186 research outputs found
A light-front coupled cluster method
A new method for the nonperturbative solution of quantum field theories is
described. The method adapts the exponential-operator technique of the standard
many-body coupled-cluster method to the Fock-space eigenvalue problem for
light-front Hamiltonians. This leads to an effective eigenvalue problem in the
valence Fock sector and a set of nonlinear integral equations for the functions
that define the exponential operator. The approach avoids at least some of the
difficulties associated with the Fock-space truncation usually used.Comment: 8 pages, 1 figure; to appear in the proceedings of LIGHTCONE 2011,
23-27 May 2011, Dalla
Expression of prtA from Photorhabdus luminescens in Bacillus thuringiensis enhances mortality in lepidopteran larvae by sub-cutaneous but not oral infection.
The prtA gene from Photorhabdus luminescens encodes the virulence factor Protease A. When P. luminescens is injected into the hemocoel of insects by entomopathogenic nematodes, PrtA is a key component of pathogenicity thought to help degrade the immune system. The prtA gene was cloned and introduced on a plasmid into Bacillus thuringiensis. PrtA was shown to be actively expressed in vitro by cleavage of a specific Dabcyl-Edans heptapeptide substrate. There was no difference in the speed or level of mortality when spores and δ-endotoxins crystals of the transformed strain were fed to larvae of Pieris brassicae, as compared to the wild-type strain. When vegetative cells were injected into the hemocoel of larvae of Galleriamellonella, however, there was a significant increase in the rate and level of mortality over the wild type. The yield of B. thuringiensis per cadaver was a hundred-fold greater in the PrtA-secreting strain. The increased pathogenicity from intrahemocoelic infection may have been due to a greater ability to overcome the immune response of G. mellonella while other factors such as resident gut bacteria may have negated this advantage after oral dosage
Search for Exotic Mesons in pi- P Interactions at 18 GeV/c
The recent search for non mesons in interactions at
Brookhaven National Laboratory is summarized. Many final states such as , , , , , ,
which are favored decay modes of exotics, are under investigation.Comment: 9 pages, PostScript, Presented at the International School of Nuclear
Physics, Erice, Sicily, Italy, September 199
Observation of Pseudoscalar and Axial Vector Resonances in pi- p -> K+ K- pi0 n at 18 GeV
A new measurement of the reaction pi- p -> K+ K- pi0 n has been made at a
beam energy of 18 GeV. A partial wave analysis of the K+ K- pi0 system shows
evidence for three pseudoscalar resonances, eta(1295), eta(1416), and
eta(1485), as well as two axial vectors, f1(1285), and f1(1420). Their observed
masses, widths and decay properties are reported. No signal was observed for
C(1480), an IG J{PC} = 1+ 1{--} state previously reported in phi pi0 decay.Comment: 7 pages, 6 figs, to be submitted to Phys. Let
Observation of a New J(PC)=1(+-) Isoscalar State in the Reaction Pi- Proton -> Omega Eta Neutron at 18 GeV/c
Results are presented on a partial wave analysis of the Omega Eta final state
produced in Pi- Proton interactions at 18 GeVc where Omega -> Pi+ Pi- Pi0, Pi0
-> 2 Gammas, and Eta -> 2 Gammas. We observe the previously unreported decay
mode Omega(1650) -> Omega Eta and a new 1(+-) meson state h1(1595) with a mass
M=1594(15)(+10)(-60) MeV/c^2 and a width Gamma=384(60)(+70)(-100) MeV/c^2. The
h1(1595) state exhibits resonant-like phase motion relative to the Omega(1650).Comment: Submitted to Physics Letters B Eight total pages including 11 figures
and 1 tabl
Through-Thickness Residual Stress Profiles in Austenitic Stainless Steel Welds: A Combined Experimental and Prediction Study
Economic and safe management of nuclear plant components relies on accurate prediction of welding-induced residual stresses. In this study, the distribution of residual stress through the thickness of austenitic stainless steel welds has been measured using neutron diffraction and the contour method. The measured data are used to validate residual stress profiles predicted by an artificial neural network approach (ANN) as a function of welding heat input and geometry. Maximum tensile stresses with magnitude close to the yield strength of the material were observed near the weld cap in both axial and hoop direction of the welds. Significant scatter of more than 200 MPa was found within the residual stress measurements at the weld center line and are associated with the geometry and welding conditions of individual weld passes. The ANN prediction is developed in an attempt to effectively quantify this phenomenon of ‘innate scatter’ and to learn the non-linear patterns in the weld residual stress profiles. Furthermore, the efficacy of the ANN method for defining through-thickness residual stress profiles in welds for application in structural integrity assessments is evaluated
Phase diagram of the Holstein polaron in one dimension
The behavior of the 1D Holstein polaron is described, with emphasis on
lattice coarsening effects, by distinguishing between adiabatic and
nonadiabatic contributions to the local correlations and dispersion properties.
The original and unifying systematization of the crossovers between the
different polaron behaviors, usually considered in the literature, is obtained
in terms of quantum to classical, weak coupling to strong coupling, adiabatic
to nonadiabatic, itinerant to self-trapped polarons and large to small
polarons. It is argued that the relationship between various aspects of polaron
states can be specified by five regimes: the weak-coupling regime, the regime
of large adiabatic polarons, the regime of small adiabatic polarons, the regime
of small nonadiabatic (Lang-Firsov) polarons, and the transitory regime of
small pinned polarons for which the adiabatic and nonadiabatic contributions
are inextricably mixed in the polaron dispersion properties. The crossovers
between these five regimes are positioned in the parameter space of the
Holstein Hamiltonian.Comment: 19 pages, 9 figure
A generalized frequency detuning method for multidegree-of-freedom oscillators with nonlinear stiffness
In this paper, we derive a frequency detuning method for multi-degree-of-freedom oscillators with nonlinear stiffness. This approach includes a matrix of detuning parameters, which are used to model the amplitude dependent variation in resonant frequencies for the system. As a result, we compare three different approximations for modeling the affect of the nonlinear stiffness on the linearized frequency of the system. In each case, the response of the primary resonances can be captured with the same level of accuracy. However, harmonic and subharmonic responses away from the primary response are captured with significant differences in accuracy. The detuning analysis is carried out using a normal form technique, and the analytical results are compared with numerical simulations of the response. Two examples are considered, the second of which is a two degree-of-freedom oscillator with cubic stiffnesses
- …