515 research outputs found

    Predictive Abilities of the Frailty Phenotype and the Swiss Frailty Network and Repository Frailty Index for Non-Home Discharge and Functional Decline in Hospitalized Geriatric Patients

    Get PDF
    BACKGROUND: Frailty is increasingly applied as a measure to predict clinical outcomes, but data on the predictive abilities of frailty measures for non-home discharge and functional decline in acutely hospitalized geriatric patients are scarce. OBJECTIVES: The aim of this study was to investigate the predictive ability of the frailty phenotype and a frailty index currently validated as part of the ongoing Swiss Frailty Network and Repository Study based on clinical admission data for non-home discharge and functional decline in acutely hospitalized older patients. DESIGN: Prospective cohort study. SETTING AND PARTICIPANTS: Data were analyzed from 334 consecutive hospitalized patients of a tertiary acute care geriatric inpatient clinic admitted between August 2020 and March 2021. MEASUREMENTS: We assessed frailty using 1) the frailty phenotype and 2) the Swiss Frailty Network and Repository Study (SFNR) frailty index based on routinely available clinical admission data. Predictive abilities of both frailty measures were analyzed for the clinical outcomes of non-home discharge and functional decline using multivariate logistic regression models and receiver operating characteristic curves (ROC). RESULTS: Mean age was 82.8 (SD 7.2) years and 55.4% were women. Overall, 170 (53.1%) were frail based on the frailty phenotype and 220 (65.9%) based on the frailty index. Frail patients based on the frailty phenotype were more likely to be discharged non-home (55 (32.4%) vs. 26 (17.3%); adjusted OR 2.4 (95% CI, 1.4, 5.1)). Similarly, frail patients based on the frailty index were more likely to be discharged non-home compared to non-frail patients (76 (34.6%) vs. 9 (7.9%); adjusted OR, 5.5 (95% CI, 2.6, 11.5)). Both, the frailty phenotype and the frailty index were similarly associated with functional decline (adjusted OR 2.7 (95% CI, 1.5, 4.9); adjusted OR 2.8 (95% CI 1.4, 5.5)). ROC analyses showed best discriminatory accuracy for the frailty index for non-home discharge (area under the curve 0.76). CONCLUSIONS: Frailty using the SFNR-frailty index and the frailty phenotype is a promising measure for prediction of non-home discharge and functional decline in acutely hospitalized geriatric patients. Further study is needed to define the most valid frailty measure

    Predictive Abilities of the Frailty Phenotype and the Swiss Frailty Network and Repository Frailty Index for Non-Home Discharge and Functional Decline in Hospitalized Geriatric Patients

    Full text link
    Background: Frailty is increasingly applied as a measure to predict clinical outcomes, but data on the predictive abilities of frailty measures for non-home discharge and functional decline in acutely hospitalized geriatric patients are scarce. Objectives: The aim of this study was to investigate the predictive ability of the frailty phenotype and a frailty index currently validated as part of the ongoing Swiss Frailty Network and Repository Study based on clinical admission data for non-home discharge and functional decline in acutely hospitalized older patients. Design: Prospective cohort study. Setting and participants: Data were analyzed from 334 consecutive hospitalized patients of a tertiary acute care geriatric inpatient clinic admitted between August 2020 and March 2021. Measurements: We assessed frailty using 1) the frailty phenotype and 2) the Swiss Frailty Network and Repository Study (SFNR) frailty index based on routinely available clinical admission data. Predictive abilities of both frailty measures were analyzed for the clinical outcomes of non-home discharge and functional decline using multivariate logistic regression models and receiver operating characteristic curves (ROC). Results: Mean age was 82.8 (SD 7.2) years and 55.4% were women. Overall, 170 (53.1%) were frail based on the frailty phenotype and 220 (65.9%) based on the frailty index. Frail patients based on the frailty phenotype were more likely to be discharged non-home (55 (32.4%) vs. 26 (17.3%); adjusted OR 2.4 (95% CI, 1.4, 5.1)). Similarly, frail patients based on the frailty index were more likely to be discharged non-home compared to non-frail patients (76 (34.6%) vs. 9 (7.9%); adjusted OR, 5.5 (95% CI, 2.6, 11.5)). Both, the frailty phenotype and the frailty index were similarly associated with functional decline (adjusted OR 2.7 (95% CI, 1.5, 4.9); adjusted OR 2.8 (95% CI 1.4, 5.5)). ROC analyses showed best discriminatory accuracy for the frailty index for non-home discharge (area under the curve 0.76). Conclusions: Frailty using the SFNR-frailty index and the frailty phenotype is a promising measure for prediction of non-home discharge and functional decline in acutely hospitalized geriatric patients. Further study is needed to define the most valid frailty measure. Keywords: Frailty syndrome; aged; discharge planning; geriatrics; inpatients; predictive value of test

