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A consistent approach to Hamiltonian SU(N) lattice gauge field theory is developed using
the maximal-tree gauge and an appropriately chosen set of angular variables. The various
constraints are carefully discussed, as is a practical means for their implementation. A
complete set of variables for the colourless sector is thereby determined. We show that
the one-plaquette problem in SU(N) gauge theory can be mapped onto a problem of
N fermions on a torus, which is solved numerically for the low-lying energy spectra for
N < 5. We end with a brief discussion of how to extend the approach to include the
spatial (inter-plaquette) correlations of the full theory, by using a coupled-cluster method
parametrisation of the full wave functional.
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1. Introduction

Largely due to its conceptual elegance and simplicity, most calculations in lattice
gauge-field theory (LGFT) have been performed within the Lagrangian formulation,
which is based on a path-integral approach to the imaginary-time propagator. A
great deal of work has been done to improve the accuracy of the Monte Carlo
methods used in the numerical implementation of the Lagrangian approach, further
increasing its viability.

Nevertheless, the much less studied Hamiltonian approaches have at least four
important advantages. Firstly, since it is based on an imaginary-time evolution, the
Lagrangian approach does not allow easy access to the vacuum wave functional. By
contrast, such a wave functional is at the core of any Hamiltonian approach. Once
the wave functional is known, most important properties of theories such as QCD,
including, for example, confinement and chiral symmetry, should follow automat-
ically. Secondly, time-dependent phenomena can only be discussed in a real-time
(Hamiltonian) setting. Thirdly, the physical interpretation of the variables is much
more transparent in the Hamiltonian framework, where, for example, electric and
magnetic operators have their classical meanings. Lastly, the Hamiltonian approach
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may be studied both with analytical techniques and numerically. Thus, for exam-
ple, we can study low-lying excitations with a harmonic approximation and we can
disentangle the dependence of observables on the parameters in the approximation.

In view of these advantages, we develop here a consistent approach to Hamil-
tonian LGFT using the maximal-tree gauge, which is further formulated in terms
of a set of angular variables. The various constraints in the theory are discussed
and implemented, and an independent and complete set of variables is determined
for the colourless sector. We describe a general scheme to construct the eigenstates
of the electric energy operator using an efficient symbolic method. It is shown how
the one-plaquette problem for SU(N) LGFT can be mapped onto an N-fermion
problem for arbitrary values of N. The low-lying energy spectra are investigated
numerically, and explicit solutions are shown for SU(2), SU(3), SU(4), and SU(5).
Previous attempts to use the coupled cluster method to include multi-plaquette
correlations have largely been confined to the ground-state energy and low-lying
excitation gaps (glueball masses) in the pure gauge (gluon) sector (i.e., without
fermions) of the U(1) and SU(2) cases in one and two spatial dimensions.m? We
conclude with a brief discussion on how the new maximal-tree formulation might
profitably be used to make further progress for the non-Abelian SU(N) gauge the-
ories with N > 2 in three spatial dimensions where, as we show, significant new
complications arise.

2. Hamiltonian Lattice Gauge Theory

The original Abelian gauge theory of electromagnetism was extended by Yang and
Mills® using gauge fields of more complicated structure, which included internal
degrees of freedom. This generates self-interactions since the gauge fields do not
commute, but are chosen to obey the commutation relations of a specific Lie algebra.

2.1. Lagrangian

We shall concentrate on a gauge-field Lagrangian where the field A, is an element
of the Lie algebra su(N),

1 v
,C = ETI'[FHUFH ] . (1)
Here the field tensor F,, is defined as
Fu = 04Ay — 0,A, —i[Au, A] (2)

and the field variable A, is an element of the algebra, conveniently parametrised as
1.asa .
A, = gi)\ Ay (3)

The A® are the N? — 1 generators of the Lie algebra, satisfying the commutation
relations

A% A7) = 2if%0 0 (4)
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The index a thus runs from 1 to N2 — 1. The A® can be represented by traceless
N x N matrices, normalised such that their squares have trace 2, as can be seen
from the anticommutation relations

