111 research outputs found

    Role of Dicer Enzyme in the Regulation of Store Operated Calcium Entry (SOCE) in CD4+ T Cells

    Get PDF
    Background/Aims: Activation of T cell receptors (TCRs) in CD4+ T cells leads to a cascade of signalling reactions including increase of intracellular calcium (Ca2+) levels with subsequent Ca2+ dependent stimulation of gene expression, proliferation, cell motility and cytokine release. The increase of cytosolic Ca2+ results from intracellular Ca2+ release with subsequent activation of store-operated Ca2+ entry (SOCE). Previous studies suggested miRNAs are required for the development and functions of CD4+ T cells. An enzyme called Dicer is required during the process of manufacturing mature miRNAs from the precursor miRNAs. In this study, we explored whether loss of Dicer in CD4+ T cells affects SOCE and thus Ca2+ dependent regulation of cellular functions. Methods: We tested the expression of Orai1 by q-RT-PCR and flow cytometry. Further, we measured SOCE by an inverted phase-contrast microscope with the Incident-light fluorescence illumination system using Fura-2. Intracellular Ca2+ was also measured by flow cytometry using Ca2+ sensitive dye Fluo-4. Results: We found that in Dicer deficient (DicerΔ/Δ) mice Orai1 was downregulated at mRNA and protein level in CD4+ T cells. Further, SOCE was significantly smaller in DicerΔ/Δ CD4+ T cells than in CD4+ T cells isolated from wild-type (Dicerfl/fl) mice. Conclusion: Our data suggest that miRNAs are required for adequate Ca2+ entry into CD4+ T cells and thus triggering of Ca2+ sensitive immune functions

    Stimulation of Suicidal Erythrocyte Death by Ceritinib-Treatment of Human Erythrocytes

    Get PDF
    Background/Aims: The anaplastic lymphoma kinase (ALK) inhibitor ceritinib is utilized for the treatment of ALK positive non-small cell lung carcinoma. Side effects of the drug include decrease of blood hemoglobin concentration. Possible causes of anemia include stimulation of suicidal erythrocyte death or eryptosis, which is characterized by cell shrinkage and cell membrane scrambling with phosphatidylserine translocation to the erythrocyte surface. Signaling of eryptosis includes increase of cytosolic Ca2+ activity ([Ca2+]i), oxidative stress, ceramide, staurosporine sensitive protein kinase C, SB203580 sensitive p38 kinase, D4476 sensitive casein kinase 1, and zVAD sensitive caspases. The present study explored, whether ceritinib induces eryptosis and, if so, to shed light on the cellular mechanisms involved. Methods: Phosphatidylserine exposure at the cell surface was estimated from annexin-V-binding, cell volume from forward scatter, [Ca2+]i from Fluo3-fluorescence, ROS formation from DCFDA dependent fluorescence, and ceramide abundance utilizing specific antibodies. Results: A 48 hours exposure of human erythrocytes to ceritinib (1 \ub5g/ml) significantly increased the percentage of annexin-V-binding cells, significantly decreased forward scatter, significantly increased Fluo3-fluorescence, but did not significantly modify DCFDA fluorescence or ceramide abundance. The effect of ceritinib on annexin-V-binding was significantly blunted but not abolished by removal of extracellular Ca2+, by the kinase inhibitors staurosporine (1 \ub5M), SB203580 (2 \ub5M) and D4476 (10 \ub5M), as well as by caspase inhibitor zVAD (10 \ub5M). Conclusions: Ceritinib triggers cell shrinkage and phospholipid scrambling of the erythrocyte cell membrane, an effect at least in part due to Ca2+ entry, as well as activation of kinases and Caspases