    Benefit-risk assessment of vitamin D supplementation

    Get PDF
    Summary: Current intake recommendations of 200 to 600IU vitamin D per day may be insufficient for important disease outcomes reduced by vitamin D. Introduction: This study assessed the benefit of higher-dose and higher achieved 25-hydroxyvitamin D levels [25(OH)D] versus any associated risk. Methods and results: Based on double-blind randomized control trials (RCTs), eight for falls (n = 2426) and 12 for non-vertebral fractures (n = 42,279), there was a significant dose-response relationship between higher-dose and higher achieved 25(OH)D and greater fall and fracture prevention. Optimal benefits were observed at the highest dose tested to date for 700 to 1000IU vitamin D per day or mean 25(OH)D between 75 and 110nmol/l (30-44ng/ml). Prospective cohort data on cardiovascular health and colorectal cancer prevention suggested increased benefits with the highest categories of 25(OH)D evaluated (median between 75 and 110nmol/l). In 25 RCTs, mean serum calcium levels were not related to oral vitamin D up to 100,000IU per day or achieved 25(OH)D up to 643nmol/l. Mean levels of 75 to 110nmol/l were reached in most RCTs with 1,800 to 4,000IU vitamin D per day without risk. Conclusion: Our analysis suggests that mean serum 25(OH)D levels of about 75 to 110nmol/l provide optimal benefits for all investigated endpoints without increasing health risks. These levels can be best obtained with oral doses in the range of 1,800 to 4,000IU vitamin D per day; further work is needed, including subject and environment factors, to better define the doses that will achieve optimal blood levels in the large majority of the populatio

    Optimal Use of Vitamin D When Treating Osteoporosis

    Get PDF
    Inadequate serum 25-hydroxyvitamin D (25[OH]D) concentrations are associated with muscle weakness, decreased physical performance, and increased propensity in falls and fractures. This paper discusses several aspects with regard to vitamin D status and supplementation when treating patients with osteoporosis in relation to risks and prevention of falls and fractures. Based on evidence from literature, adequate supplementation with at least 700 IU of vitamin D, preferably cholecalciferol, is required for improving physical function and prevention of falls and fractures. Additional calcium supplementation may be considered when dietary calcium intake is below 700 mg/day. For optimal bone mineral density response in patients treated with antiresorptive or anabolic therapy, adequate vitamin D and calcium supplementation is also necessary. Monitoring of 25(OH)D levels during follow-up and adjustment of vitamin D supplementation should be considered to reach and maintain adequate serum 25(OH)D levels of at least 50 nmol/L, preferably greater than 75 nmol/L in all patients

    Experimental Evidence for the Effects of Calcium and Vitamin D on Bone: A Review

    Get PDF
    Animal models fed low calcium diets demonstrate a negative calcium balance and gross bone loss while the combination of calcium deficiency and oophorectomy enhances overall bone loss. Following oophorectomy the dietary calcium intake required to remain in balance increases some 5 fold, estimated to be approximately 1.3% dietary calcium. In the context of vitamin D and dietary calcium depletion, osteomalacia occurs only when low dietary calcium levels are combined with low vitamin D levels and osteoporosis occurs with either a low level of dietary calcium with adequate vitamin D status or when vitamin D status is low in the presence of adequate dietary calcium intake. Maximum bone architecture and strength is only achieved when an adequate vitamin D status is combined with sufficient dietary calcium to achieve a positive calcium balance. This anabolic effect occurs without a change to intestinal calcium absorption, suggesting dietary calcium and vitamin D have activities in addition to promoting a positive calcium balance. Each of the major bone cell types, osteoblasts, osteoclasts and osteocytes are capable of metabolizing 25 hydroxyvitamin D (25D) to 1,25 dihydroxyvitamin D (1,25D) to elicit biological activities including reduction of bone resorption by osteoclasts and to enhance maturation and mineralization by osteoblasts and osteocytes. Each of these activities is consistent with the actions of adequate circulating levels of 25D observed in vivo

    Calcifediol versus vitamin D3 effects on gait speed and trunk sway in young postmenopausal women: a double-blind randomized controlled trial

