303 research outputs found

    Critical properties of 1-D spin 1/2 antiferromagnetic Heisenberg model

    Full text link
    We discuss numerical results for the 1-D spin 1/2 antiferromagnetic Heisenberg model with next-to-nearest neighbour coupling and in the presence of an uniform magnetic field. The model develops zero frequency excitations at field dependent soft mode momenta. We compute critical quantities from finite size dependence of static structure factors.Comment: talk given by H. Kr{\"o}ger at Heraeus Seminar Theory of Spin Lattices and Lattice Gauge Models, Bad Honnef (1996), 20 pages, LaTeX + 18 figures, P

    Density functional theories and self-energy approaches

    Get PDF
    A purpose-designed microarray platform (Stressgenes, Phase 1) was utilised to investigate the changes in gene expression within the liver of rainbow trout during exposure to a prolonged period of confinement. Tissue and blood samples were collected from trout at intervals up to 648 h after transfer to a standardised confinement stressor, together with matched samples from undisturbed control fish. Plasma ACTH, cortisol, glucose and lactate were analysed to confirm that the neuroendocrine response to confinement was consistent with previous findings and to provide a phenotypic context to assist interpretation of gene expression data. Liver samples for suppression subtractive hybridisation (SSH) library construction were selected from within the experimental groups comprising “early” stress (2–48 h) and “late” stress (96–504 h). In order to reduce redundancy within the four SSH libraries and yield a higher number of unique clones an additional subtraction was carried out. After printing of the arrays a series of 55 hybridisations were executed to cover 6 time points. At 2 h, 6 h, 24 h, 168 h and 504 h 5 individual confined fish and 5 individual control fish were used with control fish only at 0 h. A preliminary list of 314 clones considered differentially regulated over the complete time course was generated by a combination of data analysis approaches and the most significant gene expression changes were found to occur during the 24 h to 168 h time period with a general approach to control levels by 504 h. Few changes in expression were apparent over the first 6 h. The list of genes whose expression was significantly altered comprised predominantly genes belonging to the biological process category (response to stimulus) and one cellular component category (extracellular region) and were dominated by so-called acute phase proteins. Analysis of the gene expression profile in liver tissue during confinement revealed a number of significant clusters. The major patterns comprised genes that were up-regulated at 24 h and beyond, the primary examples being haptoglobin, ÎČ-fibrinogen and EST10729. Two representative genes from each of the six k-means clusters were validated by qPCR. Correlations between microarray and qPCR expression patterns were significant for most of the genes tested. qPCR analysis revealed that haptoglobin expression was up-regulated approximately 8-fold at 24 h and over 13-fold by 168 h.This project was part funded by the European Commission (Q5RS-2001-02211), Enterprise Ireland and the Natural Environment Research Council of the United Kingdom

    Quantum magnetism in two dimensions: From semi-classical N\'eel order to magnetic disorder

    Full text link
    This is a review of ground-state features of the s=1/2 Heisenberg antiferromagnet on two-dimensional lattices. A central issue is the interplay of lattice topology (e.g. coordination number, non-equivalent nearest-neighbor bonds, geometric frustration) and quantum fluctuations and their impact on possible long-range order. This article presents a unified summary of all 11 two-dimensional uniform Archimedean lattices which include e.g. the square, triangular and kagome lattice. We find that the ground state of the spin-1/2 Heisenberg antiferromagnet is likely to be semi-classically ordered in most cases. However, the interplay of geometric frustration and quantum fluctuations gives rise to a quantum paramagnetic ground state without semi-classical long-range order on two lattices which are precisely those among the 11 uniform Archimedean lattices with a highly degenerate ground state in the classical limit. The first one is the famous kagome lattice where many low-lying singlet excitations are known to arise in the spin gap. The second lattice is called star lattice and has a clear gap to all excitations. Modification of certain bonds leads to quantum phase transitions which are also discussed briefly. Furthermore, we discuss the magnetization process of the Heisenberg antiferromagnet on the 11 Archimedean lattices, focusing on anomalies like plateaus and a magnetization jump just below the saturation field. As an illustration we discuss the two-dimensional Shastry-Sutherland model which is used to describe SrCu2(BO3)2.Comment: This is now the complete 72-page preprint version of the 2004 review article. This version corrects two further typographic errors (three total with respect to the published version), see page 2 for detail

    Interinstrument comparison of remote-sensing devices and a new method for calculating on-road nitrogen oxides emissions and validation of vehicle-specific power

    Get PDF
    Emissions of nitrogen oxides (NOx) by vehicles in real driving environments are only partially understood. This has been brought to the attention of the world with recent revelations of the cheating of the type of approval tests exposed in the dieselgate scandal. Remote-sensing devices offer investigators an opportunity to directly measure in situ real driving emissions of tens of thousands of vehicles. Remote-sensing NO₂ measurements are not as widely available as would be desirable. The aim of this study is to improve the ability of investigators to estimate the NO₂ emissions and to improve the confidence of the total NOx results calculated from standard remote-sensing device (RSD) measurements. The accuracy of the RSD speed and acceleration module was also validated using state-of-the-art onboard global positioning system (GPS) tracking. Two RSDs used in roadside vehicle emissions surveys were tested side by side under off-carriageway conditions away from transient pollution sources to ascertain the consistency of their measurements. The speed correlation was consistent across the range of measurements at 95% confidence and the acceleration correlation was consistent at 95% confidence intervals for all but the most extreme acceleration cases. VSP was consistent at 95% confidence across all measurements except for those at VSP ≄ 15 kW t−Âč, which show a small underestimate. The controlled distribution gas nitric oxide measurements follow a normal distribution with 2σ equal to 18.9% of the mean, compared to 15% observed during factory calibration indicative of additional error introduced into the system. Systematic errors of +84 ppm were observed but within the tolerance of the control gas. Interinstrument correlation was performed, with the relationship between the FEAT and the RSD4600 being linear with a gradient of 0.93 and an RÂČ of 0.85, indicating good correlation. A new method to calculate NOx emissions using fractional NO₂ combined with NO measurements made by the RSD4600 was constructed, validated, and shown to be more accurate than previous methods. Implications: Synchronized remote-sensing measurements of NO were taken using two different remote-sensing devices in an off-road study. It was found that the measurements taken by both instruments were well correlated. Fractional NO₂ measurements from a prior study, measurable on only one device, were used to create new NOₓ emission factors for the device that could not be measured by the second device. These estimates were validated against direct measurement of total NOₓ emission factors and shown to be an improvement on previous methodologies. Validation of vehicle-specific power was performed with good correlation observed

    The effect on melanoma risk of genes previously associated with telomere length.

    Get PDF
    Telomere length has been associated with risk of many cancers, but results are inconsistent. Seven single nucleotide polymorphisms (SNPs) previously associated with mean leukocyte telomere length were either genotyped or well-imputed in 11108 case patients and 13933 control patients from Europe, Israel, the United States and Australia, four of the seven SNPs reached a P value under .05 (two-sided). A genetic score that predicts telomere length, derived from these seven SNPs, is strongly associated (P = 8.92x10(-9), two-sided) with melanoma risk. This demonstrates that the previously observed association between longer telomere length and increased melanoma risk is not attributable to confounding via shared environmental effects (such as ultraviolet exposure) or reverse causality. We provide the first proof that multiple germline genetic determinants of telomere length influence cancer risk.This is the final version of the article. It first appeared from Oxford University Press via http://dx.doi.org/10.1093/jnci/dju26
    • 

    corecore