    Stimulating effect of elvitegravir on suicidal erythrocyte death

    Get PDF
    Background/Aims: The antiviral drug Elvitegravir is used for the treatment of Human Immunodeficiency Virus (HIV) infections. The present study explored whether the drug is able to trigger eryptosis, the suicidal death of erythrocytes. Eryptosis is characterized by cell shrinkage and cell membrane scrambling with phosphatidylserine translocation to the erythrocyte surface. Stimulators of eryptosis include increase of cytosolic Ca2+ activity ([Ca2+]i), oxidative stress, ceramide, activated p38 kinase and activated caspases. The present study explored, whether Elvitegravir induces eryptosis and, if so, to shed light on the mechanisms involved. Methods: Phosphatidylserine abundance at the erythrocyte surface was estimated from annexin-V-binding, cell volume from forward scatter, [Ca2+]i from Fluo3-fluorescence, abundance of reactive oxygen species (ROS) from DCFDA dependent fluorescence, and ceramide abundance at the erythrocyte surface utilizing specific antibodies. Results: A 48 hours exposure of human erythrocytes to Elvitegravir ( 65 1.5 \u3bcg/ml) significantly increased the percentage of annexin-V-binding cells, and significantly decreased forward scatter. Elvitegravir (2.5 \u3bcg/ml) significantly increased Fluo3-fluorescence, but did not significantly modify DCFDA fluorescence or ceramide abundance. The effect of Elvitegravir on annexin-V-binding was significantly blunted by removal of extracellular Ca2+, but not in the presence of p38 kinase inhibitor SB203580 (2 \u3bcM) or in the presence of pancaspase inhibitor zVAD (10 \u3bcM). Conclusions: Elvitegravir triggers cell shrinkage and phospholipid scrambling of the erythrocyte cell membrane, an effect in part due to entry of extracellular Ca2+

    Sensitivity to light sterile neutrino mixing parameters with KM3NeT/ORCA

    Get PDF
    KM3NeT/ORCA is a next-generation neutrino telescope optimised for atmospheric neutrino oscillations studies. In this paper, the sensitivity of ORCA to the presence of a light sterile neutrino in a 3+1 model is presented. After three years of data taking, ORCA will be able to probe the active-sterile mixing angles θ14, θ24, θ34 and the effective angle θμe, over a broad range of mass squared difference ∆m412 ∼ [10−5, 10] eV2, allowing to test the eV-mass sterile neutrino hypothesis as the origin of short baseline anomalies, as well as probing the hypothesis of a very light sterile neutrino, not yet constrained by cosmology. ORCA will be able to explore a relevant fraction of the parameter space not yet reached by present measurements

    A call to caution when hydroxychloroquine is given to elderly COVID-19 patients.

    Get PDF
    INTRODUCTION: Hydroxychloroquine use in COVID-19 patients was widespread and uncontrolled until recently. Patients vulnerable to severe COVID-19 are at risk for hydroxychloroquine interactions with comorbidities and co-medications contributing to detrimental, including fatal adverse treatment effects. METHODS: This is a retrospective survey of health conditions and co-medications of COVID-19 patients who were pre-screened for enrolment into a randomized, double-blind, placebo-controlled hydroxychloroquine multicenter trial. RESULTS: Our survey involved 305 patients (median age 71 (IQR: 59-81) years). The majority of patients (N = 279, 92%) considered for inclusion into the clinical trial were not eligible mainly due to safety concerns caused by health conditions or co-medications. Most common were QT prolonging drugs (N = 188, 62%) and hematologic/hemato-oncologic diseases (N = 39, 13%) which prohibited the administration of hydroxychloroquine in our clinical trial. Additionally, 165 (54%) patients had health conditions and 167 (55%) were on co-medications that did not prohibit hydroxychloroquine treatment but had a risk of adverse interactions with hydroxychloroquine. Most common were diabetes (N = 86, 28%), renal insufficiency (N = 69, 23%) and heart failure (N = 58, 19%). CONCLUSION: The majority of hospitalized COVID-19 patients had health conditions or took co-medications precluding safe treatment with hydroxychloroquine. Therefore, especially in elderly, hydroxychloroquine should be administered with extreme caution and only in clinical trials