4
{A7, AP} = 2d%exe + + 0l (5)

In Eq. (3) we have absorbed the coupling constant g into the field A,, so that we
can interpret the fields geometrically, since the field tensor is now the curvature
that follows from the covariant derivative

dy =0 —i[Ay, ] (6)

from which follows the relation
d,.d)]=—iF,, ] . (7)

As we are interested in the Hamiltonian, we perform the standard equal-time
quantisation and reformulate the Lagrangian in terms of generalised electric and
magnetic fields. This is strictly speaking a 3-dimensional result, since this interpre-
tation requires the use of three-dimensional algebra. We shall nonetheless use the
result below for other numbers of spatial dimensions as well. We find

D
1
L=t (S (B-BY)| )
k=1
where B; = —%eiijjk and E; = F;g. Since we wish to impose the temporal

gauge Ay = 0, we separate the Lagrangian into two parts, thereby isolating the Ag
dependent part,?

D

> (E} - B})

1
[1 = —2TI'
9 k=1

1
+ 9_2Tr [A0G + ApX (Ap)] (9)
Ap=0

where we have added a total divergence. The function X is second order in Ay and
does not contribute to the equations of motion or to the constraint equations in the
temporal gauge (Ag = 0) discussed below.

Since the time-derivative of Ay does not occur in the Lagrangian, equation of
motion for Ay is a time-independent algebraic equation, and thus Ag is constant.
This set of equations (one for each colour index) is the non-Abelian analogue of the
Gauss’ law constraint, and in the absence of colour charges they take the simple
form

G'(x)=0 |, (10)

where

D

G*(x) = > _[0iEf(x) + gf " A (x) Zd B¢ . (11)

i=1
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The components of the fields can be obtained via the relation
1 1
AL = ETr[AHX‘] , E, = ETr[EHX‘] . (12)

The constraints obey the same commutation relations as the generators of the gauge
group. Thus, Gauss’ law cannot be implemented as a strict operator condition
as it leads to contradictions, since the non-commuting constraints cannot all be
diagonalised simultaneously. However, within the physical (in this case colourless)
subspace defined by

G*(x)|Phys)y =0 (13)

no such problem arises, since the eigenvalue of the commutators is also 0. The space
of states consists of wave functionals, taking values on the SU(N) group mani-
fold. From Eq. (13) we find N? — 1 functional conditions on each wave functional,
consisting of functions on the group manifold at each space point.

As is well known, quantisation of problems involving redundant degrees of free-
dom (i.e., where some of the equations of motion are constraints) is quite involved.
The two main techniques used are Dirac and BRS quantisation, and they require
a large amount of additional analysis. For more details one can consult the sem-
inal work by Dirac,>% as well as Refs. [4,7,8,9,10]. If we are able to work within
the physical subspace only, we can ignore these formal problems and define the
quantisation of the canonical momenta, I1{ = 8y A7, by

M (x) = Ef = _iMS(X) : (14)

which involves a functional derivative!l:12

with respect to the field variables.

Since A§ is not dynamical, we cannot associate a canonical momentum with
it. We therefore use the temporal gauge, A§ = 0, which leaves us with a resid-
ual gauge freedom ¢(x) independent of the time coordinate, such that under the

transformation A, (x) — ?4,(x), where

(x
)
PAL(x) = 6(x)Au(x)6 7 (x) +i[0ud ()67 (%) (15)
*Fu(x) = $(X)Fu(x)$7 (%) (16)

with ¢ € SU(N), the Lagrangian is invariant.

