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Formation of a new memory requires 
plasticity at the synaptic level. 

However, it has also been shown that 
the consolidation and the maintenance 
of such a new memory involve pro-
cesses that necessitate active mRNA at 
the nucleus of the cell. How can robust 
changes in synaptic efficacy specifically 
drive new transcription and translation 
of new gene transcripts, and thus trans-
form an otherwise transient plasticity 
into a long-lasting and stable one? In 
this article, we highlight the conceptual 
advance that was gained by the discovery 
of a potent Synaptic Activity–Responsive 
Element (SARE) found ∼7 kb upstream 
of the transcription initiation site of 
the neuronal immediate early gene Arc. 
The unique genomic structure of SARE, 
which contained adjacent and coopera-
tive binding sites for three major activity-
dependent transcription factors within 
a 100-bp locus, was associated with an 
unusual responsiveness to neuronal stim-
uli. Taken together, these findings shed 
light on a new class of transcriptional 
sensor with enhanced sensitivity to syn-
aptic activity.

Strengthening and weakening of syn-
aptic connectivity have been thought to 
underlie the plastic changes that occur 
within neuronal circuits, when an animal 
has once experienced a robust environ-
mental change such that its context and 
content have to be recalled over time for 
this animal to survive.1 Protein synthe-
sis inhibitors have been shown to block 
such storage of new information. One 
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influential hypothesis in the field of learn-
ing and memory (termed “the synaptic tag-
ging and capture hypothesis”)2 postulated 
that formation of a robust memory may 
trigger plasticity at stimulated synapses, 
while also may strongly induce expression 
of specific sets of genes in the nucleus. The 
subsequent translation and the trafficking 
of these newly transcribed genes into the 
plastic “tagged” synapses appeared to pro-
vide an attractive mechanism that could 
successfully account for the segregation 
of stably plastic synapses (in which “tags” 
were able to functionally “capture” new 
gene products) from weakly plastic ones 
(which could not capture any).

What could be the transcriptional reg-
ulators that are activated in conjunction 
with synaptic plasticity? Are there many 
of them? One of the obvious candidates is 
the cyclic AMP-responsive element bind-
ing protein (CREB), a transcription fac-
tor that has been shown to be involved 
in long-term memory formation, con-
solidation and reconsolidation.3-8 Adult 
mice with disrupted CREB function in 
the brain exhibited a profound and spe-
cific impairment in long-term memory 
while the short-term memory remained 
unaltered.3,5,6 Consistent with a potential 
role of CREB, several intracellular signal-
ing pathways that are stimulated by syn-
aptic activity, such as CaMKK-CaMKIV 
cascade, cAMP/PKA stimulation or Ras/
Raf/MEK/ERK cascade have also been 
shown to elevate levels of CREB phospho-
rylation status.9-13

However, more than 5% of mam-
malian genes appear to be potentially 
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SRF/TCF site. Point mutations in either 
one of these sites potently attenuated the 
synaptic activity-dependency, indicat-
ing that the CREB-, MEF2- and SRF-
binding sites within SARE needed to be 
co-occupied in order to reach full potency. 
Pharmacological experiments determined 
the requirement for both CaMK- and 
MAPK-dependent pathways in this acti-
vation process (Fig. 2).

This study has shed light on the new 
exciting possibility that the co-occupancy 
of 3 major activity-dependent transcrip-
tion factor sites in close proximity within 
SARE is not only necessary but also suf-
ficient to trigger an unusually large syn-
aptic activity-induced transcriptional 
response. Future studies are clearly needed 
to elucidate how neuronal activity can 
regulate the occupancy of individual sites, 
and determine the sustainability of this 

Kawashima et al.30 employed an ame-
liorated promoter assay system in cortical 
neuronal cultures that was optimized for 
synaptic stimulation and gene transfer of 
large plasmids. Through careful promoter 
analyses, the critical responsible element 
was pinned down to about 100-bp, which 
was named Synaptic Activity-Responsive 
Element (SARE). This element, when 
placed in isolation next to a minimal 
promoter region, could still trigger an 
extremely high level of gene induction 
upon receipt of synaptic activity, to an 
extent comparable to the full-length ∼7-kb 
promoter (Fig. 1). By scrutinizing the 
SARE sequence, and through a combina-
tion of electrophoretic mobility shift and 
chromatin immunoprecipitation assays, it 
became evident that SARE had a unique 
structure consisting of a half CRE site 
that was juxtaposed to a MEF2 site and an 

regulated by CREB-dependent transcrip-
tion, as determined by genome-wide anal-
yses of CREB-bound promoters.14,15 How 
can we then pinpoint the major CREB 
target genes that are involved in long-
term memory maintenance? For example, 
c-fos or brain-derived neurotrophic factor 
(BDNF) genes possess well-known con-
sensus CRE elements in their proximal 
promoter regions.16-18 In sharp contrast, 
although many recent studies had high-
lighted the critical importance of Activity-
regulated cytoskeleton-associated protein 
(Arc) gene,19-25 both as an accurate and 
sensitive marker for enhanced cognitive 
activity,26,27 and as a memory-forming 
gene,23,28 no functional CRE site was 
reported.29 Was Arc induced by synap-
tic activity by a mechanism that did not 
require CREB? Or were there hidden 
CRE sites that needed to be revealed?

Figure 1. Synaptic activity–responsive element (Sare) possesses a strong enhancer activity that is uniquely sensitive in response to synaptic stimula-
tion. (a) Sare locates in an evolutionarily conserved genomic region in the Arc promoter. the Sare transcriptional activity was investigated with a 
construct in which Sare was fused directly upstream of a short tata-containing sequences of the arc promoter (Sare-arctata). (B) Sare replicates the 
activation ability of the arc7000 full promoter. Left, Summary of luciferase assays. Cultured cortical neurons electroporated with luciferase reporter 
constructs were synaptically activated and luciferase induction-folds were measured. right, GFP reporter assays. GFP reporter expression via Sare 
activation was detected in individual neurons. rFP served as a transfection marker. modified from Kawashima et al.30 Scale bar, 50 µm.
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putative transcriptional complex. Finally, 
the potential role of Arc as a gene prod-
uct captured and working at “tagged” 
synapses still needs intense investiga-
tion. Further deciphering of the signal-
ing from synapse to the nucleus and back 
to the original stimulated synapses will 
hopefully pave the way for better under-
standing of cognitive disorders including 
mental retardation and memory deficits.
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