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1.  Introduction 

A primary concern in the resource economics literature is the estimation of 

welfare effects associated with implementing policies that conserve natural resources.  

Much research has been devoted to supplying policy makers with estimates of welfare 

gains and losses associated with quotas of fisheries and similar policies.  The typical 

information set provided by the researcher includes point estimates of welfare effects, 

which in turn offers no opportunity to test hypotheses about the welfare measures.  Point 

estimates offer information about a specific point on the distribution but they do not offer 

information about how close the estimate is to the true population parameter.  Therefore, 

a point estimate that is measured imprecisely may induce a policy maker to incorrectly 

conclude that the proposed policy will have a significant effect on consumers or 

producers, when in fact the resultant welfare effect may not be statistically different from 

zero.  A measure of precision such as a confidence interval or standard error should 

always be included in addition to a point estimate to provide additional information about 

the underlying distribution of the welfare measure [Kling and Sexton (1990); 

Kling(1991)]. 

Another important concern when calculating welfare measures is that the models 

they are derived from are generally specified to conform to theoretical economic 

restrictions such as monotonicity, homotheticity, and concavity/convexity.  In the context 

of welfare analysis the later is particularly important—a measure of compensating 

variation, for example, derived from an upward sloping compensated demand function is 

likely meaningless.  More generally, welfare estimates obtained for a demand system in 

which, say, the quasi concavity of the expenditure function is not satisfied are generally 
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suspect.  Therefore, restrictions that impose downward sloping (compensated) demand 

curves and upward sloping supply curves are often imposed a priori, typically by using 

parametric restrictions.  A complicating factor when imposing restrictions of this form is 

that they involve inequality constraints.  Standard error estimates and confidence bounds 

have traditionally been difficult to compute using classical statistical inference because 

the parameter space is truncated; traditional distributional assumptions no longer apply 

because the asymptotic distribution is no longer normal.  The existing literature generally 

relies on Baysian techniques to obtain measures of precision when inequality constraints 

are imposed [see, e.g., Chalfant et al. (1991); Terrell (1996); and Piggott (2003)].  The 

researcher, however, has another option.  Andrews (1999) shows that resampling 

techniques such as the subsample bootstrap and subsample jackknife are consistent 

methods to obtain measures of precision in the presence of inequality constraints.  These 

methods are relatively easy to apply and rely on classical statistical inference.  Even so, 

application of these methods in empirical work has, to date, been extremely limited. 

In the present paper we use the semiflexible normalized quadratic inverse demand 

system (SNQIDS) developed by Holt and Bishop (2002), which in turn is an adaption of 

the normalized quadratic expenditure function of Diewert and Wales (1988a).  

Specifically, this model will be used to obtain measures of precision on estimates of 

compensating and equivalent variation for consumer welfare losses associated with a 

reduction total allowable catch for commercial fisherman in the U.S. Great Lakes region.  

The normalized quadratic inverse distance function is a way to estimate a globally 

concave, locally flexible distance function.  Holt and Bishop (2002) also show that along 

with maintaining theoretical consistency, the imposition of curvature within the inverse 
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distance function framework allows consistent estimation of money metric welfare losses 

associated with quantity restrictions.  They utilized their model to obtain short-run 

demands for six different kinds of fish landings from 1971-1991 for U.S. Great Lakes 

ports and obtain estimates of compensating and equivalent variation welfare measures 

associated with a 10% reduction of fishing stocks for six different types of fish; Holt and 

Bishop (2002), however, did not provide measures of precision associated with their 

welfare estimates. 

The current paper differs from that of Holt and Bishop (2002) in several 

fundamental ways.  First, commercial fish landings and price data associated with U.S. 

Great Lakes ports are now available for the 1971 – 2001 period; we therefore update and 

re-estimate the SNQID models originally reported on by Holt and Bishop (2002).  

Second, and more importantly, we obtain confidence intervals on the estimates of welfare 

losses to fish consumers associated with reducing catch quotas for commercial fishermen 

by utilizing the bootstrap, subsample bootstrap, and subsample jackknife.  This is the first 

known application where measures of precision are obtained in a classical statistics 

framework for welfare estimates when concavity is imposed on the model.  These 

measures of precision will allow policy makers to obtain a more accurate picture of the 

welfare losses associated with catch restrictions than is allowed by point estimates alone.   