2.2. Discretisation and the Hamiltonian

Many quantum field theories suffer from singularities, both in the infrared and ul-
traviolet limits. In many interesting cases, such as QCD,'3 these are renormalisable.
Rather than dealing directly with the continuum, we shall regularise the problem
by introducing a simple hypercubic lattice in the D-dimensional space, with lat-
tice spacing a. Since we are pursuing a Hamiltonian approach, time will remain
continuous. We shall concentrate here only on the pure gauge theory.
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As is by now well known (and see our full paper'* for further details), the system
is described by a set of gauge fields (or chromo-vector-potentials)

A=t Nil AT A (17)
= 2g p l )

that are now defined on the links [ of the lattice. They are Hermitian, since A% is
Hermitian. The chromo-electric fields, £, are the corresponding canonical momenta
obeying the commutation relation,

(B, AL = —ibui baar - (18)

The group elements are the link variables, U; = exp {iaA; }, which are thus N x N
matrices. They correspond to parallel transporters on the lattice. Since A; is an
element of the su(N) Lie algebra, U; is an SU(N) matrix. The product of four
such group elements around a primitive square on the lattice (usually called a
plaquette or Wilson plaquette) defines the corresponding plaquette operator, U, =
U\UU 'UTE. Their traces form the simplest gauge-invariant quantities on the
lattice.

Ignoring temporarily problems with overcompleteness of the variables, one can

derive the Kogut-Susskind Hamiltonian,®

9 N?-1
Hs = 550 | 2 X BEBf 4 A3 T2 = Uy = U]
I a=1 P
g2

where D is the number of spatial dimensions, and A = a?”~5/g*. The sum on [ in
the electric term Hp runs over all links, while the sum on p in the magnetic term
Hps runs over all plaquettes on the lattice.

Our physical states are now gauge-invariant in the vacuum sector. So far, the
price we have paid for adopting the Hamiltonian approach is twofold. Firstly, ex-
plicit Lorentz invariance has been broken and, secondly, the problem remains of
determining the physical subspace.

2.3. A first look at handling the constraints

As we have seen above, the gauge freedom leads to constrained dynamics. The
residual gauge symmetry involves all time-independent local gauge transformations.
These gauge freedoms thus generally prove an obstacle to establishing a proper set
of variables in which the wave functional may be expressed. Before proceeding let us
do some simple counting of the number of independent (i.e., unconstrained) degrees
of freedom in our formulation. The primitive variables are the set E}* defined on
the set of N; links. Hence, the total number of degrees of freedom is (N2 — 1),
where the first factor is simply the number of SU(N) group generators. However,
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Table 1. The number of degrees of freedom on a hypercubic lattice of size n X n X ---n, for
different numbers of space dimensions, D. [The D = “1” case comprises n plaquettes on a line.]
Dimensionality, D “1v 2 3 D >2
number of sites, N, 2(n+1) (n+ 1)2 (n+ 1)3 (n+ I)D
number of links, NV 3n+1 2n(n+1) 3n(n+ 1)2 Dn(n + I)D_l
number of plaquettes, Ny, n n? 3n2(n+1) %D(D —1)n?(n+1)P-2

there are constraints between them due to Gauss’ law. Thus, we can readily derive
the lattice versions G# of the continuum generators G?(x), for each of the N; lattice
sites i. Hence, the number of (unconstrained) independent degrees of freedom is

Ny =(N*=1)(N;— Ny +1) , (20)

where the additional unity term in the second factor in this expression arises due
to the overall global gauge degree of freedom that would finally still remain.

As shown in Table 1, we see that the total number of plaquettes, IV, on the lattice
is given by N, = N; — N, +1 for the cases D = 1 and D = 2, but this relation is not
true for D > 2. The construction of Gauss’ law makes it clear why it is so attractive
to work with plaquette variables or, more generally, with traces of products of
group operators U; around closed loops (i.e., Wilson loops), since these variables
are automatically gauge-invariant. Hence, for D = 1,2 the plaquette variables form
a complete (i.e., neither over- nor under-complete) set of unconstrained variables.
We turn below to the vexed question of what variables to choose for D > 2.