    Architecture and performance of the KM3NeT front-end firmware

    Get PDF
    The KM3NeT infrastructure consists of two deep-sea neutrino telescopes being deployed in the Mediterranean Sea. The telescopes will detect extraterrestrial and atmospheric neutrinos by means of the incident photons induced by the passage of relativistic charged particles through the seawater as a consequence of a neutrino interaction. The telescopes are configured in a three-dimensional grid of digital optical modules, each hosting 31 photomultipliers. The photomultiplier signals produced by the incident Cherenkov photons are converted into digital information consisting of the integrated pulse duration and the time at which it surpasses a chosen threshold. The digitization is done by means of time to digital converters (TDCs) embedded in the field programmable gate array of the central logic board. Subsequently, a state machine formats the acquired data for its transmission to shore. We present the architecture and performance of the front-end firmware consisting of the TDCs and the state machine

    Deep-sea deployment of the KM3NeT neutrino telescope detection units by self-unrolling

    Get PDF
    KM3NeT is a research infrastructure being installed in the deep Mediterranean Sea. It will house a neutrino telescope comprising hundreds of networked moorings — detection units or strings — equipped with optical instrumentation to detect the Cherenkov radiation generated by charged particles from neutrino-induced collisions in its vicinity. In comparison to moorings typically used for oceanography, several key features of the KM3NeT string are different: the instrumentation is contained in transparent and thus unprotected glass spheres; two thin Dyneema® ropes are used as strength members; and a thin delicate backbone tube with fibre-optics and copper wires for data and power transmission, respectively, runs along the full length of the mooring. Also, compared to other neutrino telescopes such as ANTARES in the Mediterranean Sea and GVD in Lake Baikal, the KM3NeT strings are more slender to minimise the amount of material used for support of the optical sensors. Moreover, the rate of deploying a large number of strings in a period of a few years is unprecedented. For all these reasons, for the installation of the KM3NeT strings, a custom-made, fast deployment method was designed. Despite the length of several hundreds of metres, the slim design of the string allows it to be compacted into a small, re-usable spherical launching vehicle instead of deploying the mooring weight down from a surface vessel. After being lowered to the seafloor, the string unfurls to its full length with the buoyant launching vehicle rolling along the two ropes. The design of the vehicle, the loading with a string, and its underwater self-unrolling are detailed in this paper

    ABC Transporter Pdr10 Regulates the Membrane Microenvironment of Pdr12 in Saccharomyces cerevisiae

    Get PDF
    The eukaryotic plasma membrane exhibits both asymmetric distribution of lipids between the inner and the outer leaflet and lateral segregation of membrane components within the plane of the bilayer. In budding yeast (Saccharomyces cerevisiae), maintenance of leaflet asymmetry requires P-type ATPases, which are proposed to act as inward-directed lipid translocases (Dnf1, Dnf2, and the associated protein Lem3), and ATP-binding cassette (ABC) transporters, which are proposed to act as outward-directed lipid translocases (Pdr5 and Yor1). The S. cerevisiae genome encodes two other Pdr5-related ABC transporters: Pdr10 (67% identity) and Pdr15 (75% identity). We report the first analysis of Pdr10 localization and function. A Pdr10-GFP chimera was located in discrete puncta in the plasma membrane and was found in the detergent-resistant membrane fraction. Compared to control cells, a pdr10∆ mutant was resistant to sorbate but hypersensitive to the chitin-binding agent Calcofluor White. Calcofluor sensitivity was attributable to a partial defect in endocytosis of the chitin synthase Chs3, while sorbate resistance was attributable to accumulation of a higher than normal level of the sorbate exporter Pdr12. Epistasis analysis indicated that Pdr10 function requires Pdr5, Pdr12, Lem3, and mature sphingolipids. Strikingly, Pdr12 was shifted to the detergent-resistant membrane fraction in pdr10∆ cells. Pdr10 therefore acts as a negative regulator for incorporation of Pdr12 into detergent-resistant membranes, a novel role for members of the ABC transporter superfamily
    corecore