The remainder of the paper is organized as follows.  In the next section we review 

the specification of the SNQIDS; in section 3 money-metric measures of welfare loss 

measures in quantity space are briefly reviewed.  In section 4 we discuss the simulation 

methodology used to obtain confidence intervals in the case where curvature restrictions 

(inequality constraints) are imposed on the model’s parameters.  In section 5 the data are 
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discussed, the final model specification used in estimation is presented, and the 

econometric results are reviewed.  The final section concludes. 

 
2.  A Globally Concave Inverse Demand System: The SNQIDS 

 This paper uses Holt and Bhsiop’s (2002) semiflexible normalized quadratic 

inverse demand system (SNQIDS) as the basic modeling framework for estimating 

inverse demand systems for fish landed in Great Lakes ports, U.S.  In this section we 

briefly describe the specification and derivation of the SNQIDS—additional details may 

be found in Holt and Bishop (2002). 

 Le itq  denote the quantity landed in time period t, t = 1,…T, of fish species i, itp  

the corresponding vessel-level price, ( )1 , , T
t t ntq q= Kq  the n-vector of quantities in time 

period t, tp  the corresponding price vector, and T
t t tm = p q  is group expenditure in time t.  

Also, let *
n> 0q  denote some (possibly arbitrary) base-period or reference quantity 

vector.  Ignoring for the moment the time subscripts, the SNQIDS is derived from the 

following normalized quadratic distance function: 

 

(1) ( ) ( ) 1 11
2, T T T TD u A u

− − = + +  
q c q b q q q qα , 

 

where ( )1, , T
nα αKα =  is a pre-determined parameter vector, ( )1, , T

nc cKc =  and 

( )1, , T
nb bKb =  are vectors of estimable parameters, ijA a  =  is a n x n parameter 

matrix, u is an unobservable utility index, and a superscripted T denotes vector(matrix) 



 6

transposition.  As Holt and Bishop (2002) discuss, the distance function in (1) must also 

satisfy the following conditions: 

 

(2a) * 1,T
n= > 0qα α  

(2b) * 0,T =c q and 

(2c) * , T
nA A A= =0q . 

 

Applying the Shephard-Hanoch lemma to (1) gives a system of compensated inverse 

demands: the Antonelli demands.  Specifically, 

 

(3) ( ) ( ) ( ) ( )1 2 11
2

1

,
, ,  1, , ,

n
a T T T
i i i ij j

ji

D u
u c b a q A u i n

q
− − −

=

 ∂
π = + − = ∂  

∑ K
q

q = + q q q qα α  

 

where i ip mπ =  denotes the ith normalized price.  By construction the Antoneelli 

demands in (3) are homogeneous of degree zero in quantities. 

 Of course Antonelli demands are not directly estimable because the utility index u 

is not observed.  Uncompensated inverse demands that are, in fact, estimable, may be 

obtained in the following manner.  First, as Deaton (1979) notes, the distance function 

implicitly defines the consumer’s utility function.  Specifically, ( ), 1D u =q  at the 

optimum, which implies that (1) may be solved explicitly for the utility index u as 

 

(4) ( )
( ) 1

1
2

1-

T T T

T

A
U

− +  =
b q q q q

q
c q

α
. 
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Utility function (4) may then be used to substitute for u in (3), giving 

 

(5) ( )
( ) ( )

( )

1 2
1
2

1

1
1
2

1-
,  1, , ,

n
T T T T

i ij j i
j

i i
T T T

b a q A
c i n

A

− −

=

−

 
 + − α   

 π = =
 +  

∑
K

q q q q c q
q + 

b q q q q

α α

α
 

 

a system of observable inverse demands. 

 Several additional restrictions on the parameters of the system in (5) are required 

in estimation.  To start, the system in (5) is homogeneous of degree zero in  and Ab .  To 

achieve identification we simply require that 

 

(6) * 1T =b q , 

 

an additional set of parameter restrictions used along with those in (2).  Holt and Bishop 

(2002) also show that the matrix A must be negative semi-definite for distance function 

(1) to be (globally) concave in quantities.  If this requirement is not automatically 

satisfied it may be imposed in the following manner.  Let A%  denote a (n-1) x (n-1) 

obtained from A by deleting the last row and column; these terms may be recovered by 

using the restrictions in (2a).  The implication is that if A%  is negative semi-definite than 

A will also be negative semi-definite.  We may then redefine A%  as: 

 

(7) , , 0 .T
ij ijA SS S s s i j = − = = ∀ > 

%  
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In other words, S is the (n-1) x (n-1) Cholesky decomposition of A% .  In model 

implementation the ijs  parameters are estimated in lieu of the ija  parameters (Diewert 

and Wales, 1998a). 