3. Gauge Fixing and Maximal Trees

As we have seen above, it 1s the gauge freedom that leads to the constrained dy-
namics and the fact that the set of link variables must, in general, be over-complete.
However, since the link variables are still one of the most attractive sets to use, we
are motivated to fix the gauge as much as possible. We actually choose to fix the
gauge fully (apart from an overall global gauge transformation that we cannot fix)
by separating all of the links on the spatial lattice into two sets. One set is chosen
to be just sufficient to connect any two lattice sites in a unique way. Any such set of
links is called a mazimal tree.'5:'¢ Its choice for a given lattice is clearly not unique,
but one such choice is shown in Fig. 1 for D = 3. The case shown corresponds to
the union of all links on the z-axis for y = z = 0, and all links in the y-direction for
z = 0, and all links in the z-direction, with an obvious labelling for the axes.
Thus, all SU(N) link variables U; are thereby divided into two non-overlapping
sets, {U;} = {Vi|l & tree;W; |l € tree}. The variables {W;} are now associated
with the irrelevant gauge degrees of freedom; they are essentially the irrelevant lon-
gitudinal electric fields. Conversely, the variables {V;} form our basis for the relevant
degrees of freedom, the magnetic variables. However, these latter link variables are
not by themselves invariant under local gauge transformations. Hence the wave
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Fig. 1. A particular choice of maximal tree for D = 3 is shown on the left; and the path associated
with a typical variable X; for a particular link not on this tree is shown on the right.

function cannot depend directly on them since, gauge invariance would then be vio-
lated. Instead, we transform the links not on the tree into closed loops by combining
them with (unique) paths on the maximal tree joining each end of the link from
and to the origin, as is illustrated in Fig. 1. In this way we make a unique mapping,
Vi & Xi; V1 € tree, where X; simply comprises a product of the corresponding U; or
Ul_1 operators on the links comprising the closed loop, where the inverse operators
appear on links pointing back to the origin, in a convention that orients the links on
the maximal tree along the direction away from the origin. Thus, all the variables
X; transform in the same way under local gauge transformations with the gauge
transformation at the origin, and are invariant under all other local gauge changes.
We know that when we fix the gauge we cannot fix a global gauge transformation,
and we are thus led to identify this with the one at the origin.

We have shown'!® that the electric field operator E associated with the link
[ on the maximal tree can be transformed by a body-fixed frame rotation, such
that when it acts on one of the X,,-variables one of the following relations holds,
depending on the position of the link,

El X = —%X’Xm , Bl X = %Xm)\" , Bl X = —%X’Xm + %Xm)\" (21
In this last equation the first result holds if link / is part of the path leading up to
link m from the origin, the second result holds if it is part of the path leading back
back from link m to the origin, and the third result holds if it 1s part of both paths.
In this way the electric field operator generates long-range interactions between two
link variables X; and X.

The links W; on the maximal tree change under local gauge transformations,
and any function in the physical subspace must hence be a function only of the
gauge-invariant X; variables. The gauge is effectively fixed by setting the SU(N)
matrix operators W, to be the unit operator, so that we have {Vj; Wi} — {X;;1}.
It 1s now a matter of simple counting to show that the X; variables are precisely
the (unconstrained) canonical variables of our Hamiltonian theory in the colourless
sector, as summarised in Table 2. On a finite lattice of length n in D dimensions
there are Ny = (n+1)? lattice points, and N; = Dn(n+1)P~1 links. The maximal
tree contains Ny = n+n(n+1)+n(n+1)2+-- -+n(n+1)D_1 = (n+1)D—1 =N,—-1
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Table 2. The number of degrees of freedom in the maximal tree approach on a
hypercubic lattice of size n X n X - - - n, for different number of space dimensions,

D.
Dimensionality, D 2 3 D>2
number of sites, N (n+1)2 (n+1)3 (n+ I)D
number of links, N; 2n(n+ 1) 3n(n + 1)2 Dn(n + I)D_l
number of links on tree, Ny | n+n(n+1) (n+1)° -1 (n+ I)D -1
number of independent X; n2 2n% 4+ 3n2 Dn(n + I)D_l
variables, N; — N; —(n+ I)D +1

links, as can easily be seen from (the D-dimensional generalisation of) our explicit
choice of maximal tree. Therefore there are N; — Ny = Dn(n+ 1)1 —(n+1)P +1
remaining links, and the same number of variables X;. Each of these variables has
N? — 1 degrees of freedom. Hence, the number of degrees of freedom of the X
variables is precisely equal to N,, the number of unconstrained canonical degrees
of freedom in the theory, as given by Eq. (20).

