1,234 research outputs found
Vehicle Exhaust Remote Sensing Device Method to Screen Vehicles for Evaporative Running Loss Emissions
Vehicle hydrocarbon (HC) emissions can be emitted from either tailpipe or non-tailpipe locations and understanding their fleet apportionment is important for successful air pollution policy. Vehicles initially misidentified as having elevated tailpipe HC emissions first indicated that roadside exhaust sensors could detect the presence of evaporative HC emissions as increased noise in the HC/carbon dioxide (CO2) correlation measurement. The 90th percentile of the largest residual of the HC/CO2 correlation is defined as a running loss index (RLI) for each measurement. An RLI that is three standard deviations or greater above the instruments noise indicates possible evaporative running loss emissions with the probability increasing with larger RLI values. Two databases of vehicle emission measurements previously collected in West Los Angeles in 2013 and 2015 were screened using this method. The screening estimated 0.09% (31/33,806) and 0.18% (49/27,413) of the attempted measurements indicated evaporative running loss emissions from a 9-year-old fleet. California LEV I certified vehicles (1994 – 2003 model years) accounted for the largest age group for both. Minimum detection limits for the instrument used were estimated at 2.8 and 1.6 g/mile on a propane basis for the 2013 and 2015 data respectively or 32 to 56 times the Federal Tier 2 and Tier 3 standards of 0.05 g/mile
Upgrading Aerated Lagoon Effluent with Intermittent Sand Filtration
Intermittent sand filtration was evaluated as a means of upgrading the quality of aerated lagoon effluents to satisfy the requirements of PL 92-500. The aerated lagoon in question treats the wastes from a milk and cheese factory located in northern Utah. The treatment system consists of two diffused air aeration ponds followed by a facultative settling pond, were applied to pilot scale intermittent sand filters with 0.17 mm and 0.40 mm effective size sands. The filters were loaded hydraulically from 0.25 million gallons per acre per day to 1.0 million gallons per acre per day. It was found that sand size has a profound effect on the quality of effluent produced by filtration. Also, sand size was related to the time of operation before plugging occurred. At the levels of application studied, hydraulic loading rate was found to affect BOD removal regardless of influent concentration. However, effluent suspended and volatile suspended solids concentrations reflected changes in influent concentrations regardless of hydraulic loading rate. It was found that filtration of facultative settling pond effluent provided better removals than direct filtration of aerated lagoon effluent using equivalent sand sixes and hydraulic loading rates. It was concluded that intermittent sand filtration was capable of upgrading the effluent from aerated lagoons to meet present and future discharge requirements when effluent from the facultative settling pond was applied to 0.17 mm effective size sand
On-Road Remote Sensing of CO Emissions in the Los Angeles Basin
The University of Denver remote sensor for on-road motor vehicle carbon monoxide emissions was used for eleven days in the Los Angeles Basin in December, 1989. The remote sensor has been incorporated into the 1990 Clean Air Act Amendments as on-road emissions testing . The device measures the CO/CO2 ratio for one-half second behind each vehicle, from which the exhaust %CO is calculated. Vehicles were measured in a mix of many driving modes and speeds ranging from deceleration coming up to a red traffic light through idling in heavy congestion up to accelerations and cruises entering a freeway ramp at highway speeds. The results have been validated by both EPA and CARB blind comparisons. The calculated %CO is analogous to that which would have been measured had the vehicle been equipped with a tailpipe probe. The mass emissions in grams CO per gallon of gasoline used can also be derived. Eight of the days monitored normal urban street driving; three monitored freeway ramps. Over 27,000 valid CO emission measurements were made. When the videotapes had been read and returned to California authorities for matching the license plates, the total number of vehicles both measured and matched with the license plate database was over 16,000. Because of the poor contrast of older California license plates and the sun angles, more plates were readable when the front of the vehicles were imaged. With this arrangement a significant number of vehicles without front plates could not be identified. The license plate matched fleet was 0.15 %CO cleaner (3/4 of year on average newer) than the total fleet. This probably arises because older vehicles have older style plates which are both intrinsically harder to read (lower contrast), and often in poorer condition.