 As a practical matter, if negativity must be imposed using the Cholesky 

decomposition, it is typically the case that the positive eigenvalues associated with the 

unrestricted estimates of A% , while now negative, will be very close to zero.  It may 

therefore be desirable to further reduce the rank of A% .  Following Diewert and Wales 

(1988b), let ( 1)K n≤ −  be the rank of A% .  In the case where ( 1)K n< − , A%  is associated 

with a K-column Cholesky decomposition.  That is, S is defined according to 

 

(8) , 0 for 1 1 and for 1, , 1ij ijS s s i j n j K n = = ≤ ≤ ≤ − = + −  K . 

 

In other words, S is a lower triangular (n-1) x (n-1) matrix with zeros in its final 

( 1)n K− −  columns.  The combination of (1)-(2), and (6)-(8) yields the SNQIDS. 

 
3.  Measuring Welfare Losses with a Distance Function 

As previously noted, an advantage of the SNQIDS is that concavity of the 

distance function may be maintained globally, and therefore consistent welfare loss 

estimates associated with varying catch limits (restrictions) may be obtained.  Palmquist 

(1988) and Kim (1997) develop the basic framework for obtaining measures of welfare 

loss in quantity space.  Following Kim (1997), a measure of (normalized) compensating 

variation (CV) associated with changing the quantity vector from 0 1to q q  is given by 
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(9) ( ) ( )0 1 0 0, ,CV D u D u= −q q , 

 

where ( ).D  denotes a distance function.  Here 0u  denotes the base-period utility level, 

defined implicitly by the condition ( )0 0, 1D u =q .  In (9) CV  denotes the amount of 

additional (normalized) outlay necessary for a representative consumer to attain 0u  when 

confronted with quantity vector 1q .  Positive values for CV  imply the consumer is made 

worse off with 1q  relative to 0q . 

 A measure of (normalized) equivalent variation (EV) may be obtained in a similar 

way.  That is, with a change in quantities from 0 1to q q , EV is given by 

 

(10) ( ) ( )1 1 1 0, ,EV D u D u= −q q , 

 

where 1u  is implicitly defined by ( )1 1, 1D u =q .  As specified in (10), EV  is the amount 

of additional (normalized) expenditure necessary for the consumer to maintain utility 

level 1u  when facing quantity vector 1q .  Again, a positive value for EV  indicates the 

consumer is worse off with  1q  as compared to 0q .  As Kim (1997) shows, for non-

homothetic preferences, CV will be less than EV for a single quantity decrease. 

 Of course it is useful to have money-metric (i.e., non-normalized) measures for 

CV and EV.  Following Palmquist (1988), such measures may, in turn, be obtained by 

simply re-scaling CV  and EV  by total outlay.  That is, 
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(11) ( ) ( )0 0 1 0 0, ,CV m D u D u = − q q , 

and 

 

(12) ( ) ( )0 1 1 1 0, ,EV m D u D u = − q q , 

 

where 0m  denotes total expenditure (sales) before any quantity changes occur.  The 

welfare measures in (11) and (12) in conjunction with the SNQIDS in (1) and (2) are used 

in the subsequent empirical application to obtain welfare loss estimates associated with 

imposing more stringent catch restrictions. 

 
4.  Bootstrap and Subsampling Methodology 

Econometricians frequently estimate models in which parameters are constrained 

to be on a boundary of the parameter space.  The need to do so usually arises when a 

priori theoretical restrictions require a certain estimated parameter to be of a specific 

sign.  Examples of these types of restrictions include traditional demand analysis where 

the income effect for a normal good is constrained to be positive while the own-price 

effect is constrained to be negative; cost function analysis where curvature constraints 

imply that second-order price terms satisfy concavity conditions; and time series models 

for conditional heteroskedasticity where the GARCH parameters are constrained to be 

non-negative.  Traditionally, inequality constraints have been problematic for the 

researcher because standard error estimates and confidence bounds are difficult to 

compute using classical statistical inference.   
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Recent theoretical work by Andrews (1999) explores the use of resampling 