3.1. The Hamailtonian in terms of the X; variables

We now start with the Kogut-Susskind Hamiltonian of Eq. (19) and assume that it
will act on a function of the variables X;. For the electric piece of the Hamiltonian,
Hpg, we make use of the result in Eq. (21). In the magnetic part, Hys, we can set
all of the links on the maximal tree to unity. After some algebra we arrive at a
final expression for our Hamiltonian given entirely in terms of our complete set of
(unconstrained) canonical variables, X;. We do not quote the somewhat unedifying
expression here. The interested reader is referred to Ref. [14] for further details and
the full expression.

4. Colour Neutrality and Further Constraints

Although we have solved the major problem above of the constrained dynamics due
to the gauge freedom, we still have to face a further problem of overcompleteness
related to the number of degrees of freedom in the traces of SU(N) matrices. This
leads to the existence of dependences among the traces of the Wilson loop variables,
usually known as Mandelstam constraints.'”

Our wave function in the pure gauge sector studied here should be a colour
singlet, and the above complications arise when we impose colour neutrality on the
wave function. Thus, the natural choice for us is now to work with traces of products
of the variables X;, as discussed above. A suitable approach would be to construct
a basis of eigenstates of the electric part of the Hamiltonian, Hg, and calculate
matrix elements of the magnetic energy between these states. Such an approach is
a quite natural calculational scheme for the Hamiltonian approach. One can also
use the method inherent in the Lagrangian calculations, which is based on invariant
integration over the full group.'® However, for a proper Hamiltonian approach this
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discards many of the advantages of the method.

To find eigenstates of the electric operator, one can resort to three general ap-
proaches. Firstly, group theory gives us, in principle, a way to construct general
eigenstates, the group characters. However, for a large basis, and N > 2, this is
extremely involved,'® unless it can be automated, and we see no easy way to do
this.

A second approach is based on integrating configurations, and constructing or-
thogonal combinations from them. In this case one must start off with much larger
overcomplete sets of configurations, and at increasing orders the integration, based
on Creutz’s integration method,?%2! tends to become more and more involved.??

The third approach is based on the action of the electric operator itself, which
leads to a block-diagonal matrix which has to be diagonalised to recover the eigen-
states. In combination with a symbolic method explained more fully elsewhere,'*
this seems to be the most powerful approach, which allows one to tackle any arbi-
trary SU(N) group. This is the method that we have developed and that we prefer
to use with the maximal tree approach, although we note that it also has wider
applicability. for further details the reader is referred to Ref. [14]

Our whole approach so far has been designed for applications in mind using
a universal method of microscopic quantum many-body theory in the Hamiltonian
formulation, such as the coupled cluster method (CCM).?* We do not have the scope
in the present paper to discuss in any detail such many-body applications. Instead,
we consider below the simpler limit where all plaquettes appear independently,
and in so doing we introduce an extremely useful set of angular variables that
considerably aid and simplify the analysis. We show that they serve to map an
SU(N) one-loop problem onto an N-fermion problem on a torus.

5. The One-Plaquette Problem

If all of the loop variables are combined in such a way that they form plaquettes,?!
we may consider our wave functional as depending only on the plaquette variables.
Since the trace of a matrix is invariant under similarity transformations, we may
write
N
Te[U™] = Tr [(VUV‘l)m} =3 "™y mell,2,--,N] | (22)
j=1
where V' diagonalises the SU(N) unitary matrix U of the one-plaquette problem.
Hence, out of the N? —1 degrees of freedom for SU(N) the trace depends only on its
N eigenvalues exp(i¢; ), all of which lie on the unit circle in the complex plane. The
angular variables ¢; satisfy the constraint Zj»v:l ¢; = 0 coming from the SU(N)
condition, det U = 1.
The wave functions of the one-plaquette problem can be expressed in a basis of
group characters?* labelled by the standard SU(N) partitions A = [A1, Az, -+, An].
These are simply proportional to the eigenstates of the electric operator (which
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is just the quadratic Casimir operator) for the single plaquette. We denote the
group characters of SU(N) as xx(¢), where we use the shorthand notation ¢ =
[¢1, P2, -+, dn]. They may be represented as