    Full text link
    UNLABELLED In this double-blind RCT, 4-month treatment with calcifediol compared with vitamin D3 improved gait speed by 18 % among young postmenopausal women. Consistently, change in 25(OH)D blood levels over time were significantly correlated with improvement in gait speed in these women. No effect could be demonstrated for trunk sway. INTRODUCTION The aim of this study is to test the effect of calcifediol compared with vitamin D3 on gait speed and trunk sway. METHODS Twenty healthy postmenopausal women with an average 25(OH)D level of 13.2 ng/ml (SD = ±3.9) and a mean age of 61.5 years (SD = ±7.2) were randomized to either 20 μg of calcifediol or 20 μg (800 IU) of vitamin D3 per day in a double-blind manner. At baseline and at 4 months of follow-up, the same physiotherapist blinded to treatment allocation tested 8-m gait speed and a body sway test battery (Sway star pitch and roll angle plus velocity while walking 8 m, and standing on both legs on a hard and soft surface). All analyses adjusted for baseline measurement, age, and body mass index. RESULTS Mean 25(OH)D levels increased to 69.3 ng/ml (SD = ±9.5) in the calcifediol group and to 30.5 ng/ml (SD = ±5.0) in the vitamin D3 group (p < 0.0001). Women receiving calcifediol compared with vitamin D3 had an 18 % greater improvement in gait speed at 4-month follow-up (p = 0.046) adjusting for baseline gait speed, age, and body mass index. Also, change in gait speed was significantly correlated with change in serum 25(OH)D concentrations (r = 0.5; p = 0.04). Across three tests of trunk sway, there were no consistent differences between groups and no significant correlation between change in 25(OH)D serum concentrations and change in trunk sway. CONCLUSIONS Calcifediol improved gait speed in early postmenopausal women compared with vitamin D3 and change in 25(OH)D level was moderately correlated with improvement in gait speed. A benefit on trunk sway could not be demonstrated

    No significant effect on bone mineral density by high doses of vitamin D3 given to overweight subjects for one year

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In meta-analyses supplementation with vitamin D appears to reduce incidence of fractures, and in cross-sectional studies there is a positive association between serum 25-hydroxyvitamin D (25(OH)D) levels and bone mineral density (BMD). However, the effect of supplementation with high doses of vitamin D on BMD is more uncertain and could in theory have both positive and negative effects.</p> <p>Methods</p> <p>The study was a one year, double blind placebo-controlled intervention trial performed at the University Hospital of North Norway. 421 subjects, 21 - 70 years old, were included and 312 completed the study. The subjects were randomized to vitamin D<sub>3 </sub>40.000 IU per week (DD group), vitamin D<sub>3 </sub>20.000 IU per week (DP group), or placebo (PP group). All subjects were given 500 mg calcium daily. Serum 25(OH)D, osteoprotegrin (OPG), receptoractivator of nuclear factor-kappaB ligand (RANKL), and BMD at the lumbar spine and the hip were measured before and at the end of the study.</p> <p>Results</p> <p>At baseline the mean serum 25(OH)D levels were 58 nmol/L (all subjects) and increased to 141 and 100 nmol/L in the DD and DP groups, respectively. After one year, no significant differences were found between the three groups regarding change in BMD, serum OPG or RANKL.</p> <p>Conclusions</p> <p>Supplementation with high doses of vitamin D for one year does not appear to have a negative effect on BMD in healthy subjects. In order to disclose a positive effect, subjects with low BMD and/or low serum 25(OH)D levels need to be studied.</p> <p>Trial registration</p> <p>The trial was registered at ClinicalTrials.gov (NCT00243256).</p

    Vitamin D inadequacy in Belgian postmenopausal osteoporotic women

    Get PDF
    BACKGROUND: Inadequate serum vitamin D [25(OH)D] concentrations are associated with secondary hyperparathyroidism, increased bone turnover and bone loss, which increase fracture risk. The objective of this study is to assess the prevalence of inadequate serum 25(OH)D concentrations in postmenopausal Belgian women. Opinions with regard to the definition of vitamin D deficiency and adequate vitamin D status vary widely and there are no clear international agreements on what constitute adequate concentrations of vitamin D. METHODS: Assessment of 25-hydroxyvitamin D [25(OH)D] and parathyroid hormone was performed in 1195 Belgian postmenopausal women aged over 50 years. Main analysis has been performed in the whole study population and according to the previous use of vitamin D and calcium supplements. Four cut-offs of 25(OH)D inadequacy were fixed : < 80 nmol/L, <75 nmol/L, < 50 nmol/L and < 30 nmol/L. RESULTS: Mean (SD) age of the patients was 76.9 (7.5) years, body mass index was 25.7 (4.5) kg/m(2). Concentrations of 25(OH)D were 52.5 (21.4) nmol/L. In the whole study population, the prevalence of 25(OH)D inadequacy was 91.3 %, 87.5 %, 43.1 % and 15.9% when considering cut-offs of 80, 75, 50 and 30 nmol/L, respectively. Women who used vitamin D supplements, alone or combined with calcium supplements, had higher concentrations of 25(OH)D than non-users. Significant inverse correlations were found between age/serum PTH and serum 25(OH)D (r = -0.23/r = -0.31) and also between age/serum PTH and femoral neck BMD (r = -0.29/r = -0.15). There is a significant positive relation between age and PTH (r = 0.16), serum 25(OH)D and femoral neck BMD (r = 0.07). (P < 0.05) Vitamin D concentrations varied with the season of sampling but did not reach statistical significance (P = 0.09). CONCLUSION: This study points out a high prevalence of vitamin D inadequacy in Belgian postmenopausal osteoporotic women, even among subjects receiving vitamin D supplements
    • …
    corecore