techniques to calculate confidence intervals when a parameter (or set of parameters) is 

constrained to be on a boundary.  At first glance the natural solution might appear to be to 

use the traditional bootstrap method pioneered by Efron (1979).  Since its development, 

the bootstrap has become a popular method to calculate confidence intervals.  As 

Andrews (1999) demonstrates, however, this procedure is not asymptotically correct to 

the first order when parameters are on a boundary.   This is because the bootstrap puts too 

much mass below the cutoff point for the parameter and therefore does a poor job of 

mimicking the true population distribution.  For this reason, Andrews (1999) proposes 

using subsample bootstrap jackknife methods in lieu of the traditional bootstrap. 

 The subsample bootstrap and subsample jackknife are similar to their standard 

counterparts except that a subset of the data is used to estimate the model.  The 

subsample jackknife differs from the standard jackknife in that more than one observation 

is deleted.  Specifically, to perform the subsample jackknife, d (greater than 1) 

observations are dropped, parameter estimates are calculated using the remaining m 

(where m = T – d, T being the sample size) observations, and the process is repeated until 

all possible samples of size m have been drawn.  Because the potential number of 

subsamples to be drawn is likely far too large to allow for an efficient calculation of each 

of the possible subsamples, the researcher typically only takes a random sample of the 

possible subsamples to create subsample jackknife estimates.  The subsample bootstrap 

differs from the standard bootstrap by drawing, with replacement, repeated samples of 

size q (where q is less than T) from the initial sample of size T.  Andrews (1999) 
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demonstrates that the subsample bootstrap yields a consistent asymptotic distribution, 

unlike the standard bootstrap, by basing the bootstrap on these smaller samples. 

The two subsampling methods work when the bootstrap is inappropriate because 

their requirements for consistency are weaker than the consistency requirements for the 

bootstrap.  The intuition behind these techniques is that by using a subsample instead of 

the entire sample, the rate of convergence is slowed down relative to the bootstrap.  To 

formalize this result, assume mTF  is the estimate of the empirical distribution under one 

of the two subsampling techniques and TF  the estimate of the empirical distribution 

under the bootstrap.  If m goes to infinity, T goes to infinity, and m T  goes to 0, then the 

random sampling error of the bootstrap estimator is smaller than the random sampling 

error of the subsampling estimator.  This makes the subsampling method less sensitive to 

the behavior of the mapping of the asymptotic distribution of the statistic in a 

neighborhood of the true distribution.  While Andrews’ (1999) work demonstrates the 

theoretical advantages of the subsample jackknife and subsample bootstrap, it is 

important to note that he does not investigate the empirical or finite sample practicality of 

the alternative subsampling approaches. 

 
5.  An Application With Great Lakes Fish Data 

 To illustrate the subsampling techniques described above and to compare them to 

results from the theoretically inconsistent bootstrap, the SNQIDS is estimated for fish 

landed in the U.S. Great Lakes region.  The raw data are compiled from the Great Lakes 

Fishery Laboratory of the U.S. Fish and Wildlife Service and consist of monthly figures 

on amounts landed in pounds and average monthly prices in dollars per pound.  The 

categories included are Whitefish, Laketrout, Yellow Perch (Perch), Lake Herring, Chub, 
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and Smelt.  The sample period has been expanded from the original Holt and Bishop 

(2002) paper to include 1971-2001.  Although the original data are monthly, the data are 

aggregated to bi-monthly because of small landings during certain months, leaving 186 

observations.  All quantity data are divided by total U.S. population, and are therefore 

expressed in per capita terms and, as well, are further normalized to have unit means.  

The data are summarized in Table 1.   

The model used in estimation is a semiflexible normalized quadratic inverse 

demand system (SNQIDS) with concavity imposed.  The system we estimate differs 

somewhat from that utilized by Holt and Bishop (2002), and is given by 

 

(13) 
( ) ( )

( )

1 2
1
2

1

1
1
2

1-
,  

n
T T T T

i t ij it jt i it t t t t t
j

it it it it
T T T

t t t t

b a q q q A
w c q v

A

− −

=

−

 
 + − α   

 = +
 +  

∑q q q q c q
+ 

b q q q q

α α

α
 

where 

 
6

1 7
2

,it i ij jt i
j

c c c D c t
=

= + +∑  

 

and where 1, ,6i = K , n = 6, and 1, ,186t = K .  In (9) it it itw q= π , which is the share in 

total value of sales of the ith fish category.  As well, jtD  are bi-monthly dummy variables 

that equals one when the current period corresponds to bi-month j, zero otherwise.  In 