€(A1, Az, AN) .
((N_l)’(N_Q)’72:1:0) ’

XA(¢):€ AM>XA > > Ay =0, (23)

where €(A) is the determinant of the N x N matrix M with elements given by
My = exp(idg¢i). The determinant in the denominator is a Vandermonde de-
terminant of the eigenvalues of U, namely A = ¢((N — 1), (N —2),---,2,1,0) =
Hi\;l:l[exp(iqbk) — exp(i¢;)]. Tts presence and its antisymmetry properties in the
angular-variable eigenvalues allow us to map the original one-plaquette problem,
which is symmetric under the interchange of the eigenvalues (i.e., an effective bosonic
problem) but which has a complicated integration measure, into a much simpler

fermionic problem by mapping ¥y — &, = AW,. In the electric part of the Hamil-
tonian we write correspondingly,

N?-1 N?-1
1 N(N%-1)
E°E* - A E°E*| — =Dy — ———— 24
R P e
where the differential operator Dy, given by
N N 2
1 o? 1 1 0

Dy =—= —+-|—= — 25
it (whe) )

acts on the antisymmetric wave function ®.

When the the term Tr[U]+Tr[U ~!] in the magnetic part, H s, of the Hamiltonian
in Eq. (19), acts on a wave function, it now reduces to a multiplication?* of group
characters,

(@) +xi(—gla= Y e+ >, e, (26)
A=A+1 A=A—1
where the symbols A+ 1 in the sums denote the inclusion of all possible partitions in
which one and only one of the A\; = A; £1 (with 1 < i < N), while still fulfilling the
requirements in Eq. (23). The operators Tr[U] and Tr[U 1] thus act as raising and
lowering operators, which act in a simple way on the Young tableaux corresponding
to the group characters or wave functions with specific symmetry properties. '*
We see from the above results that for a single SU(N) loop comprising L links
(where L = 4 for a plaquette), the electric operator, Hg, in the Hamiltonian essen-
tially yields L times the difference between the total kinetic energy of the N particles
(now fermions) on a torus (represented by the angular variables ¢;; i = 1,2,---  N)
and their centre-of-mass energy. It is very naturally expressed in terms of the mo-
mentum operators p; = —ia%)j. The magnetic term, Hpyr, for the single plaquette is

also easily seen to be given as 2\ Zj.\;l (1—cos ¢;). The constraint det U = 1 now re-

duces to a constraint on the centre-of-mass motion, ® = N~! Zj\f:l ¢; = 0. We need
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Fig. 2. The lowest levels of the one-plaquette energy spectra for SU(2) to SU(5).

also to impose the constraint on the centre-of-mass momentum, P = Zj»v:l p; =0,
since ® is an unphysical variable for the SU(N) problem. A straightforward applica-
tion of the Dirac quantisation procedure to handle the constraints then easily leads
to the following realisation of the one-plaquette Hamiltonian,

2 N N
H=3- |23 lpj— P/NP+22 3 (1 —cos(é; = )] | (27)

7j=1

which we have written for the physical case D = 3 for which A = g~*. In this form
the Hamiltonian is now manifestly translationally invariant. In the weak-coupling
limit (¢ — 0) (or, equivalently, A — o0) we may readily use the harmonic approx-
imation for the magnetic (“potential energy”) term of the N-fermion problem. In
this limit the entire centre-of-mass energy factorises. This great simplification allows
for the easy implementation of the constraint det U = 1, and the degeneracies v,, of
the nth level of the equidistant spectrum are now given by v, = Py(n)— Py (n—1),
where Pp,(n) is the number of different ways the positive integer n can be parti-
tioned as the sum of m positive integers.

