat illness. A serious underperfusion of the gut often leads to mucosal damage and enhanced permeability so as to hide blood loss, microbiota invasion (or endotoxemia) and food-born allergen absorption (with anaphylaxis). The goal of exercise rehydration is to intake more fluid orally than what is being lost in sweat. Sports drinks provide the addition of sodium and carbohydrates to assist with intestinal absorption of water and muscle-glycogen replenishment, respectively. However GE is proportionally slowed by carbohydrate-rich (hyperosmolar) solutions. On the other hand, in order to prevent hyponatremia, avoiding overhydration is recommended. Caregiver's responsibility would be to inform athletes about potential dangers of drinking too much water and also advise them to refrain from using hypertonic fluid replacements
- β¦