(13) itv  is an iid mean-zero stochastic error term.  Let ( )1 , , T
t t ntv v= Kv .  It then follows 

that ( )t nE = 0v  and ( )T
t tE = Ωv v , where Ω is the model’s contemporaneous covariance 

matrix.  The adding up condition implies, of course, that n nΩ = 0i . 
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As is customary for normalized quadratic demand systems, we let the reference 

bundle equal a unit vector, that is, *
n=q i .  We also follow prior research [e.g., Diewert 

and Wales (1988a)] and set ( )1 , ,1 Tn n= Kα .  By using these definitions the restrictions 

in (2) are simply  

 

(14a) 1T
n =iα  

(14b) 0,T
n =c i and 

(14c) , T
n nA A A= =0i . 

 

In estimation we also follow Holt and Bishop (2002) and include first- and sixth-

order system-wide autocorrelation matrices; this is done, moreover, by using the 

framework developed by Holt (1998).  The primary difference between the specification 

in (13)-(14) and that utilized originally by Holt and Bishop (2002) is that bi-monthly 

dummy variables and a trend term have now been included in the model specification as 

these were found to be statistically important. 

Maximum likelihood parameter estimates are obtained by deleting the equation 

for Smelt and then using nonlinear iterated SUR estimation techniques as implemented in 

version 7.10 of GQOPT.  An unrestricted version of the model was estimated, wherein it 

was found that two eigenvalues associated with the A matrix were positive.  Alternate 

versions of the SNQIDS were then estimated by varying the rank K between 1 and 5.  As 

with the original Holt and Bishop (2002) application, the rank 2 SNQIDS model is 

preferred to rank 3, 4, and 5 models on the grounds of a likelihood ratio test and the SBC 
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and HQC criterions.  Parameter estimates are not presented to conserve space; they are, 

however, available upon request.  For more details on the development of the model and 

price and scale flexibility computation, refer to Holt and Bishop (2002). 

Confidence intervals for price and scale flexibility and welfare measures are 

computed using bootstrap, subsample bootstrap, and subsample jackknife techniques.  

These results are reported in Tables 2-6.  The confidence intervals are computed using 

either bootstrapped or jackknifed t-statistics and standard errors from 100 resampled 

standardized errors while the estimates are obtained using the original 186 observations.  

The sample size used to compute the subsample bootstrap and subsample jackknife 

confidence intervals is 150 observations. 

Table 2 presents own-quantity Antonelli or compensated elasticities estimated at 

the mean values with the corresponding confidence intervals from the bootstrap, 

subsample bootstrap, and subsample jackknife techniques.  Looking first at the elasticity 

estimates, in spite of the additional data, they are all similar in magnitude to the results 

reported by Holt and Bishop (2002).  Turing to the confidence intervals, all of the 

estimates are statistically significant except for Lake Herring own-quantity elasticity for 

the subsample bootstrap and subsample jackknife and own-quantity Chub for the 

subsample bootstrap.  The boostraped confidence intervals are generally more precise 

than the confidence intervals resulting from the other two methods, although as Andrew’s 

(1999) notes, these estimates are potentially biased.   

Tables 3 and 4 follow similar patterns to the results reported in Table 2.  Own-

quantity uncompensated flexibilities found in Table 3 are similar in magnitude to Holt 

and Bishop’s (2002) results, and the flexibilities are generally significant except for the 
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bootstrapped chub and smelt confidence intervals.  Table 4 presents estimated 

consumption scale elasticities, which are all statistically significant using the three 

methods to compute confidence intervals.  As with previous results, the bootstrapped 

confidence intervals are generally more precise than are those for the other two methods.  

The confidence intervals also allow us to test whether the fish are necessity goods (fi < -1) 

or luxuries (fi > -1).  The point estimates indicate that Whitefish, Lake Trout, and Chub 

are candidates to be necessities although the confidence intervals from the three differ as 

to whether the scale elasticities and statistically less than -1.  Specifically, the 

bootstrapped confidence interval has Whitefish and Chub statistically less than -1, the 

subsample bootstrap has Whitefish and Lake Trout statistically less than -1 and the 

subsample jackknife only has Lake Trout statistically less than -1.  Perch, Lake Herring 

and Smelt are all possibilities for luxury goods but the confidence interval results yet 

again obtain different conclusions.  The bootstrap and subsample bootstrap both have 

Perch and Lake Herring greater than -1 but the subsample jackknife only has Lake 

Herring as statistically greater than -1.  In this case, the conclusion a researcher draws 

depends on the method used to compute the confidence interval.   

