99 research outputs found

    A Coupled-Cluster Formulation of Hamiltonian Lattice Field Theory: The Non-Linear Sigma Model

    Get PDF
    We apply the coupled cluster method (CCM) to the Hamiltonian version of the latticised O(4) non-linear sigma model. The method, which was initially developed for the accurate description of quantum many-body systems, gives rise to two distinct approximation schemes. These approaches are compared with each other as well as with some other Hamiltonian approaches. Our study of both the ground state and collective excitations leads to indications of a possible chiral phase transition as the lattice spacing is varied.Comment: 44 Pages, 14 figures. Uses Latex2e, graphicx, amstex and geometry package

    Quantum Phase Transitions and the Extended Coupled Cluster Method

    Get PDF
    We discuss the application of an extended version of the coupled cluster method to systems exhibiting a quantum phase transition. We use the lattice O(4) non-linear sigma model in (1+1)- and (3+1)-dimensions as an example. We show how simple predictions get modified, leading to the absence of a phase transition in (1+1) dimensions, and strong indications for a phase transition in (3+1) dimensions

    Towards a coupled-cluster treatment of SU(N) lattice gauge field theory

    Get PDF
    A consistent approach to Hamiltonian SU(N) lattice gauge field theory is developed using the maximal-tree gauge and an appropriately chosen set of angular variables. The various constraints are carefully discussed, as is a practical means for their implementation. A complete set of variables for the colourless sector is thereby determined. We show that the one-plaquette problem in SU(N) gauge theory can be mapped onto a problem of N fermions on a torus, which is solved numerically for the low-lying energy spectra for N ≤ 5. We end with a brief discussion of how to extend the approach to include the spatial (inter-plaquette) correlations of the full theory, by using a coupled-cluster method parametrisation of the full wave functional

    The Extended Coupled Cluster Treatment of Correlations in Quantum Magnets

    Full text link
    The spin-half XXZ model on the linear chain and the square lattice are examined with the extended coupled cluster method (ECCM) of quantum many-body theory. We are able to describe both the Ising-Heisenberg phase and the XY-Heisenberg phase, starting from known wave functions in the Ising limit and at the phase transition point between the XY-Heisenberg and ferromagnetic phases, respectively, and by systematically incorporating correlations on top of them. The ECCM yields good numerical results via a diagrammatic approach, which makes the numerical implementation of higher-order truncation schemes feasible. In particular, the best non-extrapolated coupled cluster result for the sublattice magnetization is obtained, which indicates the employment of an improved wave function. Furthermore, the ECCM finds the expected qualitatively different behaviours of the linear chain and the square lattice cases.Comment: 22 pages, 3 tables, and 15 figure

    Phase transition in the transverse Ising model using the extended coupled-cluster method

    Full text link
    The phase transition present in the linear-chain and square-lattice cases of the transverse Ising model is examined. The extended coupled cluster method (ECCM) can describe both sides of the phase transition with a unified approach. The correlation length and the excitation energy are determined. We demonstrate the ability of the ECCM to use both the weak- and the strong-coupling starting state in a unified approach for the study of critical behavior.Comment: 10 pages, 7 eps-figure

    Differential Geometry applied to Acoustics : Non Linear Propagation in Reissner Beams

    Full text link
    Although acoustics is one of the disciplines of mechanics, its "geometrization" is still limited to a few areas. As shown in the work on nonlinear propagation in Reissner beams, it seems that an interpretation of the theories of acoustics through the concepts of differential geometry can help to address the non-linear phenomena in their intrinsic qualities. This results in a field of research aimed at establishing and solving dynamic models purged of any artificial nonlinearity by taking advantage of symmetry properties underlying the use of Lie groups. The geometric constructions needed for reduction are presented in the context of the "covariant" approach.Comment: Submitted to GSI2013 - Geometric Science of Informatio

    Design and Implementation of a Range-Based Formation Controller for Marine Robots

    Get PDF
    There is considerable worldwide interest in the use of groups of autonomous marine vehicles to carry our challenging mission scenarios, of which marine habitat mapping of complex, non-structured environments is a representative example. Relative positioning and formation control becomes mandatory in many of the missions envisioned, which require the concerted operation of multiple marine vehicles carrying distinct, yet complementary sensor suites. However, the constraints placed by the underwater medium make it hard to both communicate and localise the vehicles, even in relation to each other, let alone maintain them in a formation. As a contribution to overcoming some of these problems, this paper deals with the problem of keeping an autonomous marine vehicle in a moving triangular formation with respect to two leader vehicles. Simple feedback laws are derived to drive a controlled vehicle to its intended position in the formation using acoustic ranges obtained to the leading vehicles with no knowledge of the formation path. The paper discusses the implementation of this solution in the MEDUSA class of autonomous marine vehicles operated by IST and describes the results of trials with these vehicles exchanging information and ranges over an acoustic network

    Pervasive sensing to model political opinions in face-to-face networks

    Get PDF
    Exposure and adoption of opinions in social networks are important questions in education, business, and government. We de- scribe a novel application of pervasive computing based on using mobile phone sensors to measure and model the face-to-face interactions and subsequent opinion changes amongst undergraduates, during the 2008 US presidential election campaign. We nd that self-reported political discussants have characteristic interaction patterns and can be predicted from sensor data. Mobile features can be used to estimate unique individ- ual exposure to di erent opinions, and help discover surprising patterns of dynamic homophily related to external political events, such as elec- tion debates and election day. To our knowledge, this is the rst time such dynamic homophily e ects have been measured. Automatically esti- mated exposure explains individual opinions on election day. Finally, we report statistically signi cant di erences in the daily activities of individ- uals that change political opinions versus those that do not, by modeling and discovering dominant activities using topic models. We nd people who decrease their interest in politics are routinely exposed (face-to-face) to friends with little or no interest in politics.U.S. Army Research Laboratory (Cooperative Agreement No. W911NF-09-2-0053)United States. Air Force Office of Scientific Research (Award No. FA9550-10-1-0122)Swiss National Science Foundatio

    A Human Minor Histocompatibility Antigen Specific for B Cell Acute Lymphoblastic Leukemia

    Get PDF
    Human minor histocompatibility antigens (mHags) play an important role in the induction of cytotoxic T lymphocyte (CTL) reactivity against leukemia after human histocompatibility leukocyte antigen (HLA)-identical allogeneic bone marrow transplantation (BMT). As most mHags are not leukemia specific but are also expressed by normal tissues, antileukemia reactivity is often associated with life-threatening graft-versus-host disease (GVHD). Here, we describe a novel mHag, HB-1, that elicits donor-derived CTL reactivity in a B cell acute lymphoblastic leukemia (B-ALL) patient treated by HLA-matched BMT. We identified the gene encoding the antigenic peptide recognized by HB-1–specific CTLs. Interestingly, expression of the HB-1 gene was only observed in B-ALL cells and Epstein-Barr virus–transformed B cells. The HB-1 gene–encoded peptide EEKRGSLHVW is recognized by the CTL in association with HLA-B44. Further analysis reveals that a polymorphism in the HB-1 gene generates a single amino acid exchange from His to Tyr at position 8 within this peptide. This amino acid substitution is critical for recognition by HB-1–specific CTLs. The restricted expression of the polymorphic HB-1 Ag by B-ALL cells and the ability to generate HB-1–specific CTLs in vitro using peptide-loaded dendritic cells offer novel opportunities to specifically target the immune system against B-ALL without the risk of evoking GVHD

    Dynamic assessment precursors: Soviet ideology, and Vygotsky

    Full text link
    • …
    corecore