14,532 research outputs found

    Unambiguous determination of gravitational waveforms from binary black hole mergers

    Full text link
    Gravitational radiation is properly defined only at future null infinity (\scri), but in practice it is estimated from data calculated at a finite radius. We have used characteristic extraction to calculate gravitational radiation at \scri for the inspiral and merger of two equal mass non-spinning black holes. Thus we have determined the first unambiguous merger waveforms for this problem. The implementation is general purpose, and can be applied to calculate the gravitational radiation, at \scri, given data at a finite radius calculated in another computation.Comment: 4 pages, 3 figures, published versio

    A new method for the determination of thin film porosity

    Get PDF
    Internal reflection spectroscopy may be used to determine presence of water in thin film pores. Presence of water in such pores is function of relative humidity and pore size. Thus, one can determine pore size by controlling humidity. Fluids with surface tension different from that of water can be used to detect pores

    Strategies for the characteristic extraction of gravitational waveforms

    Get PDF
    We develop, test, and compare new numerical and geometrical methods for improving the accuracy of extracting waveforms using characteristic evolution. The new numerical method involves use of circular boundaries to the stereographic grid patches which cover the spherical cross sections of the outgoing null cones. We show how an angular version of numerical dissipation can be introduced into the characteristic code to damp the high frequency error arising form the irregular way the circular patch boundary cuts through the grid. The new geometric method involves use of the Weyl tensor component Psi4 to extract the waveform as opposed to the original approach via the Bondi news function. We develop the necessary analytic and computational formula to compute the O(1/r) radiative part of Psi4 in terms of a conformally compactified treatment of null infinity. These methods are compared and calibrated in test problems based upon linearized waves

    High-powered Gravitational News

    Get PDF
    We describe the computation of the Bondi news for gravitational radiation. We have implemented a computer code for this problem. We discuss the theory behind it as well as the results of validation tests. Our approach uses the compactified null cone formalism, with the computational domain extending to future null infinity and with a worldtube as inner boundary. We calculate the appropriate full Einstein equations in computational eth form in (a) the interior of the computational domain and (b) on the inner boundary. At future null infinity, we transform the computed data into standard Bondi coordinates and so are able to express the news in terms of its standard N+N_{+} and N×N_{\times} polarization components. The resulting code is stable and second-order convergent. It runs successfully even in the highly nonlinear case, and has been tested with the news as high as 400, which represents a gravitational radiation power of about 1013M⊙/sec10^{13}M_{\odot}/sec.Comment: 24 pages, 4 figures. To appear in Phys. Rev.

    Lightweight ducts fabricated from reinforced plastics and elastomers

    Get PDF
    Method has been developed for fabrication of lightweight ducts that are three times stronger than aluminum ducts. Method can be used to produce either flexible or rigid ducts

    Cauchy boundaries in linearized gravitational theory

    Get PDF
    We investigate the numerical stability of Cauchy evolution of linearized gravitational theory in a 3-dimensional bounded domain. Criteria of robust stability are proposed, developed into a testbed and used to study various evolution-boundary algorithms. We construct a standard explicit finite difference code which solves the unconstrained linearized Einstein equations in the 3+1 formulation and measure its stability properties under Dirichlet, Neumann and Sommerfeld boundary conditions. We demonstrate the robust stability of a specific evolution-boundary algorithm under random constraint violating initial data and random boundary data.Comment: 23 pages including 3 figures and 2 tables, revte

    Systematic Inclusion of High-Order Multi-Spin Correlations for the Spin-121\over2 XXZXXZ Models

    Full text link
    We apply the microscopic coupled-cluster method (CCM) to the spin-121\over2 XXZXXZ models on both the one-dimensional chain and the two-dimensional square lattice. Based on a systematic approximation scheme of the CCM developed by us previously, we carry out high-order {\it ab initio} calculations using computer-algebraic techniques. The ground-state properties of the models are obtained with high accuracy as functions of the anisotropy parameter. Furthermore, our CCM analysis enables us to study their quantum critical behavior in a systematic and unbiased manner.Comment: (to appear in PRL). 4 pages, ReVTeX, two figures available upon request. UMIST Preprint MA-000-000

    Initial data transients in binary black hole evolutions

    Full text link
    We describe a method for initializing characteristic evolutions of the Einstein equations using a linearized solution corresponding to purely outgoing radiation. This allows for a more consistent application of the characteristic (null cone) techniques for invariantly determining the gravitational radiation content of numerical simulations. In addition, we are able to identify the {\em ingoing} radiation contained in the characteristic initial data, as well as in the initial data of the 3+1 simulation. We find that each component leads to a small but long lasting (several hundred mass scales) transient in the measured outgoing gravitational waves.Comment: 18 pages, 4 figure
    • …
    corecore