405 research outputs found

    Vibrational properties of amorphous silicon from tight-binding O(N) calculation

    Full text link
    We present an O(N) algorithm to study the vibrational properties of amorphous silicon within the framework of tight-binding approach. The dynamical matrix elements have been evaluated numerically in the harmonic approximation exploiting the short-range nature of the density matrix to calculate the vibrational density of states which is then compared with the same obtained from a standard O(N4N^4) algorithm. For the purpose of illustration, an 1000-atom model is studied to calculate the localization properties of the vibrational eigenstates using the participation numbers calculation.Comment: 5 pages including 5 ps figures; added a figure and a few references; accepted in Phys. Rev.

    Bio-Intervention of Naturally Occurring Silicate Minerals for Alternative Source of Potassium: Challenges and Opportunities

    Get PDF
    Soil needs simultaneous replenishment of various nutrients to maintain its inherent fertility status under extensive cropping systems. Replenishing soil nutrients with commercial fertilizer is costly. Among various fertilizers, deposits of potassium (K) ore suitable for the production of commercial K fertilizer (KCl) are distributed in few northern hemisphere countries (Canada, Russia, Belarus, and Germany) which control more than 70% of the world's potash market. Naturally occurring minerals, particularly silicate minerals, could be used as a source of K, but not as satisfactorily as commercial K fertilizers. In this context, bio-intervention (in combination with microorganisms and/or composting) of silicate minerals has been found quite promising to improve plant K availability and assimilation. This is an energy efficient and environmentally friendly approach. Here we present a critical review of existing literature on direct application of silicate minerals as a source of K for plant nutrition as well as soil fertility enhancement by underpinning the bio-intervention strategies and related K solubilization mechanisms. An advancement of knowledge in this field will not only contribute to a better understanding of the complex natural processes of soil K fertility, but also help to develop a new approach to utilize natural mineral resources for sustainable and environmental friendly agricultural practices

    Complete Break Up of Ortho Positronium (Ps)- Hydrogenic ion System

    Full text link
    The dynamics of the complete breakup process in an Ortho Ps - He+ system including electron loss to the continuum (ELC) is studied where both the projectile and the target get ionized. The process is essentially a four body problem and the present model takes account of the two centre effect on the electron ejected from the Ps atom which is crucial for a proper description of the ELC phenomena. The calculations are performed in the framework of Coulomb Distorted Eikonal Approximation. The exchange effect between the target and the projectile electron is taken into account in a consistent manner. The proper asymptotic 3-body boundary condition for this ionization process is also satisfied in the present model. A distinct broad ELC peak is noted in the fully differential cross sections (5DCS) for the Ps electron corroborating qualitatively the experiment for the Ps - He system. Both the dynamics of the ELC from the Ps and the ejected electron from the target He+ in the FDCS are studied using coplanar geometry. Interesting features are noted in the FDCS for both the electrons belonging to the target and the projectile.Comment: 14 pages,7 figure

    Toric AdS4/CFT3 duals and M-theory Crystals

    Full text link
    We study the recently proposed crystal model for three dimensional superconformal field theories arising from M2-branes probing toric Calabi-Yau four-fold singularities. We explain the algorithms mapping a toric Calabi-Yau to a crystal and vice versa, and show how the spectrum of BPS meson states fits into the crystal model.Comment: 24 pages, 24 figure

    Time-Varying Dark Energy Constraints From the Latest SN Ia, BAO and SGL

    Full text link
    Based on the latest SNe Ia data provided by Hicken et al. (2009) with using MLCS17 light curve fitter, together with the Baryon Acoustic Oscillation(BAO) and strong gravitational lenses(SGL), we investigate the constraints on the dark energy equation-of-state parameter ww in the flat universe, especially for the time-varying case w(z)=w0+wzz/(1+z)w(z)=w_0+w_zz/(1+z). The constraints from SNe data alone are found to be: (a) (ΩM,w)=(0.358,−1.09)(\Omega_M, w)=(0.358, -1.09) as the best-fit results; (b) (w0,wz)=(−0.73−0.97+0.23,0.84−10.34+1.66)(w_0, w_z)=(-0.73^{+0.23}_{-0.97}, 0.84^{+1.66}_{-10.34}) for the two parameters in the time-varying case after marginalizing the parameter ΩM\Omega_M; (c) the likelihood of parameter wzw_z has a high non-Gaussian distribution; (d) an extra restriction on ΩM\Omega_M is necessary to improve the constraint of the SNe Ia data on the parameters (w0w_0, wzw_z). A joint analysis of SNe Ia data and BAO is made to break the degeneracy between ww and ΩM\Omega_M, and leads to the interesting maximum likelihoods w0=−0.94w_0 = -0.94 and wz=0w_z = 0. When marginalizing the parameter ΩM\Omega_M, the fitting results are found to be (w0,wz)=(−0.95−0.18+0.45,0.41−0.96+0.79)(w_0, w_z)=(-0.95^{+0.45}_{-0.18}, 0.41^{+0.79}_{-0.96}). After adding the splitting angle statistic of SGL data, a consistent constraint is obtained (ΩM,w)=(0.298,−0.907)(\Omega_M, w)=(0.298, -0.907) and the constraints on time-varying dark energy are further improved to be (w0,wz)=(−0.92−0.10+0.14,0.35−0.54+0.47)(w_0, w_z) = (-0.92^{+0.14}_{-0.10}, 0.35^{+0.47}_{-0.54}), which indicates that the phantom type models are disfavored.Comment: 24 pages, 9 figures, to be published in JCA