The final application of the resampling techniques is to obtain confidence 

intervals on the estimates of welfare losses to fish consumers associated with reducing 

catch quotas for commercial fishermen.  This is the first known application wherein 

measures of precision are obtained in a classical statistics framework for welfare 

estimates from a system of demand equations when concavity is imposed on the model.  

By using (11) and (12) in conjunction with the estimated rank 2 SNQIDS, estimates 

compensated variation (CV) and equivalent variation (EV), evaluated at the sample means 
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and corresponding to a ten percent reduction in catch, are derived.  The point estimates, 

along with confidence intervals, are presented in Tables 5 and 6.   

Comparing the present results with those reported by Holt and Bishop (2002), the 

estimates obtained here based on the longer data set are generally larger in magnitude 

(ranging from approximately $190,000 more for Whitefish to $8,400 more for Lake 

Herring).  An exception to this pattern is the mean estimate of Chub, which is 

approximately $40,000 smaller in the expanded data set.  Differences between estimates 

of CV and EV are in general small.  Lake Herring, at a difference of $98 is the smallest, 

while Whitefish has the largest difference at $25,063.  These results follow the same 

pattern found in Holt and Bishop (2002). 

Regarding the 95-percent confidence interval results for CV and EV, the ordinary 

bootstrap confidence intervals indicate that these estimates are all statistically significant.  

Alternatively, the subsample bootstrap suggests that the CV estimate for Lake Herring is 

not statistically different from zero.  Statistical significance of welfare estimates are most 

problematic when the subsample jackknife is used.  In this case CV measures for Lake 

Herring and Chub are not significantly different from zero.  Likewise, EV measures for 

Perch, Lake Herring, and Smelt are not statistically significant at the 95-percent level.  

Therefore—as with price and scale flexibilities—any determination about the statistical 

significance of implied welfare measures depends crucially upon the method used to 

compute confidence intervals.   

6.  Conclusions 

In this paper, we re-estimate the SNQID models originally reported on by Holt 

and Bishop with an expanded data set.  More importantly, we obtain confidence intervals 
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for the estimates of own-quantity price and scale flexibilities in addition to welfare losses 

to fish consumers associated with reducing catch quotas for commercial fishermen.  

These confidence intervals are obtained, in turn, by utilizing the standard bootstrap as 

well as the subsample bootstrap and subsample jackknife.  We report here the first known 

application where measures of precision are obtained in a classical statistics framework 

for welfare estimates when concavity is imposed in a demand systems framework.  The 

measures of precision, especially for welfare measures, will allow policy makers to more 

accurately gauge the welfare losses associated with catch restrictions than is allowed by 

point estimates alone.  It is important to note that the conclusions drawn about the 

statistical significance of an estimate is sometimes dependant on the resampling 

technique used to compute the confidence interval.  Further investigation into the small 

sample properties of these various simulation techniques is therefore called for. 
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Table 1. Descriptive statistics for shares in total sales of fish landed in the U.S.  
Great Lakes 1971-2001. 
 

 
Fish Category 

 
Average 

Standard 
Deviation 

 
Minimum 

 
Maximum   

1. Whitefish 0.482 0.152 0.083 0.788 

2. Lake Trout 0.028 0.018 0.006 0.103 

3. Yellow Perch 0.210 0.107 0.001 0.470 

4. Lake Herring 0.018 0.019 0.001 0.117 

5. Chub 0.195 0.137 0.020 0.732 

6. Smelt 0.067 0.089 0.000 0.605 

 
 
 
 
 
 
Table 2. Mean estimated own-quantity Antonelli (compensated) flexibilities with 95% 
confidence intervals. 
 