Overall for the driving modes and vehicles tested more than fifty percent of the CO was emitted by eleven percent of the vehicles with %CO equal to or greater than five (gross polluters). New vehicles were so clean (gross polluters were less than 1% for the 1989 and 90 model years) that their emissions were almost negligible. The percentage of gross polluters rises from 4% (328 vehicles) of the 83-90 model year vehicles through 17% for the 75-80 model year vehicles to 30% (504 vehicles) of the 1974 and older fleet. If the whole measured fleet could maintain the 1989 and 1990 measured emissions then the total on-road pollution from the 16,000 vehicles measured would decrease more than fivefold. Despite the fact that the new vehicles are on average clean, the dirtiest 20% of the one year old fleet was dirtier than the cleanest 20% of any model years regardless of age. Because old vehicles are not numerous, and most new vehicles are low emitters, most of the carbon monoxide came from emissions of the dirtiest 20% of the vehicles with model years between 1976 and 1988.
An analysis of the data indicates that a conservative upper limit of fifteen percent of the measured CO emissions arises from vehicles in either a cold start or an off-cycle acceleration mode. Forty three percent of the fleet of 77 vehicles measured four or more times were always in the clean (\u3c1 %CO) category. These emit 4% of the total CO from all 77 vehicles. One quarter of the fleet of 77 showed emissions consistently between one and five percent CO. These vehicles emitted 18% of the CO An additional 25% of the fleet were over the five percent CO cut point at least twice. These vehicles emitted 70% of the emissions. Only a small fraction (5 vehicles, 7% of the fleet of 77 vehicles) jumped into the high category only once. The emissions variability observed in this data set is similar to the emissions variability observed when vehicles are repetitively subjected to conventional I/M testing. These results imply that an inspection and maintenance program incorporating remote sensing, which targets gross polluters with multiple violations, has the potential to identify a significant fraction of the CO emissions while inconveniencing only a small fraction of the vehicle owners. Our analysis concludes that on-road remote sensing as a component of an I/M program has the advantages of being representative of the on-road emissions of the vehicle in question, being an emissions test which is almost impossible to circumvent, and incorporates a fairness factor such that the more a vehicle is driven, the more frequently it will be tested. When age related factors are eliminated the findings in California are essentially identical to findings from on-road CO studies of large fleets of vehicles in Denver, Chicago and Toronto.
Forty-seven vehicles out of a fleet of 387 vehicles registered as diesels show emissions greater than 2%CO. Of these vehicles, thirty-nine are 1975-84 General Motors vehicles. The vehicles are such high emitters that the only sub-fleet found to be dirtier are 1955-1970 vehicles. Three lines of evidence point to the conclusion that more than half of the vehicles listed in this category are not diesel powered and are incorrectly registered thereby avoiding the California Smog-Check program.
There were differences in average CO emissions between the sites measured, and to a lesser extent between different days at the same sites. To aid in understanding this phenomenon, all remote sensing data available at the University of Denver from a variety of US cities with altitudes lower than 7,000 ft were analyzed in terms of hourly average CO emissions compared to hourly average fleet age. From this analysis a linear model was developed which demonstrated that almost all of the observed differences could be accounted for by differences in average age. This results because of the previously shown influence of the gross polluters which increases with fleet age. Smaller, load induced average emission increases between an uphill but slow cruise-mode freeway off-ramp and a flat but high speed acceleration on-ramp were discernable after the age differences had been eliminated. The linear model predicts average %CO for all fleets measured in the USA to better than 0.5 %CO with a knowledge of only the average fleet age.