5.1. Numerical results

We now investigate the one-plaquette spectra of a few of the relevant SU(N) gauge
theories, namely for 2 < N < 5. The method we use to solve the problem is first
to work in a basis of eigenstates of the electric Hamiltonian, and then to evaluate
the action of Tr[U] and Tr[U=1] on these states. For the low-lying spectra that we
calculate we solve the linear eigenvalue equations numerically. From the form of the
Hamiltonian in Eq. (19) or Eq. (27), we see that it is convenient to define a scaled
energy ¢ as follows,

9 N

F ==
2a6+g2a

: (28)

which we use for representing the numerical results.
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For SU(2), the one-plaquette Schrodinger equation reduces to the Mathieu equa-
tion and the spectrum is given by its odd characteristic values, as shown in the left
panel of Fig. 2. No such closed-form analytical solutions seem to exist for SU(N)
with N > 2, and we resort to the numerical procedure described above to obtain
the remaining results shown in Fig. 2. We note that the spectra for N > 2 are much
richer than for N = 2. They include not only many avoided crossings but also, very
interestingly, what appear to be several real crossings in the cases N =4 and N = 5.
We have verified that the distances between the respective two levels in these latter
cases are equal to zero within our numerical accuracy. Such real crossings, of course,
are a reflection of some (otherwise hidden) symmetry in these theories. They clearly
deserve further investigation.

Finally, we note that the region of the coupling constant shown in Fig. 2 is
insufficient to observe the asymptotic convergence to the harmonic approximation
discussed above. However, we have checked numerically, by going to values g=* >
50, that our stated results for the degeneracy factors for the equidistant harmonic
oscillator spacings in this limit are correct.

5.2. Independent-plaquette wave functionals

The results for the one-plaquette problem have more consequences for more general
(e.g., variational or CCM) wave functionals than one might at first suspect. Thus,
if the trace variables, &, = m~1Tr(U™), of the one-plaquette matrix are used,
the wave functional is a function of the group characters only. The specific wave
functional that is the sum of one-plaquette functions,

(oidim)= > Fehn) (29)

plaquettes o

naturally leads to the sum of one-plaquette problems, leading to total energies
which are the sum of one-plaquette energies. However, the corresponding product
wave functional

(ostm=IT  FeHL) (30)
plaquettes o

also leads to the same result as we now show. This absence of correlations between
nearest-neighbour plaquettes, follows in our case from the symmetry of (the original
bosonic) wave functional, ¥, in the angular variables,

Un(otpi- b ) =Un(-j i) (31)

where we decompose

Fgr---¢n) =D exWsr(ér--on) (32)

A

Therefore the cross-product term from the electric operator vanishes,
DNWA(F -+ $3) WA (67 -+ 67)
= W (67 GR)DNTA(ST -+ %) + WA(ST - 6R) DN WA (8] - 0R%) , (33)
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where a and § are plaquettes containing the link /, and ¥} = det(J)¥y, where
det(J) = |A]? is the Jacobian of the transformation from trace variables to angular
variables, Jp,; = 0&n/0¢; = iexp(im¢;). The differential operator Dy contains
both sets of angular operators, dg, = e + 3¢,a. Therefore the Hamiltonian, when
acting on the product wave functional |II), also reduces to the sum of one-plaquette
Hamiltonians.

6. Summary and Whither Next?

In summary, we have shown how to fix the gauge by using the maximal-tree gauge,
which is specific to the lattice versions of gauge field theories. It does not suffer
from the typical problems of gauge fixing in the continuum. We then introduced
a very natural set of angular variables | simply related to the trace (or Wilson
loop) variables for a fundamental plaquette, in terms of which the SU(N) one-loop
problem can be mapped onto an N-fermion problem on a torus. Exact solutions
were obtained for a single plaquette in both the weak-coupling (¢ — 0) and strong-
coupling (g — oo) limits. The eigenstates in the strong-coupling limit are the group
characters of the corresponding group, and in the weak-coupling limit the harmonic
approximation to the fermion problem leads to explicit formulas for the degeneracies
of the equidistant energy levels. In terms of the group characters (i.e., the eigenstates
of the electric piece of the Hamiltonian), the ground and low-lying energy states
of the single plaquette can be determined numerically for arbitrary values of the
coupling constant, since the Hamiltonian reduces to a simple linear equation in terms
of these group characters. The terms in the magnetic piece of the Hamiltonian are
simple raising and lowering operators in this basis, and hence the energy spectra are
found by a simple configuration-interaction method technique of diagonalising the
resultant block-diagonal Hamiltonian matrix in a restricted basis. The procedure
can be automated using the theory of multiplication of group characters, in terms
of the Young tableaux of the corresponding group.