    Counting Chiral Operators in Quiver Gauge Theories

    Get PDF
    We discuss in detail the problem of counting BPS gauge invariant operators in the chiral ring of quiver gauge theories living on D-branes probing generic toric CY singularities. The computation of generating functions that include counting of baryonic operators is based on a relation between the baryonic charges in field theory and the Kaehler moduli of the CY singularities. A study of the interplay between gauge theory and geometry shows that given geometrical sectors appear more than once in the field theory, leading to a notion of "multiplicities". We explain in detail how to decompose the generating function for one D-brane into different sectors and how to compute their relevant multiplicities by introducing geometric and anomalous baryonic charges. The Plethystic Exponential remains a major tool for passing from one D-brane to arbitrary number of D-branes. Explicit formulae are given for few examples, including C^3/Z_3, F_0, and dP_1.Comment: 75 pages, 22 figure

    Counting BPS Operators in Gauge Theories: Quivers, Syzygies and Plethystics

    Get PDF
    We develop a systematic and efficient method of counting single-trace and multi-trace BPS operators with two supercharges, for world-volume gauge theories of NN D-brane probes for both N→∞N \to \infty and finite NN. The techniques are applicable to generic singularities, orbifold, toric, non-toric, complete intersections, et cetera, even to geometries whose precise field theory duals are not yet known. The so-called ``Plethystic Exponential'' provides a simple bridge between (1) the defining equation of the Calabi-Yau, (2) the generating function of single-trace BPS operators and (3) the generating function of multi-trace operators. Mathematically, fascinating and intricate inter-relations between gauge theory, algebraic geometry, combinatorics and number theory exhibit themselves in the form of plethystics and syzygies.Comment: 59+1 pages, 7 Figure

    Typicality, Black Hole Microstates and Superconformal Field Theories

    Get PDF
    We analyze the structure of heavy multitrace BPS operators in N = 1 superconformal quiver gauge theories that arise on the worldvolume of D3-branes on an affine toric cone. We exhibit a geometric procedure for counting heavy mesonic operators with given U(1) charges. We show that for any fixed linear combination of the U(1) charges, the entropy is maximized when the charges are in certain ratios. This selects preferred directions in the charge space that can be determined with the help of a piece of string. We show that almost all heavy mesonic operators of fixed U(1) charges share a universal structure. This universality reflects the properties of the dual extremal black holes whose microstates they create. We also interpret our results in terms of typical configurations of dual giant gravitons in AdS space.Comment: 40 pages + 3 appendices, 11 figure

    The Cosmological Slingshot Scenario: Myths and Facts

    Get PDF
    We generalize the Cosmological Slingshot Scenario for a Slingshot brane moving in a Klebanov-Strassler throat. We show that the horizon and isotropy problems of standard cosmology are avoided, while the flatness problem is acceptably alleviated. Regarding the primordial perturbations, we identify their vacuum state and elucidate the evolution from the quantum to the classical regimes. Also, we calculate their exact power spectrum showing its compatibility with current data. We discuss the bouncing solution from a four dimensional point of view. In this framework the radial and angular motion of the Slingshot brane are described by two scalar fields. We show that the bouncing solution for the scale factor in String frame is mapped into a monotonically increasing (in conformal time) solution in the Einstein frame. We finally discuss about the regularity of the geometry in Einstein frame.Comment: 16 pages, 2 figs. Major clarifications and references added, version accepted in Gen. Rel. Grav. (2009
    • 

    corecore