The important conclusions are that a few vehicles (gross polluters) emit most of the CO A few vehicles are always measured in the gross polluter category, a few are frequently in that category, and most are never gross polluters. The fraction of gross polluters increases from one in one hundred new vehicles up to one in three old ones. Although new vehicle standards and technology changed from the early seventies to the early eighties, no sharp breaks are observed for the transition model years. The evidence suggests that on-road CO emissions increase linearly with average age of the fleet, and that the linear increase is dominated by the steady increase in the fraction of gross polluters with age. This increase with age appears to be caused in large part by improper (in some cases illegal) maintenance practices
Flexible, reconfigurable, power efficient transmitter and method
A flexible, reconfigurable, power efficient transmitter device and method is provided. In one embodiment, the method includes receiving outbound data and determining a mode of operation. When operating in a first mode the method may include modulation mapping the outbound data according a modulation scheme to provide first modulation mapped digital data, converting the first modulation mapped digital data to an analog signal that comprises an intermediate frequency (IF) analog signal, upconverting the IF analog signal to produce a first modulated radio frequency (RF) signal based on a local oscillator signal, amplifying the first RF modulated signal to produce a first RF output signal, and outputting the first RF output signal via an isolator. In a second mode of operation method may include modulation mapping the outbound data according a modulation scheme to provide second modulation mapped digital data, converting the second modulation mapped digital data to a first digital baseband signal, conditioning the first digital baseband signal to provide a first analog baseband signal, modulating one or more carriers with the first analog baseband signal to produce a second modulated RF signal based on a local oscillator signal, amplifying the second RF modulated signal to produce a second RF output signal, and outputting the second RF output signal via the isolator. The digital baseband signal may comprise an in-phase (I) digital baseband signal and a quadrature (Q) baseband signal
Progress on the Development of the UAS C2 Link and Supporting Spectrum - from LOS to BLOS
In order to provide for the safe integration of unmanned aircraft systems (UAS) into the National Airspace System, the control and non-payload communications (CNPC) link connecting the ground-based pilot with the unmanned aircraft must be highly reliable and robust, based upon standards that enable certification. Both line-of-sight (LOS) links using terrestrial-based communications and beyond-line-of-sight (BLOS) links using satellite communications are required to support UAS operations. The development of standards has been undertaken by RTCA Special Committee 228 (SC-228), with supporting technical data developed by NASA under the UAS in the National Airspace (NAS) Project. As a result of this work minimum operational performance standards (MOPS) have been completed and published for the LOS CNPC system. The second phase of work, for both NASA and RTCA involves the BLOS CNPC systems. The development of technical data to support MOPS development for UAS BLOS satellite-based CNPC links has now been initiated by NASA, and RTCA SC-228 has organized itself to begin the MOPS development process. This paper will provide an overview of the work that has been completed to date by the Communications Subproject in support of LOS C2 communications for UAS followed by an update of plans and progress for the BLOS phase of the project, with the focus on the UAS C2 spectrum aspects
Book Reviews
Book reviews of:
Armies of Deliverance: A New History of the Civil War By Elizabeth R. Varon. College Edition. (New York: Oxford University Press, 2021. Maps, acknowledgments, timeline, notes, suggested readings, glossary, index. Pp. xxv, 531. 90 cloth, 22.99 electronic. ISBN: 978-1-46964-700-5.)
Illusions of Emancipation: The Pursuit of Freedom & Equality in the Twilight of Slavery. By Joseph P. Reidy. (Chapel Hill: University of North Carolina Press, 2019. Acknowledgements, illustrations, map, notes, index. Pp. 1, 506. 29.99 E-Book. ISBN: 978-1-4696-4836-1.)
Civil War Monuments and the Militarization of America. By Thomas J. Brown. (Chapel Hill: University of North Carolina Press, 2019. 384 pp., 6.125 x 9.25, 87 halftones, notes, bibl., index, Paper, 54.95 cloth. ISBN: 978-0817320744.)
Fugitivism: Escaping Slavery in the Lower Mississippi Valley, 1820–1860. By S. Charles Bolton. (Fayetteville: The University of Arkansas Press, 2019. Acknowledgements, appendix, notes, index. Pp. x, 302. 38.00 cloth. ISBN: 9781469640792.
- …