Another, somewhat unexpected, advantage of our approach is the fact that corre-
lations between spatially distinct trace variables cancel. This leads to the intriguing
possibility that spatial correlations in the full lattice problem might be weak in our
approach, which would in turn tend to suggest that successive approximations in
a fully consistent microscopic many-body approach based on our approach might
be expected to converge rapidly. Clearly, the simplicity of the angular variables for-
mulation is promising for more elaborate wave functionals. An obvious extension to
include correlations is to employ the coupled cluster method (CCM),?® which has
been extensively applied with great success to a wide variety of quantum many-body
systems and quantum field theories. Typical applications of the CCM to strongly in-
teracting continuum quantum field theories include ¢* field theory?2% and a model
field theory of pions and nucleons.?” There have been many applications of the CCM
to various spin-lattice models in quantum magnetism.?® Other applications to lat-
tice field theories include the O(4) nonlinear sigma model as a model of meson field
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theory with a phase transition due to chiral symmetry breaking.?’

Previous attempts to use the CCM in lattice gauge theory have largely been
confined to the ground and low-lying excited states in the pure gauge (gluon) sectors
of the U(1) and SU(2) cases in one and two spatial dimensions.1'? As we have seen,
for D < 3 the plaquette variables U, form a natural complete set. However, they
are overcomplete for D > 3. One of our key aims here has been to find a natural
complete set of variables for this case. We have shown that the variables X; fulfil
this role.

At the heart of the CCM is the parametrisation of the ket-state many-body
wave function as an exponential of a correlation operator formed from a linear
combination of mutually commuting creation (or excitation) operators with respect
to a model or reference state |®),

W) =e|@) 5 S=> er|I)P| . (34)

The creation operators here excite from the model state to an arbitrary excited
state |7}, and do not act between different excited states on overlapping lattice-site
configurations.

From this vantage point the key question is then the choice of the form of the
model state |®) and of the states in which to expand the many-body Hilbert space.
Clearly, the simplest choice for the model state is just the chromo-electric vacuum.
As for the remainder, this is precisely the question that we have addressed here,
where we have established the viability for such purposes of the set of indepen-
dent maximal-tree variables, X;, and their conjugate variables, E. Thus, for the
colourless (pure gauge) sector we have to use closed contours, which are traces
over products of X variables, since only these variables are invariant under gauge
transformations generated by Gauss’ law.

We conclude with some final comments. Firstly, we note that the form of our
SU(N) Hamiltonian in the X; variables is very different from the naive Kogut-
Susskind form of Eq. (19). This is likely to have an important effect on the role
of correlations in the ensuing analysis. Secondly, a price that we pay for using the
maximal-tree gauge is that the tree, and hence our Hamiltonian, has a preferred
direction and we thereby lose explicit translational invariance. Although this is
presumably restored in a full CCM calculation carried out to all orders, in practice
we need to make approximations via a systematic hierarchy of choices for which
excited states |I) to include in the CCM ket-state correlation operator S in Eq. (34),
and it is difficult to know in advance how serious the loss of translational invariance
might be in practice at attainable levels of implementation. An obvious next step
in this regard would be to investigate the possibility of designing different, more
symmetric, choices for the maximal tree in order to circumvent this problem. On
the other hand, although the current choice might turn out to be problematic for a
study of the vacuum sector, it would seem to be a natural choice for the study of the
interaction between fixed sources on the lattice, which explicitly breaks translational
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invariance. Such studies are themselves an obvious next step in the extension of the

current approach away from the pure gauge sector to include fermions. We note that

some very preliminary steps in this direction have already been taken in the much

simpler case of the Schwinger model of quantum electrodynamics in one spatial

dimension, whose Hamiltonian form on the lattice has been investigated, using

CCM techniques, with the inclusion of massive staggered fermions.
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