 
 

 
Bootstrap 

Subsample 
Bootstrap 

Subsample 
Jackknife 

Fish Category 
Point 

Estimate Lower Upper Lower Upper Lower Upper 

1. Whitefish -0.022 -0.029 -0.014 -0.044 -0.022 -0.049 -0.018 

2. Lake Trout -0.031 -0.078 -0.011 -0.235 -0.023 -0.259 -0.014 

3. Yellow Perch -0.076 -0.093 -0.064 -0.163 -0.038 -0.183 -0.029 

4. Lake Herring -0.058 -0.070 -0.037 -0.060 0.002 -0.067 0.013 

5. Chub -0.019 -0.025 -0.011 -0.116 0.015 -0.105 -0.052 

6. Smelt -0.003 -0.029 -0.001 -0.129 -0.010 -0.104 -0.022 
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Table 3. Mean estimated own-quantity uncompensated flexibilities with 95% confidence 
intervals. 
 

 
 

 
Bootstrap 

Subsample 
Bootstrap 

Subsample 
Jackknife 

Fish Category 
Point 

Estimate Lower Upper Lower Upper Lower Upper 

1. Whitefish -0.554 -0.567 -0.523 -0.556 -0.519 -0.561 -0.511 
2. Lake Trout -0.063 -0.107 -0.044 -0.269 -0.055 -0.293 -0.008 
3. Yellow Perch -0.241 -0.265 -0.226 -0.361 -0.224 -0.349 -0.206 
4. Lake Herring -0.072 -0.087 -0.052 -0.074 -0.013 -0.079 -0.011 
5. Chub -0.230 -2.762 1.627 -0.183 -0.094 -0.236 -0.182 
6. Smelt -0.049 -1.380 0.814 -0.206 -0.041 -0.258 -0.018 

 
 
 
 
 
 
Table 4. Mean estimated consumption scale elasticities with 95% confidence intervals. 
 

 
 

 
Bootstrap 

Subsample 
Bootstrap 

Subsample 
Jackknife 

Fish Category 
Point 

Estimate Lower Upper Lower Upper Lower Upper 

1. Whitefish -1.090 -1.135 -1.041 -1.101 -1.002 -1.120 -0.994 
2. Lake Trout -1.094 -1.312 -0.933 -1.298 -1.091 -1.320 -1.051 
3. Yellow Perch -0.776 -0.828 -0.741 -0.984 -0.683 -1.106 -0.673 
4. Lake Herring -0.880 -0.936 -0.867 -0.893 -0.742 -0.937 -0.611 
5. Chub -1.143 -1.225 -1.027 -1.250 -0.839 -1.253 -0.450 
6. Smelt -0.661 -1.136 -0.072 -1.737 -0.525 -1.721 -0.491 

 
 
 
 
 



 22

 
Table 5.  Annualized mean compensated variation for a 10 percent reduction in catch 
with 95% confidence intervals. 
 

 
 

 
Bootstrap 

Subsample 
Bootstrap 

Subsample 
Jackknife 

Fish Category 
Point 

Estimate Lower Upper Lower Upper Lower Upper 

1. Whitefish 776,182 731,352 808,943 729,655 1,056,655 96,834 3,588,379

2. Lake Trout 73,221 60,029 79,149 62,941 191,751 35,447 1,612,582

3. Yellow Perch 294,816 282,212 303,491 267,138 536,437 201,360 1,336,740

4. Lake Herring 24,645 21,786 26,317 -576 202,096 -44,138 576,748 

5. Chub 190,640 165,065 215,159 142,770 335,186 -39,295 1,008,154

6. Smelt 63,169 38,460 95,374 51,227 295,923 34,195 445,604 

 
 
 
 
 
 
Table 6.  Annualized mean equivalent variation for a 10 percent reduction in catch with 
95% confidence intervals. 
 

 
 

 
Bootstrap 

Subsample 
Bootstrap 

Subsample 
Jackknife 

Fish Category 
Point 

Estimate Lower Upper Lower Upper Lower Upper 

1. Whitefish 801,245 752,019 836,407 764,892 1,070,607 73,403 5,821,624

2. Lake Trout 75,966 62,543 81,862 57,914 117,432 15,808 1,396,285

3. Yellow Perch 300,432 287,386 309,484 223,792 369,259 -14,549 715,860 

4. Lake Herring 24,743 21,875 26,426 -17,197 27,868 -37,006 183,448 

5. Chub 194,415 167,869 219,631 182,746 235,863 159,650 556,931 

6. Smelt 63,578 38,803 96,097 19,105 87,178 -30,838 132,598 

 
 


